1
|
Aboushadi MM, Albelasy EH, Ordinola-Zapata R. Association between endodontic symptoms and root canal microbiota: a systematic review and meta-analysis of bacteroidetes, spirochaetes and fusobacteriales. Clin Oral Investig 2024; 28:593. [PMID: 39394538 DOI: 10.1007/s00784-024-05946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES This systematic review and meta-analysis aimed to assess the prevalence of Bacteroidetes, Spirochaetes, and Fusobacteriales in symptomatic versus asymptomatic apical periodontitis as a primary objective. The secondary objective was to evaluate the prevalence of these species independently in symptomatic and asymptomatic apical periodontitis. MATERIALS AND METHODS An electronic search of the PubMed, Scopus, and Open-Grey databases was carried out from November 2022 to February 2023 and was later updated through July 2024..The risk of bias was assessed using the New Castle Ottawa scale. The quality of evidence was assessed using the Grading of Recommendations. Assessment, Development, and Evaluation. RESULTS The initial search resulted in 968 records. Following the removal of duplicates and a review of titles and abstracts, 66 studies underwent full-texts analysis. Twenty studies were deemed eligible for inclusion. For the first outcome, a fixed-effects model was used. In a total of 7 studies with 193 participants, Spirochaetes were more prevalent in symptomatic apical periodontitis (p < .05) with a risk ratio of 1.91 [ 95% CI 1.25-2.92]. No significant difference was observed (p˃.05) in the prevalence of Bacteroidetes (12 studies with 451 participants) and Fusobacteriales (7 studies with 205 participants) in symptomatic vs asymptomatic apical periodontitis with a risk ratio of (.96), and (1.1), [95% CI, .78-1.19], and [95% CI, 0.84.1.44], respectively. The overall quality of evidence was low. CONCLUSIONS The confirmation of the prevalence of Bacteroidetes and Fusobacteriales in symptomatic vs asymptomatic apical periodontitis remains uncertain. However, there is an association between Spirochetes and symptomatic apical periodontitis. Additional research is required to address the limitations of the current body of evidence. CLINICAL RELEVANCE Identifying key pathogens in symptomatic apical periodontitis can help develop targeted interventions that address the underlying microbial causes.
Collapse
Affiliation(s)
- Marwa M Aboushadi
- Endodontics Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
- Endodontics Department, Faculty of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Eman H Albelasy
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ronald Ordinola-Zapata
- Endodontics Department, Faculty of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Lewin GR, Evans ER, Whiteley M. Microbial interactions impact stress tolerance in a model oral community. Microbiol Spectr 2024; 12:e0100524. [PMID: 39269155 PMCID: PMC11448157 DOI: 10.1128/spectrum.01005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the molecular mechanisms governing microbial interactions is crucial for unraveling the complexities of microbial communities and their ecological impacts. Here, we employed a two-species model system comprising the oral bacteria Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to investigate how synergistic and antagonistic interactions between microbes impact their resilience to environmental change and invasion by other microbes. We used an in vitro colony biofilm model and focused on two S. gordonii-produced extracellular molecules, L-lactate and H2O2, which are known to impact fitness of this dual-species community. While the ability of A. actinomycetemcomitans to cross-feed on S. gordonii-produced L-lactate enhanced its fitness during co-culture, this function showed little impact on the ability of co-cultures to resist environmental change. In fact, the ability of A. actinomycetemcomitans to catabolize L-lactate may be detrimental in the presence of tetracycline, highlighting the complexity of interactions under antimicrobial stress. Furthermore, H2O2, known for its antimicrobial properties, had negative impacts on both species in our model system. However, H2O2 production by S. gordonii enhanced A. actinomycetemcomitans tolerance to tetracycline, suggesting a protective role under antibiotic pressure. Finally, S. gordonii significantly inhibited the bacterium Serratia marcescens from invading in vitro biofilms, but this inhibition was lost during co-culture with A. actinomycetemcomitans and in a murine abscess model, where S. gordonii actually promoted S. marcescens invasion. These data indicate that microbial interactions can impact fitness of a bacterial community upon exposure to stresses, but these impacts are highly environment dependent. IMPORTANCE Microbial interactions are critical modulators of the emergence of microbial communities and their functions. However, how these interactions impact the fitness of microbes in established communities upon exposure to environmental stresses is poorly understood. Here, we utilized a two-species community consisting of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to examine the impact of synergistic and antagonistic interactions on microbial resilience to environmental fluctuations and susceptibility to microbial invasion. We focused on the S. gordonii-produced extracellular molecules, L-lactate and H2O2, which have been shown to mediate interactions between these two microbes. We discovered that seemingly beneficial functions, such as A. actinomycetemcomitans cross-feeding on S. gordonii-produced L-Lactate, can paradoxically exacerbate vulnerabilities, such as susceptibility to antibiotics. Moreover, our data highlight the context-dependent nature of microbial interactions, emphasizing that a seemingly potent antimicrobial, such as H2O2, can have both synergistic and antagonistic effects on a microbial community dependent on the environment.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Emma R. Evans
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Scott C, Dias AP, De Buck J. Adherence and metal-ion acquisition gene expression increases during infection with Treponema phagedenis strains from bovine digital dermatitis. Infect Immun 2024; 92:e0011724. [PMID: 38940601 PMCID: PMC11320908 DOI: 10.1128/iai.00117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Digital dermatitis (DD) is an ulcerative foot lesion on the heel bulbs of dairy cattle. DD is a polymicrobial disease with no precise etiology, although Treponema spirochetes are found disproportionally abundant in diseased tissue. Within Treponema, several different species are found in DD; however, the species Treponema phagedenis is uniformly found in copious quantities and deep within the skin layers of the active, ulcerative stages of disease. The pathogenic mechanisms these bacteria use to persist in the skin and the precise role they play in the pathology of DD are widely unknown. To explore the pathogenesis and virulence of Treponema phagedenis, newly isolated strains of this species were investigated in a subcutaneous murine abscess model. In the first trial, a dosage study was conducted to compare the pathogenicity of different strains across three different treponemes per inoculum (TPI) doses based on abscess volumes. In the second trial, the expression levels of 11 putative virulence genes were obtained to gain insight into their involvement in pathogenesis. During the RT-qPCR analysis, it was determined that genes encoding for two metal-ion import lipoproteins and two adherence genes were found highly upregulated during infection. Conversely, two genes involved in motility and chemotaxis were found to not be significantly upregulated or utilized during infection. These results were supported by gene expression data from natural M2 lesions of dairy cattle. This gene expression analysis could highlight the preference in strategy for T. phagedenis to persist and adhere in the host rather than engage in motility and disseminate.
Collapse
Affiliation(s)
- Colton Scott
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angelica P. Dias
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Lahiri P, Arrazuria R, Tan YL, De Buck J, Hollenberg MD, Orsel K, Cobo ER. Proinflammatory CD14 highCD16 low monocytes/macrophages prevail in Treponema phagedenis-associated bovine digital dermatitis. Infect Immun 2024; 92:e0034223. [PMID: 38189287 PMCID: PMC10863414 DOI: 10.1128/iai.00342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Digital dermatitis (DD) is a skin disease in cattle characterized by painful inflammatory ulcerative lesions in the feet, mostly associated with local colonization by Treponema spp., including Treponema phagedenis. The reason why most DD lesions remain actively inflamed and progress to chronic conditions despite antibiotic treatment remains unknown. Herein, we show an abundant infiltration of proinflammatory (CD14highCD16low) monocytes/macrophages in active DD lesions, a skin response that was not mitigated by topical treatment with oxytetracycline. The associated bacterium, T. phagedenis, isolated from DD lesions in cattle, when injected subcutaneously into mice, induced abscesses with a local recruitment of Ly6G+ neutrophils and proinflammatory (Ly6ChighCCR2+) monocytes/macrophages, which appeared at infection onset (4 days post challenge) and persisted for at least 7 days post challenge. When exploring the ability of macrophages to regulate inflammation, we showed that bovine blood-derived macrophages challenged with live T. phagedenis or its structural components secreted IL-1β via a mechanism dependent on the NLRP3 inflammasome. This study shows that proinflammatory characteristics of monocytes/macrophages and neutrophils dominate active non-healing ulcerative lesions in active DD, thus likely impeding wound healing after antibiotic treatment.
Collapse
Affiliation(s)
- Priyoshi Lahiri
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Rakel Arrazuria
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Yi Lin Tan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Eduardo R. Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
6
|
Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context. THE ISME JOURNAL 2021; 15:2627-2642. [PMID: 33731837 PMCID: PMC8397782 DOI: 10.1038/s41396-021-00956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.
Collapse
|
7
|
Chigasaki O, Aoyama N, Sasaki Y, Takeuchi Y, Mizutani K, Ikeda Y, Gokyu M, Umeda M, Izumi Y, Iwata T, Aoki A. Porphyromonas gingivalis, the most influential pathogen in red-complex bacteria: A cross-sectional study on the relationship between bacterial count and clinical periodontal status in Japan. J Periodontol 2021; 92:1719-1729. [PMID: 33856713 DOI: 10.1002/jper.21-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porphyromonas gingivalis is a key pathogen in microbiota associated with periodontitis. The purpose of the present study was to assess the association between salivary counts of red-complex bacteria and clinical periodontal status in a Japanese population. METHODS A total of 977 subjects who visited a general dental clinic in Japan from 2003 to 2006 were enrolled in the study. Stimulated saliva was obtained, and the amounts of major periodontal bacteria were measured using real-time polymerase chain reaction. Probing pocket depth (PPD), bleeding on probing (BOP), and each subject's average proximal bone crest level (BCL) on dental radiographs were measured. RESULTS The number of P. gingivalis strongly associated with percentage of 4 mm or more PPD sites, BOP positive percentage, and 1.5 mm or more BCL sites. The detection of P. gingivalis with Treponema denticola and/or Tannerella forsythia showed a high rate of three positive clinical parameters, whereas the only P. gingivalis detected group and those without P. gingivalis had a low rate of three positive clinical parameters. CONCLUSION Among red-complex bacteria, the amount of P. gingivalis showed the strongest association with the severity of periodontal condition, and co-occurrence of P. gingivalis with T. denticola and/or T. forsythia showed heightened progression of periodontitis.
Collapse
Affiliation(s)
- Otofumi Chigasaki
- Tsukuba Health-Care Dental Clinic, Tsukuba, Japan.,Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Sasaki
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Koji Mizutani
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Misa Gokyu
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Oral Care Perio Center, Southern Tohoku General Hospital, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Takanori Iwata
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Akira Aoki
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
8
|
Non-Invasive Luciferase Imaging of Type I Interferon Induction in a Transgenic Mouse Model of Biomaterial Associated Bacterial Infections: Microbial Specificity and Inter-Bacterial Species Interactions. Microorganisms 2020; 8:microorganisms8101624. [PMID: 33096869 PMCID: PMC7589032 DOI: 10.3390/microorganisms8101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
The performance of biomaterials is often compromised by bacterial infections and subsequent inflammation. So far, the conventional analysis of inflammatory processes in vivo involves time-consuming histology and biochemical assays. The present study employed a mouse model where interferon beta (IFN-β) is monitored as a marker for non-invasive rapid detection of inflammation in implant-related infections. The mouse model comprises subcutaneous implantation of morphologically modified titanium, followed by experimental infections with four taxonomically diverse oral bacteria: Streptococcus oralis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Treponema denticola (as mono culture or selected mixed-culture). IFN-β expression increased upon infections depending on the type of pathogen and was prolonged by the presence of the implant. IFN-β expression kinetics reduced with two mixed species infections when compared with the single species. Histological and confocal microscopy confirmed pathogen-specific infiltration of inflammatory cells at the implant-tissue interface. This was observed mainly in the vicinity of infected implants and was, in contrast to interferon expression, higher in infections with dual species. In summary, this non-invasive mouse model can be used to quantify longitudinally host inflammation in real time and suggests that the polymicrobial character of infection, highly relevant to clinical situations, has complex effects on host immunity.
Collapse
|
9
|
Arrazuria R, Knight CG, Lahiri P, Cobo ER, Barkema HW, De Buck J. Treponema spp. Isolated from Bovine Digital Dermatitis Display Different Pathogenicity in a Murine Abscess Model. Microorganisms 2020; 8:E1507. [PMID: 33007829 PMCID: PMC7600977 DOI: 10.3390/microorganisms8101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 01/13/2023] Open
Abstract
Digital dermatitis (DD) causes lameness in cattle with substantial negative impact on sustainability and animal welfare. Although several species of Treponema bacteria have been isolated from various DD stages, their individual or synergistic roles in the initiation or development of lesions remain largely unknown. The objective of this study was to compare effects of the three most common Treponema species isolated from DD lesions in cattle (T. phagedenis, T. medium and T. pedis), both as individual and as mixed inoculations, in a murine abscess model. A total of 109 or 5 × 108Treponema spp. were inoculated subcutaneously, and produced abscess was studied after 7 days post infection. There were no synergistic effects when two or three species were inoculated together; however, T. medium produced the largest abscesses, whereas those produced by T. phagedenis were the smallest and least severe. Treponema species were cultured from skin lesions at 7 days post infection and, additionally, from the kidneys of some mice (2/5), confirming systemic infection may occur. Taken together, these findings suggest that T. medium and T. pedis may have more important roles in DD lesion initiation and development than T. phagedenis.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Cameron G. Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada;
| | - Priyoshi Lahiri
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| |
Collapse
|
10
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
11
|
Kalala-Kazadi E, Sekele-Issouradi JP, Bolenge-Ileboso J, Lasserre JF, Mantshumba-Milolo A, Ntumba-Mulumba H, Brecx MC. Periopathogenic bacteria in dental plaque of Congolese patients with periodontitis: A pilot study. J Clin Exp Dent 2018; 10:e232-e236. [PMID: 29721223 PMCID: PMC5923882 DOI: 10.4317/jced.54613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/04/2022] Open
Abstract
Background Periopathogenic bacteria play an important role in the etiology of periodontal disease. At present, no study screening for periopathogens in the DR Congo was carried out. The aim of this pilot study was to investigate the prevalence of five periopathogens in Congolese patients with periodontitis and to determine the association between these bacteria. Material and Methods Twelve patients (eight women and four men) with a mean age of 45 ± 19 years from those consulted in dental services of two medical centers of Kinshasa from April 2017 to October 2017 were included. Full mouth examination was registered, the probing pocket depth and clinical attachment level were assessed at six sites per tooth. Dental subgingival plaque samples were taken in the deepest pocket per arch in the maxilla and mandible. DNA analysis was performed using DNA-strip technology. The Fisher Exact test and Pearson correlation were used for statistical analysis. Results Porphyromonas gingivalis and Tannerella forsythia were detected at high level of 92%, Prevotella intermedia at a rate of 75% whereas Treponema denticola was detected in all patients. Aggregatibacter actinomycetemcomitans was not detected. Strong associations were found between three bacteria of the red complex and between T. denticola and P. intermedia (r=1). Conclusions This first study investigating periopathogens in subgingival plaque of Congolese with periodontitis demonstrated a high prevalence of the red complex (P. gingivalis, T. forsythia and T. denticola). Associations between different bacteria of this complex were strong. Key words:Association, bacteria, periopathogen, periodontitis, prevalence.
Collapse
Affiliation(s)
- Em Kalala-Kazadi
- PhD student, Unit of Periodontology, Department of Dental Medicine, Faculty of Medicine, University of Kinshasa, Democratic Republic of Congo
| | - Jean-Paul Sekele-Issouradi
- Professor, Service of Prosthodontics and orthodontics, Department of Dental Medicine, University of Kinshasa
| | - Jaques Bolenge-Ileboso
- Associate Professor, Chairman, Unit of Periodontology, Department of Dental Medicine, Faculty of Medicine, University of Kinshasa, Democratic Republic of Congo
| | - Jérôme F Lasserre
- Assistant Professor, Department of Periodontology, Université catholique de Louvain, Brussels, Belgium
| | - Augustin Mantshumba-Milolo
- Associate Professor, Service of Prosthodontics and orthodontics, Department of Dental Medicine, University of Kinshasa
| | - Hubert Ntumba-Mulumba
- Professor and Chairman of Dental Medicine Department, Service of Prosthodontics and orthodontics, Department of Dental Medicine, University of Kinshasa
| | - Michel C Brecx
- Professor, Department of Periodontology, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
12
|
Liu G, Luan Q, Chen F, Chen Z, Zhang Q, Yu X. Shift in the subgingival microbiome following scaling and root planing in generalized aggressive periodontitis. J Clin Periodontol 2018; 45:440-452. [PMID: 29266363 DOI: 10.1111/jcpe.12862] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Guojing Liu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qingxian Luan
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Feng Chen
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Zhibin Chen
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qian Zhang
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Xiaoqian Yu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
13
|
The Treponema denticola FhbB Protein Is a Dominant Early Antigen That Elicits FhbB Variant-Specific Antibodies That Block Factor H Binding and Cleavage by Dentilisin. Infect Immun 2016; 84:2051-2058. [PMID: 27113359 DOI: 10.1128/iai.01542-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
The Treponema denticola FhbB protein contributes to immune evasion by binding factor H (FH). Cleavage of FH by the T. denticola protease, dentilisin, may contribute to the local immune dysregulation that is characteristic of periodontal disease (PD). Although three FhbB phyletic types have been defined (FhbB1, FhbB2, and FhbB3), the in vivo expression patterns and antigenic heterogeneity of FhbB have not been assessed. Here, we demonstrate that FhbB is a dominant early antigen that elicits FhbB type-specific antibody (Ab) responses. Using the murine skin abscess model, we demonstrate that the presence or absence of FhbB or dentilisin significantly influences Ab responses to infection and skin abscess formation. Competitive binding analyses revealed that α-FhbB Ab can compete with FH for binding to T. denticola and block dentilisin-mediated FH cleavage. Lastly, we demonstrate that dentilisin cleavage sites reside within critical functional domains of FH, including the complement regulatory domain formed by CCPs 1 to 4. Analysis of the FH cleavage products revealed that they lack cofactor activity. The data presented here provide insight into the in vivo significance of dentilisin, FhbB and its antigenic diversity, and the potential impact of FH cleavage on the regulation of complement activation.
Collapse
|
14
|
Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog 2016; 94:60-9. [DOI: 10.1016/j.micpath.2015.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
15
|
Abstract
Interactions between microbes are complex and play an important role in the pathogenesis of infections. These interactions can range from fierce competition for nutrients and niches to highly evolved cooperative mechanisms between different species that support their mutual growth. An increasing appreciation for these interactions, and desire to uncover the mechanisms that govern them, has resulted in a shift from monomicrobial to polymicrobial biofilm studies in different disease models. Here we provide an overview of biofilm models used to study select polymicrobial infections and highlight the impact that the interactions between microbes within these biofilms have on disease progression. Notable recent advances in the development of polymicrobial biofilm-associated infection models and challenges facing the study of polymicrobial biofilms are addressed.
Collapse
Affiliation(s)
- Rebecca A Gabrilska
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kendra P Rumbaugh
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Gully N, Bright R, Marino V, Marchant C, Cantley M, Haynes D, Butler C, Dashper S, Reynolds E, Bartold M. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One 2014; 9:e100838. [PMID: 24959715 PMCID: PMC4069180 DOI: 10.1371/journal.pone.0100838] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. METHODS A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. RESULTS The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. CONCLUSION This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms which drive these processes.
Collapse
Affiliation(s)
- Neville Gully
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Richard Bright
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Marino
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Ceilidh Marchant
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - David Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Catherine Butler
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Dashper
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Bartold
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
17
|
Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci U S A 2014; 111:7819-24. [PMID: 24825893 DOI: 10.1073/pnas.1400586111] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites with many microbes, including commensal streptococci such as Streptococcus gordonii (Sg). During infection, Sg promotes the virulence of Aa by producing its preferred carbon source, l-lactate, a phenomenon referred to as cross-feeding. However, as with many streptococci, Sg also produces high levels of the antimicrobial hydrogen peroxide (H2O2), leading to the question of how Aa deals with this potent antimicrobial during coinfection. Here, we show that Aa possesses two complementary responses to H2O2: a detoxification or fight response mediated by catalase (KatA) and a dispersion or flight response mediated by Dispersin B (DspB), an enzyme that dissolves Aa biofilms. Using a murine abscess infection model, we show that both of these responses are required for Sg to promote Aa virulence. Although the role of KatA is to detoxify H2O2 during coinfection, 3D spatial analysis of mixed infections revealed that DspB is required for Aa to spatially organize itself at an optimal distance (>4 µm) from Sg, which we propose allows cross-feeding but reduces exposure to inhibitory levels of H2O2. In addition, these behaviors benefit not only Aa but also Sg, suggesting that fight and flight stimulate the fitness of the community. These results reveal that an antimicrobial produced by a human commensal bacterium enhances the virulence of a pathogenic bacterium by modulating its spatial location in the infection site.
Collapse
|
18
|
Bartold PM, Van Dyke TE. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000 2014; 62:203-17. [PMID: 23574467 DOI: 10.1111/j.1600-0757.2012.00450.x] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New concepts evolve when existing ones fail to address known factors adequately or are invalidated by new evidence. For decades periodontitis has been considered to be caused by specific bacteria or groups of bacteria and, accordingly, treatment protocols have largely been based on anti-infective therapies. However, close inspection of current data leads one to question whether these bacteria are the cause or the result of periodontitis. Good evidence is emerging to suggest that it is indeed the host response to oral bacteria that leads to the tissue changes noted in gingivitis. These changes lead to an altered subgingival environment that favors the emergence of 'periodontal pathogens' and the subsequent development of periodontitis if the genetic and external environmental conditions are favorable for disease development. Thus, it seems that it is indeed the initial early host-inflammatory and immune responses occurring during the development of gingivitis, and not specific bacteria or their so-called virulence factors, which determine whether periodontitis develops and progresses. In this review we consider these concepts and their potential to change the way in which we view and manage the inflammatory periodontal diseases.
Collapse
|
19
|
Tan KH, Seers CA, Dashper SG, Mitchell HL, Pyke JS, Meuric V, Slakeski N, Cleal SM, Chambers JL, McConville MJ, Reynolds EC. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog 2014; 10:e1003955. [PMID: 24603978 PMCID: PMC3946380 DOI: 10.1371/journal.ppat.1003955] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/12/2014] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6∶1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono-culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up-regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P. gingivalis was stimulated by T. denticola conditioned medium and glycine supplementation of T. denticola medium increased final cell density 1.7-fold. Collectively these data show P. gingivalis and T. denticola respond metabolically to the presence of each other with T. denticola displaying responses that help explain enhanced virulence of co-infections. Unlike the traditional view that most diseases are caused by infection with a single bacterial species, some chronic diseases including periodontitis result from the perturbation of the natural microbiota and the proliferation of a number of opportunistic pathogens. Both Porphyromonas gingivalis and Treponema denticola have been associated with the progression and severity of chronic periodontitis and have been shown to display synergistic virulence in animal models. However, the underlying mechanisms to these observations are unclear. Here we demonstrate that these two bacteria grow synergistically in continuous co-culture and modify their gene expression. The expression of T. denticola genes encoding known virulence factors and enzymes involved in the uptake and metabolism of the amino acid glycine was up-regulated in co-culture. T. denticola stimulated the proteolytic P. gingivalis to produce free glycine, which T. denticola used as a major carbon source. Our study shows P. gingivalis and T. denticola co-operate metabolically and this helps to explain their synergistic virulence in animal models and their intimate association in vivo.
Collapse
Affiliation(s)
- Kheng H. Tan
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine A. Seers
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen L. Mitchell
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - James S. Pyke
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Vincent Meuric
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nada Slakeski
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven M. Cleal
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jenny L. Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J Microbiol 2014; 52:188-99. [PMID: 24585050 PMCID: PMC7090983 DOI: 10.1007/s12275-014-4067-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023]
Abstract
Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease. Polymicrobial synergy can occur during infection, in which the combined effect of two or more microbes on disease is worse than seen with any of the individuals alone. Powerful genomic methods are increasingly used to study microbial communities, including metagenomics to reveal the members and genetic content of a community and metatranscriptomics to describe the activities of community members. Recent efforts focused toward a mechanistic understanding of these interactions have led to a better appreciation of the precise bases of polymicrobial synergy in communities containing bacteria, eukaryotic microbes, and/or viruses. These studies have benefited from advances in the development of in vivo models of polymicrobial infection and modern techniques to profile the spatial and chemical bases of intermicrobial communication. This review describes the breadth of mechanisms microbes use to interact in ways that impact pathogenesis and techniques to study polymicrobial communities.
Collapse
Affiliation(s)
- Justine L. Murray
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jodi L. Connell
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Apollo Stacy
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Keith H. Turner
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
21
|
Oxantel disrupts polymicrobial biofilm development of periodontal pathogens. Antimicrob Agents Chemother 2013; 58:378-85. [PMID: 24165189 DOI: 10.1128/aac.01375-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacterial pathogens commonly associated with chronic periodontitis are the spirochete Treponema denticola and the Gram-negative, proteolytic species Porphyromonas gingivalis and Tannerella forsythia. These species rely on complex anaerobic respiration of amino acids, and the anthelmintic drug oxantel has been shown to inhibit fumarate reductase (Frd) activity in some pathogenic bacteria and inhibit P. gingivalis homotypic biofilm formation. Here, we demonstrate that oxantel inhibited P. gingivalis Frd activity with a 50% inhibitory concentration (IC50) of 2.2 μM and planktonic growth of T. forsythia with a MIC of 295 μM, but it had no effect on the growth of T. denticola. Oxantel treatment caused the downregulation of six P. gingivalis gene products and the upregulation of 22 gene products. All of these genes are part of a regulon controlled by heme availability. There was no large-scale change in the expression of genes encoding metabolic enzymes, indicating that P. gingivalis may be unable to overcome Frd inhibition. Oxantel disrupted the development of polymicrobial biofilms composed of P. gingivalis, T. forsythia, and T. denticola in a concentration-dependent manner. In these biofilms, all three species were inhibited to a similar degree, demonstrating the synergistic nature of biofilm formation by these species and the dependence of T. denticola on the other two species. In a murine alveolar bone loss model of periodontitis oxantel addition to the drinking water of P. gingivalis-infected mice reduced bone loss to the same level as the uninfected control.
Collapse
|
22
|
Abstract
Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.
Collapse
|
23
|
Probing bacterial metabolism during infection using high-resolution transcriptomics. J Bacteriol 2013; 195:4991-8. [PMID: 23974023 DOI: 10.1128/jb.00875-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A fundamental aspect of most infectious diseases is the need for the invading microbe to proliferate in the host. However, little is known about the metabolic pathways required for pathogenic microbes to colonize and persist in their hosts. In this study, we used RNA sequencing (RNA-seq) to generate a high-resolution transcriptome of the opportunistic pathogen Aggregatibacter actinomycetemcomitans in vivo. We identified 691 A. actinomycetemcomitans transcriptional start sites and 210 noncoding RNAs during growth in vivo and as a biofilm in vitro. Compared to in vitro biofilm growth on a defined medium, ∼14% of the A. actinomycetemcomitans genes were differentially regulated in vivo. A disproportionate number of genes coding for proteins involved in metabolic pathways were differentially regulated in vivo, suggesting that A. actinomycetemcomitans in vivo metabolism is distinct from in vitro growth. Mutational analyses of differentially regulated genes revealed that formate dehydrogenase H and fumarate reductase are important A. actinomycetemcomitans fitness determinants in vivo. These results not only provide a high-resolution genomic analysis of a bacterial pathogen during in vivo growth but also provide new insight into metabolic pathways required for A. actinomycetemcomitans in vivo fitness.
Collapse
|
24
|
Suzuki N, Yoneda M, Hirofuji T. Mixed red-complex bacterial infection in periodontitis. Int J Dent 2013; 2013:587279. [PMID: 23533413 PMCID: PMC3606728 DOI: 10.1155/2013/587279] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
The red complex, which includes Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia (formerly Bacteroides forsythus), are recognized as the most important pathogens in adult periodontal disease. These bacteria are usually found together in periodontal pockets, suggesting that they may cause destruction of the periodontal tissue in a cooperative manner. This article discusses the interspecies pathogenic interactions within the red complex.
Collapse
Affiliation(s)
- N. Suzuki
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - M. Yoneda
- Center for Oral Diseases, 3-2-1 Hakataekimae, Hakata-ku, Fukuoka 812-0011, Japan
| | - T. Hirofuji
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
25
|
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 2012; 110:1059-64. [PMID: 23277552 DOI: 10.1073/pnas.1214550110] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.
Collapse
|
26
|
Usin MM, Tabares SM, Parodi RJ, Sembaj A. Periodontal conditions during the pregnancy associated with periodontal pathogens. ACTA ACUST UNITED AC 2012; 4:54-9. [DOI: 10.1111/j.2041-1626.2012.00137.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 03/08/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Matilde Usin
- Department Periodontics; Faculty of Dentistry; National University of Cordoba; Córdoba; Argentina
| | - Sandra M. Tabares
- Department of Biochemistry and Molecular Biology; Faculty of Medical Science; National University of Cordoba; Córdoba; Argentina
| | - Ricardo J. Parodi
- Department Periodontics; Faculty of Dentistry; National University of Cordoba; Córdoba; Argentina
| | - Adela Sembaj
- Department of Biochemistry and Molecular Biology; Faculty of Medical Science; National University of Cordoba; Córdoba; Argentina
| |
Collapse
|
27
|
Ammann TW, Gmür R, Thurnheer T. Advancement of the 10-species subgingival Zurich biofilm model by examining different nutritional conditions and defining the structure of the in vitro biofilms. BMC Microbiol 2012; 12:227. [PMID: 23040057 PMCID: PMC3561252 DOI: 10.1186/1471-2180-12-227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/04/2012] [Indexed: 12/04/2022] Open
Abstract
Background Periodontitis is caused by a highly complex consortium of bacteria that establishes as biofilms in subgingival pockets. It is a disease that occurs worldwide and its consequences are a major health concern. Investigations in situ are not possible and the bacterial community varies greatly between patients and even within different loci. Due to the high complexity of the consortium and the availability of samples, a clear definition of the pathogenic bacteria and their mechanisms of pathogenicity are still not available. In the current study we addressed the need of a defined model system by advancing our previously described subgingival biofilm model towards a bacterial composition that reflects the one observed in diseased sites of patients and analysed the structure of these biofilms. Results We further developed the growth media by systematic variation of key components resulting in improved stability and the firm establishment of spirochetes in the 10-species subgingival Zurich biofilm model. A high concentration of heat-inactivated human serum allowed the best proliferation of the used species. Therefore we further investigated these biofilms by analysing their structure by confocal laser scanning microscopy following fluorescence in situ hybridisation. The species showed mutual interactions as expected from other studies. The abundances of all organisms present in this model were determined by microscopic counting following species-specific identification by both fluorescence in situ hybridisation and immunofluorescence. The newly integrated treponemes were the most abundant organisms. Conclusions The use of 50% of heat-inactivated human serum used in the improved growth medium resulted in significantly thicker and more stable biofilms, and the quantitative representation of the used species represents the in vivo community of periodontitis patients much closer than in biofilms grown in the two media with less or no human serum. The appearance of T. denticola, P. gingivalis, and T. forsythia in the top layer of the biofilms, and the high abundance of T. denticola, reflects well the microbial situation observed at diseased sites. The improved model biofilms will allow further investigations of interactions between individual species and of the effects of atmospheric or nutritional changes, as well as interactions with tissue cells.
Collapse
Affiliation(s)
- Thomas W Ammann
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, Plattenstrasse 11, 8032, Zürich, Switzerland.
| | | | | |
Collapse
|
28
|
Michelin MCAN, Teixeira SRL, Ando-Suguimoto ES, Lucas SRR, Mayer MPA. Porphyromonas gingivalis infection at different gestation periods on fetus development and cytokines profile. Oral Dis 2012; 18:648-54. [PMID: 22471815 DOI: 10.1111/j.1601-0825.2012.01917.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Infective agents may affect pregnancy outcomes by deregulating homeostasis. OBJECTIVES The effects of Porphyromonas gingivalis infection before and at different gestation periods were evaluated. MATERIALS AND METHODS Wistar rats infected via subcutaneous with P. gingivalis W83, one week before mating (BM), days 1 (PR1) and 11 of gestation (PR11), and controls were evaluated, and samples were obtained at the end of gestation. P. gingivalis was detected by PCR. Cytokine was determined by ELISA. RESULTS Infected rats had lower maternal gain of weight. Implantation was not observed in 2/12 BM rats. PR11 presented more fetal-placental resorptions and lower placenta/fetus weight than controls. P. gingivalis was detected in placenta and fetus. IL-6 and TNF-α levels were higher in placenta and serum of infected groups, except for TNF-α in placenta of PR1. IL-1β levels were higher in placenta of PR11, but lower in serum and placenta of PR1. There were no differences in IL-10 and PGE2 concentrations among the groups (P < 0.05). CONCLUSIONS The experimental infection by P. gingivalis resulted in alterations in the gestational pattern and in fetal development. The consequences of infection at mid-gestation were more severe than at the beginning, possibly due to the induction of pro-inflammatory cytokines in the fetal compartment.
Collapse
Affiliation(s)
- M C A N Michelin
- Department of Morphology and Genetics, Laboratory of Developmental Biology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
29
|
Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity. Antimicrob Agents Chemother 2012; 56:1548-56. [PMID: 22214780 DOI: 10.1128/aac.05100-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a bacterial pathogen associated with chronic periodontitis that results in destruction of the tooth's supporting tissues. The major virulence determinants of P. gingivalis are its cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp. Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in saliva and gingival crevicular fluid, is believed to play an important role in innate immunity. In this study, bovine milk LF displayed proteinase inhibitory activity against P. gingivalis whole cells, significantly inhibiting both Arg- and Lys-specific proteolytic activities. LF inhibited the Arg-specific activity of purified RgpB, which lacks adhesin domains, and also inhibited the same activity of the RgpA/Kgp proteinase-adhesin complexes in a time-dependent manner, with a first-order inactivation rate constant (k(inact)) of 0.023 min(-1) and an inhibitor affinity constant (K(I)) of 5.02 μM. LF inhibited P. gingivalis biofilm formation by >80% at concentrations above 0.625 μM. LF was relatively resistant to hydrolysis by P. gingivalis cells but was cleaved into two major polypeptides (53 and 33 kDa) at R(284) to S(285), as determined by in-source decay mass spectrometry; however, these polypeptides remained associated with each other and retained inhibitory activity. The biofilm inhibitory activity of LF against P. gingivalis was not attributed to direct antibacterial activity, as LF displayed little growth inhibitory activity against planktonic cells. As the known RgpA/B and Kgp inhibitor N-α-p-tosyl-l-lysine chloromethylketone also inhibited P. gingivalis biofilm formation, the antibiofilm effect of LF may at least in part be attributable to its antiproteinase activity.
Collapse
|
30
|
Pathogenic microbes and community service through manipulation of innate immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:69-85. [PMID: 21948363 DOI: 10.1007/978-1-4614-0106-3_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periodontal pathogen Porphyromonas gingivalis undermines major components of innate immunity, such as complement, Toll-like receptors (TLR), and their crosstalk pathways. At least in principle, these subversive activities could promote the adaptive fitness of the entire periodontal biofilm community. In this regard, the virulence factors responsible for complement and TLR exploitation (gingipain enzymes, atypical lipopolysaccharide molecules, and fimbriae) are released as components of readily diffusible membrane vesicles, which can thus become available to other biofilm organisms. This review summarizes important immune subversive tactics of P. gingivalis which might enable it to exert a supportive impact on the oral microbial community.
Collapse
|
31
|
Leid JG, Cope E. Population level virulence in polymicrobial communities associated with chronic disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Analysis of Symptomatic and Asymptomatic Primary Root Canal Infections in Adult Norwegian Patients. J Endod 2011; 37:1206-12. [DOI: 10.1016/j.joen.2011.05.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 02/01/2023]
|
33
|
Bakthavatchalu V, Meka A, Mans JJ, Sathishkumar S, Lopez MC, Bhattacharyya I, Boyce BF, Baker HV, Lamont RJ, Ebersole JL, Kesavalu L. Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue. Mol Oral Microbiol 2011; 26:303-20. [PMID: 21896157 DOI: 10.1111/j.2041-1014.2011.00619.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T.forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip(®) array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction, and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts were observed in calvarias compared with sham-infected controls. Quantitative real-time RT-PCR analysis confirmed that the mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane pathway genes in a manner distinct from mono-infection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobially induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Orth RKH, O'Brien-Simpson NM, Dashper SG, Reynolds EC. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol 2011; 26:229-40. [PMID: 21729244 DOI: 10.1111/j.2041-1014.2011.00612.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic periodontitis is characterized by the destruction of the tissues supporting the teeth and has been associated with the presence of a subgingival polymicrobial biofilm containing Porphyromonas gingivalis and Treponema denticola. We have investigated the potential synergistic virulence of P. gingivalis and T. denticola using a murine experimental model of periodontitis. An inoculation regime of four intra-oral doses of 1 × 10(10) P. gingivalis cells induced significant periodontal bone loss compared with loss in sham-inoculated mice, whereas doses of 1 × 10(9) cells or lower did not induce bone loss. Inoculation with T. denticola with up to eight doses of 1 × 10(10) cells failed to induce bone loss in this model. However, four doses of a co-inoculum of a 1 : 1 ratio of P. gingivalis and T. denticola at 5 × 10(8) or 1 × 10(9) total bacterial cells induced the same level of bone loss as four doses of 1 × 10(10) P. gingivalis cells. Co-inoculation induced strong P. gingivalis-specific T-cell proliferative and interferon-γ-dominant cytokine responses, and induced a strong T. denticola-specific interferon-γ dominant cytokine response. Only at the higher co-inoculum dose of 1 × 10(10) total cells was a T. denticola-specific T-cell proliferative response observed. These data show that P. gingivalis and T. denticola act synergistically to stimulate the host immune response and to induce alveolar bone loss in a murine experimental periodontitis model.
Collapse
Affiliation(s)
- R K-H Orth
- Oral Health CRC, Melbourne Dental School and Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
35
|
Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog 2011; 7:e1002012. [PMID: 21483753 PMCID: PMC3069116 DOI: 10.1371/journal.ppat.1002012] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 11/19/2022] Open
Abstract
Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis; however, the molecular mechanisms governing these interactions are not well understood. Development of model systems that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A. actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly, inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial communities. Many bacterial infections are not the result of colonization and persistence of a single pathogenic microbe in an infection site but instead the result of colonization by several. Although the importance of polymicrobial interactions and pathogenesis has been noted by many prominent microbiologists including Louis Pasteur, most studies of pathogenic microbes have focused on single organism infections. One of the primary reasons for this oversight is the lack of robust model systems for studying bacterial interactions in an infection site. Here, we use a model co-culture system composed of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans and the common oral commensal Streptococcus gordonii to assess the impact of polymicrobial growth on pathogenesis. We found that the abilities of A. actinomycetemcomitans to persist and cause disease are enhanced during co-culture with S. gordonii. Remarkably, this enhanced persistence requires A. actinomycetemcomitans catabolism of L-lactate, the primary metabolite produced by S. gordonii. These data demonstrate that during co-culture growth, S. gordonii provides a carbon source for A. actinomycetemcomitans that is necessary for establishing a robust polymicrobial infection. This study also demonstrates that virulence of an opportunistic pathogen is impacted by members of the commensal flora.
Collapse
|
36
|
Ozbek SM, Ozbek A. Real-time polymerase chain reaction of "red complex" (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) in periradicular abscesses. ACTA ACUST UNITED AC 2011; 110:670-4. [PMID: 20955954 DOI: 10.1016/j.tripleo.2010.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/25/2010] [Accepted: 07/02/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The red complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have been implicated, either singly or in combination, in the development of various forms of periodontal diseases. The aim of this study was to investigate the presence of "red complex" in acute periradicular abscesses by real-time polymerase chain reaction (PCR) method. STUDY DESIGN Microbial samples were collected by aspiration from 32 cases diagnosed as acute periradicular abscess. DNA was extracted from the samples by using a QIAamp DNA mini-kit and analyzed with real-time PCR. RESULTS At least 1 member of the red complex was found in 84% of the cases. In general T. denticola, P. gingivalis, and T. forsythia were detected in 65.6%, 43.7%, and 40.6% of the cases, respectively. Red complex was detected in 15.6% of samples taken from acute periradicular abscesses. CONCLUSIONS Our findings suggest that "red complex" can participate in the pathogenesis of acute periradicular abscesses.
Collapse
Affiliation(s)
- Selcuk M Ozbek
- Department of Endodontics, Dental School, Ataturk University, Erzurum, Turkey.
| | | |
Collapse
|
37
|
Abstract
Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.
Collapse
|
38
|
Verma RK, Bhattacharyya I, Sevilla A, Lieberman I, Pola S, Nair M, Wallet SM, Aukhil I, Kesavalu L. Virulence of major periodontal pathogens and lack of humoral immune protection in a rat model of periodontal disease. Oral Dis 2010; 16:686-95. [PMID: 20846155 DOI: 10.1111/j.1601-0825.2010.01678.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study was designed to test the hypothesis that periodontal pathogens Tannerella forsythia and Porphyromonas gingivalis are synergistic in terms of virulence potential using a model of mixed-microbial infection in rats. MATERIALS AND METHODS Three groups of rats were infected orally with either T. forsythia or P. gingivalis in mono-bacterial infections or as mixed-microbial infections for 12 weeks and a sham-infected group were used as a control. This study examined bacterial infection, inflammation, immunity, and alveolar bone loss changes with disease progression. RESULTS Tannerella forsythia and P. gingivalis genomic DNA was detected in microbial samples from infected rats by PCR indicating their colonization in the rat oral cavity. Primary infection induced significantly high IgG, IgG2b, IgG1, and IgG2a antibody levels indicating activation of mixed Th1 and Th2 immune responses. Rats infected with the mixed-microbial consortium exhibited significantly increased palatal horizontal and interproximal alveolar bone loss. Histological examinations indicated significant hyperplasia of the gingival epithelium with moderate inflammatory infiltration and apical migration of junctional epithelium. The results observed differ compared to uninfected controls. CONCLUSION Our results indicated that T. forsythia and P. gingivalis exhibit virulence, but not virulence synergy, resulting in the immuno-inflammatory responses and lack of humoral immune protection during periodontitis in rats.
Collapse
Affiliation(s)
- R K Verma
- Department of Periodontology, Collegeof Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In terms of the pathogenesis of cardiovascular disease (CVD) the focus has traditionally been on dyslipidemia. Over the decades our understanding of the pathogenesis of CVD has increased, and infections, including those caused by oral bacteria, are more likely involved in CVD progression than previously thought. While many studies have now shown an association between periodontal disease and CVD, the mechanisms underpinning this relationship remain unclear. This review gives a brief overview of the host-bacterial interactions in periodontal disease and virulence factors of oral bacteria before discussing the proposed mechanisms by which oral bacterial may facilitate the progression of CVD.
Collapse
Affiliation(s)
- Shaneen J Leishman
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
40
|
Porphyromonas gingivalis cysteine proteinase inhibition by kappa-casein peptides. Antimicrob Agents Chemother 2010; 55:1155-61. [PMID: 21173178 DOI: 10.1128/aac.00466-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The Arg-specific (RgpA/B) and Lys-specific (Kgp) cysteine proteinases of P. gingivalis are major virulence factors for the bacterium. In this study κ-casein(109-137) was identified in a chymosin digest of casein as an inhibiting peptide of the P. gingivalis proteinases. The peptide was synthesized and shown to inhibit proteolytic activity associated with P. gingivalis whole cells, purified RgpA-Kgp proteinase-adhesin complexes, and purified RgpB proteinase. The peptide κ-casein(109-137) exhibited synergism with Zn(II) against both Arg- and Lys-specific proteinases. The active region for inhibition was identified as κ-casein(117-137) using synthetic peptides. Kinetic studies revealed that κ-casein(109-137) inhibits in an uncompetitive manner. A molecular model based on the uncompetitive action and its synergistic ability with Zn(II) was developed to explain the mechanism of inhibition. Preincubation of P. gingivalis with κ-casein(109-137) significantly reduced lesion development in a murine model of infection.
Collapse
|
41
|
|
42
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
43
|
Bodet C, Grenier D. Synergistic effects of lipopolysaccharides from periodontopathic bacteria on pro-inflammatory cytokine production in an ex vivo whole blood model. Mol Oral Microbiol 2010; 25:102-11. [PMID: 20331798 DOI: 10.1111/j.2041-1014.2010.00566.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia have been strongly associated with chronic periodontitis. This disease is characterized by an accumulation of inflammatory cells in periodontal tissue and subgingival sites. The secretion of high levels of inflammatory cytokines by those cells is believed to contribute to periodontal tissue destruction. The aim of this study was to investigate the inflammatory response of whole blood from periodontitis patients following challenges with whole cells of P. gingivalis, T. denticola, and T. forsythia or their lipopolysaccharides (LPS), individually and in combination. Whole blood collected from seven periodontitis patients was stimulated with whole cells or LPS and the production of interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) were quantified by enzyme-linked immunosorbent assays. The mono and mixed challenges with whole bacterial cells or LPS induced the secretion of high amounts of IL-1beta, IL-6, IL-8, and TNF-alpha by the mixed leukocyte population from periodontitis patients. In addition, P. gingivalis LPS, T. denticola LPS, and T. forsythia LPS acted in synergy to induce high levels of IL-1beta and TNF-alpha. This study suggests that P. gingivalis, T. denticola, and T. forsythia may contribute to the immunodestructive host response characteristic of periodontitis through synergistic effects of their LPS on the inflammatory response induced by a mixed population of leukocytes.
Collapse
Affiliation(s)
- C Bodet
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|
44
|
Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease. Interdiscip Perspect Infect Dis 2010; 2010:605125. [PMID: 20592756 PMCID: PMC2879544 DOI: 10.1155/2010/605125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022] Open
Abstract
Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease.
Collapse
|
45
|
Krauss JL, Potempa J, Lambris JD, Hajishengallis G. Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol 2000 2010; 52:141-62. [PMID: 20017800 DOI: 10.1111/j.1600-0757.2009.00324.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Martínez-Pabón MC, Martínez-Gaviria A, Isaza-Guzmán DM, Muskus-López CE, Tobón-Arroyave SI. Confounding and interaction effect ofTreponema denticolasalivary carriage in chronic periodontitis. Oral Dis 2010; 16:278-85. [DOI: 10.1111/j.1601-0825.2009.01639.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Handfield M, Baker HV, Lamont RJ. Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells. J Dent Res 2008; 87:203-23. [PMID: 18296603 DOI: 10.1177/154405910808700302] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many instances, the encounter between host and microbial cells, through a long-standing evolutionary association, can be a balanced interaction whereby both cell types co-exist and inflict a minimal degree of harm on each other. In the oral cavity, despite the presence of large numbers of diverse organisms, health is the most frequent status. Disease will ensue only when the host-microbe balance is disrupted on a cellular and molecular level. With the advent of microarrays, it is now possible to monitor the responses of host cells to bacterial challenge on a global scale. However, microarray data are known to be inherently noisy, which is caused in part by their great sensitivity. Hence, we will address several important general considerations required to maximize the significance of microarray analysis in depicting relevant host-microbe interactions faithfully. Several advantages and limitations of microarray analysis that may have a direct impact on the significance of array data are highlighted and discussed. Further, this review revisits and contextualizes recent transcriptional profiles that were originally generated for the specific study of intricate cellular interactions between gingival cells and 4 important plaque micro-organisms. To our knowledge, this is the first report that systematically investigates the cellular responses of a cell line to challenge by 4 different micro-organisms. Of particular relevance to the oral cavity, the model bacteria span the entire spectrum of documented pathogenic potential, from commensal to opportunistic to overtly pathogenic. These studies provide a molecular basis for the complex and dynamic interaction between the oral microflora and its host, which may lead, ultimately, to the development of novel, rational, and practical therapeutic, prophylactic, and diagnostic applications.
Collapse
Affiliation(s)
- M Handfield
- Department of Oral Biology, College of Dentistry, Box 100424 JHMHSC, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | |
Collapse
|
48
|
Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007; 71:653-70. [PMID: 18063722 PMCID: PMC2168648 DOI: 10.1128/mmbr.00024-07] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning "system thinking" and "holism." Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name "dental plaque," oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Boiology, School of Dental Medicine, State University of New York, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
49
|
Bodet C, Chandad F, Grenier D. Potentiel pathogénique de Porphyromonas gingivalis, Treponema denticola et Tannerella forsythia, le complexe bactérien rouge associé à la parodontite. ACTA ACUST UNITED AC 2007; 55:154-62. [PMID: 17049750 DOI: 10.1016/j.patbio.2006.07.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/28/2006] [Indexed: 11/30/2022]
Abstract
Periodontitis are mixed bacterial infections leading to destruction of tooth-supporting tissues, including periodontal ligament and alveolar bone. Among over 500 bacterial species living in the oral cavity, a bacterial complex named "red complex" and made of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia has been strongly related to advanced periodontal lesions. While periodontopathogenic bacteria are the primary etiologic factor of periodontitis, tissue destruction essentially results from the host immune response to the bacterial challenge. Members of the red complex are Gram negative anaerobic bacteria expressing numerous virulence factors allowing bacteria to colonize the subgingival sites, to disturb the host defense system, to invade and destroy periodontal tissue as well as to promote the immunodestructive host response. This article reviews current knowledge of the pathogenic mechanisms of bacteria of the red complex leading to tissue and alveolar bone destruction observed during periodontitis.
Collapse
Affiliation(s)
- C Bodet
- Groupe de recherche en écologie buccale, faculté de médecine dentaire, université Laval, G1K 7P4 Québec, Québec, Canada
| | | | | |
Collapse
|
50
|
Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, Ebersole JL. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 2007; 75:1704-12. [PMID: 17210663 PMCID: PMC1865722 DOI: 10.1128/iai.00733-06] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the predominant polymicrobial infections of humans is expressed clinically as periodontal disease. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia have been strongly implicated as members of a pathogenic consortium in the etiology of adult periodontitis. In this study we hypothesized that P. gingivalis, T. denticola, and T. forsythia are synergistic in terms of virulence potential and induce chronic periodontal inflammation that leads to alveolar bone resorption in a polymicrobial infection in rats. Groups of rats were infected with either P. gingivalis, T. denticola, or T. forsythia in monomicrobial infections or with all three species in polymicrobial oral infections with or without Fusobacterium nucleatum. PCR analyses of oral microbial samples demonstrated that rats infected with one bacterium were orally colonized by each of the bacteria during the study interval, and increased serum immunoglobulin G (IgG) antibody levels substantiated the interaction of the host with the infecting bacteria. PCR analyses of the rats with polymicrobial infections demonstrated that most rats were infected with P. gingivalis, T. denticola, and T. forsythia as a consortium. Furthermore, all rats exhibited a significant increase in the level of IgG antibody to the polymicrobial consortium. Radiographic measurement of alveolar bone resorption showed that rats infected with the polymicrobial consortium with or without F. nucleatum exhibited significantly increased alveolar bone resorption compared to the resorption in uninfected control rats, as well as the resorption in rats infected with one of the microbes. These results documented that P. gingivalis, T. denticola, and T. forsythia not only exist as a consortium that is associated with chronic periodontitis but also exhibit synergistic virulence resulting in the immunoinflammatory bone resorption characteristic of periodontitis.
Collapse
Affiliation(s)
- Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|