1
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
He J, Zhang Y, Li H, Xie Y, Huang G, Peng C, Zhao P, Wang Z. Hybridization alters the gut microbial and metabolic profile concurrent with modifying intestinal functions in Tunchang pigs. Front Microbiol 2023; 14:1159653. [PMID: 37152756 PMCID: PMC10157192 DOI: 10.3389/fmicb.2023.1159653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Hybridization has been widely used among Chinese wild boars to improve their growth performance and maintain meat quality. Most studies have focused on the genetic basis for such variation. However, the differences in the gut environment between hybrid and purebred boars, which can have significant impacts on their health and productivity, have been poorly understood. Methods In the current study, metagenomics was used to detect the gut microbial diversity and composition in hybrid Batun (BT, Berkshire × Tunchang) pigs and purebred Tunchang (TC) pigs. Additionally, untargeted metabolomic analysis was used to detect differences in gut metabolic pathways. Furthermore, multiple molecular experiments were conducted to demonstrate differences in intestinal functions. Results As a result of hybridization in TC pigs, a microbial change was observed, especially in Prevotella and Lactobacillus. Significant differences were found in gut metabolites, including fatty acyls, steroids, and steroid derivatives. Furthermore, the function of the intestinal barrier was decreased by hybridization, while the function of nutrient metabolism was increased. Discussion Evidences were shown that hybridization changed the gut microbiome, gut metabolome, and intestinal functions of TC pigs. These findings supported our hypothesis that hybridization altered the gut microbial composition, thereby modifying the intestinal functions, even the host phenotypes. Overall, our study highlights the importance of considering the gut microbiome as a key factor in the evaluation of animal health and productivity, particularly in the context of genetic selection and breeding programs.
Collapse
Affiliation(s)
- Jiayi He
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunchao Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hui Li
- Long Jian Animal Husbandry Company, Haikou, China
| | - Yanshe Xie
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Guiqing Huang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Pengju Zhao
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Pengju Zhao,
| | - Zhengguang Wang
- Hainan Institute of Zhejiang University, Sanya, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Zhengguang Wang,
| |
Collapse
|
3
|
Insertional Inactivation and Gene Complementation of Prevotella intermedia Type IX Secretion System Reveals Its Indispensable Roles in Black Pigmentation, Hemagglutination, Protease Activity of Interpain A, and Biofilm Formation. J Bacteriol 2022; 204:e0020322. [PMID: 35862729 PMCID: PMC9380532 DOI: 10.1128/jb.00203-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prevotella intermedia, a Gram-negative oral anaerobic bacterium, is frequently isolated from the periodontal pockets of patients with chronic periodontitis. In recent years, the involvement of the bacterium in respiratory tract infections as well as in oral infections has been revealed. P. intermedia possesses several potent virulence factors, such as cysteine proteinase interpain A encoded by the inpA gene. The genome of P. intermedia carries genes of the type IX secretion system (T9SS), which enables the translocation of virulence factors across the outer membrane in several pathogens belonging to the phylum Bacteroidetes; however, it is still unclear whether the T9SS is functional in this microorganism. Recently, we performed targeted mutagenesis in the strain OMA14 of P. intermedia. Here, we successfully obtained mutants deficient in inpA and the T9SS component genes porK and porT. None of the mutants exhibited protease activity of interpain A. The porK and porT mutants, but not the inpA mutant, showed defects in colony pigmentation, hemagglutination, and biofilm formation. We also obtained a complemented strain for the porK gene that recovered all the above abilities. These results indicate that T9SS functions in P. intermedia and that interpain A is one of the T9SS cargo proteins. IMPORTANCE The virulence factors of periodontal pathogens such as Prevotella intermedia have not been elucidated. Using our established procedure, we succeeded in generating type IX secretion system mutants and gene complementation strains that might transfer virulence factors to the bacterial surface. The generated strains clearly indicate that T9SS in P. intermedia is essential for colonial pigmentation, hemagglutination, and biofilm formation. These results indicated that interpain A is a T9SS cargo protein.
Collapse
|
4
|
Elnagdy S, Raptopoulos M, Kormas I, Pedercini A, Wolff LF. Local Oral Delivery Agents with Anti-Biofilm Properties for the Treatment of Periodontitis and Peri-Implantitis. A Narrative Review. Molecules 2021; 26:5661. [PMID: 34577132 PMCID: PMC8467993 DOI: 10.3390/molecules26185661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Despite many discoveries over the past 20 years regarding the etiopathogenesis of periodontal and peri-implant diseases, as well as significant advances in our understanding of microbial biofilms, the incidence of these pathologies continues to rise. For this reason, it was clear that other strategies were needed to eliminate biofilms. In this review, the literature database was searched for studies on locally delivered synthetic agents that exhibit anti-biofilm properties and their potential use in the treatment of two important oral diseases: periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Shorouk Elnagdy
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Michail Raptopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Ioannis Kormas
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
- Department of Periodontics, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Alessandro Pedercini
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Larry F. Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| |
Collapse
|
5
|
Hong SJ, Kwon KR, Jang EY, Moon JH. A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability. J Adv Prosthodont 2020; 12:233-238. [PMID: 32879714 PMCID: PMC7449824 DOI: 10.4047/jap.2020.12.4.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.
Collapse
Affiliation(s)
- Seoung-Jin Hong
- Department of Prosthodontics, Kyung Hee University Dental Hospital, Seoul, Republic of Korea
| | - Kung-Rock Kwon
- Department of Prosthodontics, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Jang
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Salem F, Kindt N, Marchesi JR, Netter P, Lopez A, Kokten T, Danese S, Jouzeau JY, Peyrin-Biroulet L, Moulin D. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences. United European Gastroenterol J 2019; 7:1008-1032. [PMID: 31662859 DOI: 10.1177/2050640619867555] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) and chronic rheumatic diseases (CRDs) are systemic chronic disorders sharing common genetic, immune and environmental factors. About half of patients with IBD develop rheumatic ailments and microscopic intestinal inflammation is present in up to half of CRD patients. IBD and CRD patients also share a common therapeutic armamentarium. Disequilibrium in the complex realm of microbes (known as dysbiosis) that closely interact with the gut mucosal immune system has been associated with both IBD and CRD (spondyloarthritis and rheumatoid arthritis). Whether dysbiosis represents an epiphenomenon or a prodromal feature remains to be determined. Methods In an attempt to further investigate whether specific gut dysbiosis may be the missing link between IBD and CRD in patients developing both diseases, we performed here a systematic literature review focusing on studies looking at bacterial microbiota in CRD and/or IBD patients. Results We included 80 studies, with a total of 3799 IBD patients without arthritis, 1084 CRD patients without IBD, 132 IBD patients with arthropathy manifestations and 12 spondyloarthritis patients with IBD history. Overall, this systematic review indicates that an increase in Bifidobacterium, Staphylococcus, Enterococcus, Lactobacillus, Pseudomonas, Klebsiella and Proteus genera, as well as a decrease in Faecalibacterium, Roseburia genera and species belonging to Verrucomicrobia and Fusobacteria phyla are common features in IBD and CRD patients, whereas dozens of bacterial species are specific features of CRD and IBD. Conclusion Further work is needed to understand the functions of bacteria and of their metabolites but also to characterize fungi and viruses that are commonly found in these patients.
Collapse
Affiliation(s)
- Fatouma Salem
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Nadège Kindt
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Julian R Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, UK.,School of Biosciences, Museum Avenue, Cardiff University, UK
| | - Patrick Netter
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Anthony Lopez
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy, Vandœuvre Les Nancy, France
| | - Tunay Kokten
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Jean-Yves Jouzeau
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Laurent Peyrin-Biroulet
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy, Vandœuvre Les Nancy, France
| | - David Moulin
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France.,CHRU de Nancy, Contrat d'interface, Vandœuvre Les Nancy, France
| |
Collapse
|
7
|
A New Controlled-Release Material Containing Metronidazole and Doxycycline for the Treatment of Periodontal and Peri-Implant Diseases: Formulation and In Vitro Testing. Int J Dent 2019; 2019:9374607. [PMID: 30956660 PMCID: PMC6425423 DOI: 10.1155/2019/9374607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
Background Several locally administered antimicrobials have been studied in the literature as adjunctive or primary treatments for periodontitis and peri-implantitis with conflicting results. Objective The aim of this study was twofold: (1) the formulation of a controlled-release material containing metronidazole and doxycycline; (2) an in vitro evaluation of its antibacterial properties against planktonic and biofilm species involved in periodontal and peri-implant diseases. Methods Doxycycline (10 mg/ml) and metronidazole (20 mg/ml) were incorporated into a hydroxyethylcellulose-polyvinylpyrrolidone-calcium polycarbophil gel. Three milliliters of gel were dialyzed against Dulbecco's phosphate-buffered saline for 13 days. Antibiotics release at 3, 7, 10, and 13 days was determined spectroscopically. The inhibitory activity of the experimental gel was tested against A. actinomycetemcomitans, S. sanguinis, P. micra, and E. corrodens with an agar diffusion test, an inactivation biofilm test, and a confocal laser scanning microscope study (CLSMS) for S. sanguinis up to 20 days. Results After 13 days, the released doxycycline was 9.7% (at 3 days = 1.2 mg; 7 days = 0.67 mg; 10 days = 0.76 mg; 13 days = 0.29 mg), while metronidazole was 67% (30 mg, 6.8 mg, 2.5 mg, and 0.9 mg at the same intervals). The agar diffusion test highlights that the formulated gel was active against tested microorganisms up to 312 h. Quantitative analysis of biofilm formation for all strains and CLSMS for S. sanguinis showed a high growth reduction up to 13 days. Conclusions The in vitro efficacy of the newly formulated gel was confirmed both on planktonic species and on bacterial biofilm over a period of 13 days. The controlled-release gel containing metronidazole and doxycycline had an optimal final viscosity and mucoadhesive properties. It can be argued that its employment could be useful for the treatment of periodontal and peri-implant diseases, where conventional therapy seems not successful.
Collapse
|
8
|
pH-Responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985&n948647=v984776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
10
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:E1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
11
|
Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, Hirota K, Matsushita M, Furuta Y, Narazaki M, Sakaguchi N, Kayama H, Nakamura S, Iida T, Saeki Y, Kumanogoh A, Sakaguchi S, Takeda K. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine. Arthritis Rheumatol 2017; 68:2646-2661. [PMID: 27333153 DOI: 10.1002/art.39783] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The intestinal microbiota is involved in the pathogenesis of arthritis. Altered microbiota composition has been demonstrated in patients with rheumatoid arthritis (RA). However, it remains unclear how dysbiosis contributes to the development of arthritis. The aim of this study was to investigate whether altered composition of human intestinal microbiota in RA patients contributes to the development of arthritis. METHODS We analyzed the fecal microbiota of patients with early RA and healthy controls, using 16S ribosomal RNA-based deep sequencing. We inoculated fecal samples from RA patients and healthy controls into germ-free arthritis-prone SKG mice and evaluated the immune responses. We also analyzed whether the lymphocytes of SKG mice harboring microbiota from RA patients react with the arthritis-related autoantigen 60S ribosomal protein L23a (RPL23A). RESULTS A subpopulation of patients with early RA harbored intestinal microbiota dominated by Prevotella copri; SKG mice harboring microbiota from RA patients had an increased number of intestinal Th17 cells and developed severe arthritis when treated with zymosan. Lymphocytes in regional lymph nodes and the colon, but not the spleen, of these mice showed enhanced interleukin-17 (IL-17) responses to RPL23A. Naive SKG mouse T cells cocultured with P copri-stimulated dendritic cells produced IL-17 in response to RPL23A and rapidly induced arthritis. CONCLUSION We demonstrated that dysbiosis increases sensitivity to arthritis via activation of autoreactive T cells in the intestine. Autoreactive SKG mouse T cells are activated by dysbiotic microbiota in the intestine, causing joint inflammation. Dysbiosis is an environmental factor that triggers arthritis development in genetically susceptible mice.
Collapse
Affiliation(s)
- Yuichi Maeda
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan
| | | | - Eiji Umemoto
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan
| | | | | | - Kazuyoshi Gotoh
- Osaka University, Osaka, Japan, and Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keiji Hirota
- Kyoto University, Kyoto, Japan, and Osaka University, Osaka, Japan
| | - Masato Matsushita
- National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Yoki Furuta
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan
| | | | | | - Hisako Kayama
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan
| | | | | | - Yukihiko Saeki
- National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Atsushi Kumanogoh
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shimon Sakaguchi
- Japan Agency for Medical Research and Development, Tokyo, Japan, Kyoto University, Kyoto, Japan, and Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Osaka University, Osaka, Japan, and Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
12
|
Kwon K, Koong HS, Kang KH. Effect of burdock extracts upon inflammatory mediator production. Technol Health Care 2017; 24:459-69. [PMID: 26684404 DOI: 10.3233/thc-151123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the burdock extract on the inhibitions of NO generation, COX-2 expression, and the generations of IL-6 and TNF-α , to find out its anti-inflammatory effect in this study. After the treatment of the burdock extract in the cells, we measured the amount of NO generated in the inflammatory cells developed by LPS and UVB, and confirmed the developments of inflammatory mediators by RT-PCR. Upon the results on the NO generation after the development of inflammation by LPS in Raw 264.7 cell, we found approximately 50% of inhibitory effect at 200 μg/ml concentrations of the burdock extract. It was confirmed that the expression levels of TNF-α, COX-2, and IL-6 were declined to the levels of control by LPS and UVB stimulated inflammation in HaCat cell. This means the anti-inflammatory effect of the burdock extract.
Collapse
Affiliation(s)
- Kisang Kwon
- Department of Biomedical Laboratory Science, Kyungwoon University, Gumi, Korea
| | - Hwa-Soo Koong
- Department of Dental Hygiene, Konyang University, Daejeon, Korea
| | - Kyung-Hee Kang
- Department of Dental Hygiene, Konyang University, Daejeon, Korea
| |
Collapse
|
13
|
Takeshita M, Haraguchi A, Miura M, Hamachi T, Fukuda T, Sanui T, Takano A, Nishimura F. Antibiotic effects against periodontal bacteria in organ cultured tissue. Clin Exp Dent Res 2017; 3:5-12. [PMID: 29744173 PMCID: PMC5839224 DOI: 10.1002/cre2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 11/12/2022] Open
Abstract
Mechanical reduction of infectious bacteria by using physical instruments is considered the principal therapeutic strategy for periodontal disease; addition of antibiotics is adjunctive. However, local antibiotic treatment, combined with conventional mechanical debridement, has recently been shown to be more effective in periodontitis subjects with type 2 diabetes. This suggests that some bacteria may invade the inflamed inner gingival epithelium, and mechanical debridement alone will be unable to reduce these bacteria completely. Therefore, we tried to establish infected organ culture models that mimic the inner gingival epithelium and aimed to see the effects of antibiotics in these established models. Mouse dorsal skin epithelia were isolated, and periodontal bacteria were injected into the epithelia. Infected epithelia were incubated with test antibiotics, and colony-forming ability was evaluated. Results indicated that effective antibiotics differed according to injected bacteria and the bacterial combinations tested. Overall, in organ culture model, the combination of amoxicillin or cefdinir and metronidazole compensate for the effects of less effective bacterial combinations on each other. This in vitro study would suggest effective periodontal treatment regimens, especially for severe periodontitis.
Collapse
Affiliation(s)
- Masaaki Takeshita
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Akira Haraguchi
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- Division of General Dentistry, Kyushu University HospitalKyushu UniversityFukuokaJapan
| | - Mayumi Miura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takafumi Hamachi
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takao Fukuda
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Terukazu Sanui
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Aiko Takano
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
14
|
Moon JH, Kim M, Lee JH. Genome sequence of Prevotella intermedia SUNY aB G8-9K-3, a biofilm forming strain with drug-resistance. Braz J Microbiol 2017; 48:5-6. [PMID: 27339856 PMCID: PMC5220623 DOI: 10.1016/j.bjm.2016.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 12/01/2022] Open
Abstract
Prevotella intermedia has long been known to be as the principal etiologic agent of periodontal diseases and associated with various systemic diseases. Previous studies showed that the intra-species difference exists in capacity of biofilm formation, antibiotic resistance, and serological reaction among P. intermedia strains. Here we report the genome sequence of P. intermedia SUNY aB G8-9K-3 (designated ATCC49046) that displays a relatively high antimicrobial resistant and biofilm-forming capacity. Genome sequencing information provides important clues in understanding the genetic bases of phenotypic differences among P. intermedia strains.
Collapse
|
15
|
Moon JH, Choi YS, Lee HW, Heo JS, Chang SW, Lee JY. Antibacterial effects of N-acetylcysteine against endodontic pathogens. J Microbiol 2016; 54:322-9. [PMID: 27033208 DOI: 10.1007/s12275-016-5534-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The success of endodontic treatment depends on the eradication of microorganisms from the root canal system and the prevention of reinfection. The purpose of this investigation was to evaluate the antibacterial and antibiofilm efficacy of N-acetylcysteine (NAC), an antioxidant mucolytic agent, as an intracanal medicament against selected endodontic pathogens. Minimum inhibitory concentrations (MICs) of NAC for Actinomyces naeslundii, Lactobacillus salivarius, Streptococcus mutans, and Enterococcus faecalis were determined using the broth microdilution method. NAC showed antibacterial activity, with MIC values of 0.78-1.56 mg/ml. The effect of NAC on biofilm formation of each bacterium and a multispecies culture consisting of the four bacterial species was assessed by crystal violet staining. NAC significantly inhibited biofilm formation by all the monospecies and multispecies bacteria at minimum concentrations of 0.78-3.13 mg/ml. The efficacy of NAC for biofilm disruption was evaluated by scanning electron microscopy and ATP-bioluminescence quantification using mature multispecies biofilms. Preformed mature multispecies biofilms on saliva-coated hydroxyapatite disks were disrupted within 10 min by treatment with NAC at concentrations of 25 mg/ml or higher. After 24 h of treatment, the viability of mature biofilms was reduced by > 99% compared with the control. Moreover, the biofilm disrupting activity of NAC was significantly higher than that of saturated calcium hydroxide or 2% chlorhexidine solution. Within the limitations of this in vitro study, we conclude that NAC has excellent antibacterial and antibiofilm efficacy against endodontic pathogens and may be used as an alternative intracanal medicament in root canal therapies.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.,Institute of Oral Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Suk Choi
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Dental Hygiene, Shinsung University, Chungnam, 31801, Republic of Korea
| | - Hyeon-Woo Lee
- Institute of Oral Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.,Institute of Oral Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seok Woo Chang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Yong Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Institute of Oral Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Jang EY, Kim M, Noh MH, Moon JH, Lee JY. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm. Antimicrob Agents Chemother 2016; 60:818-26. [PMID: 26596937 PMCID: PMC4750699 DOI: 10.1128/aac.01861-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium.
Collapse
Affiliation(s)
- Eun-Young Jang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Minjung Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hee Noh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Yong Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Narita M, Shibahara T, Takano N, Fujii R, Okuda K, Ishihara K. Antimicrobial Susceptibility of Microorganisms Isolated from Periapical Periodontitis Lesions. THE BULLETIN OF TOKYO DENTAL COLLEGE 2016; 57:133-42. [DOI: 10.2209/tdcpublication.2015-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masato Narita
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College
| | | | - Nobuo Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College
| | - Rie Fujii
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | | | | |
Collapse
|
18
|
Deng S, Wang Y, Sun W, Chen H, Wu G. Scaling and root planning, and locally delivered minocycline reduces the load of Prevotella intermedia in an interdependent pattern, correlating with symptomatic improvements of chronic periodontitis: a short-term randomized clinical trial. Ther Clin Risk Manag 2015; 11:1795-803. [PMID: 26676022 PMCID: PMC4675638 DOI: 10.2147/tcrm.s93982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To evaluate the respective or combinatory efficacy of locally delivered 2% minocycline (MO), and scaling and root planning (SRP) by assessing both clinical parameters and the loads of four main periodontal pathogens in treating chronic periodontitis (CP). Methods Seventy adults with CP were randomly assigned to the three treatment groups: 1) SRP alone; 2) MO alone; and 3) combinatory use of SRP and MO (SRP + MO). Before and 7 days after the treatments, we evaluated both clinical parameters (pocket depth [PD] and sulcus bleeding index [SBI]) and the gene load of four main periodontal pathogens (Aggregatibacter actinomycetemcomitans [Aa], Fusobacterium nucleatum [Fn], Porphyromonas gingivalis [Pg], and Prevotella intermedia [Pi]). Results The bacterial prevalence per patient was: Aa, 31.25%; Fn, 100%; Pg, 95.31%; and Pi, 98.44%. Seven days after treatment, the three treatments significantly reduced both PD and SBI, but not detection frequencies of the four pathogens. For PD, the reduction efficacy of SRP + MO was significantly higher than that of either MO or SRP. Only Pg responded significantly to SRP. Pg and Fn were significantly reduced in the presence of MO. Only SRP + MO showed a significant reduction effect on the gene load of Pi. The reduction of PD significantly correlated with the gene load of Pi (r=0.26; P=0.042) but not of the other bacteria. Conclusion SRP and MO reduced the load of Pi in an interdependent pattern, which correlated with symptomatic improvements of CP.
Collapse
Affiliation(s)
- Shuli Deng
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Ying Wang
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Sun
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Chen
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Schwartzman D, Pasculle AW, Ceceris KD, Smith JD, Weiss LE, Campbell PG. An off-the-shelf plasma-based material to prevent pacemaker pocket infection. Biomaterials 2015; 60:1-8. [DOI: 10.1016/j.biomaterials.2015.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
20
|
Abstract
Although scaling and root planing is a cost-effective approach for initial treatment of chronic periodontitis, it fails to eliminate subgingival pathogens and halt progressive attachment loss in some patients. Adjunctive use of systemic antibiotics immediately after completion of scaling and root planing can enhance the degree of clinical attachment gain and probing depth reduction provided by nonsurgical periodontal treatment. This article discusses the rationale for prescribing adjunctive antibiotics, reviews the evidence for their effectiveness, and outlines practical issues that should be considered before prescribing antibiotics to treat chronic periodontitis.
Collapse
Affiliation(s)
- John Walters
- Division of Periodontology, College of Dentistry, The Ohio State University, 3015 Postle Hall, 305 West 12th Avenue, Columbus, OH 43210, USA.
| | - Pin-Chuang Lai
- Division of Periodontology, College of Dentistry, The Ohio State University, 3015 Postle Hall, 305 West 12th Avenue, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, 3015 Postle Hall, 305 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Agarwal A, Gupta ND. Combination of bone allograft, barrier membrane and doxycycline in the treatment of infrabony periodontal defects: A comparative trial. Saudi Dent J 2015; 27:155-60. [PMID: 26236130 PMCID: PMC4501465 DOI: 10.1016/j.sdentj.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/14/2022] Open
Abstract
Aim The purpose of the present study was to compare the regenerative potential of noncontained periodontal infrabony defects treated with decalcified freeze-dried bone allograft (DFDBA) and barrier membrane with or without local doxycycline. Methods This study included 48 one- or two-wall infrabony defects from 24 patients (age: 30–65 years) seeking treatment for chronic periodontitis. Defects were randomly divided into two groups and were treated with a combination of DFDBA and barrier membrane, either alone (combined treatment group) or with local doxycycline (combined treatment + doxycycline group). At baseline (before surgery) and 3 and 6 months after surgery, the pocket probing depth (PPD), clinical attachment level (CAL), radiological bone fill (RBF), and alveolar height reduction (AHR) were recorded. Analysis of variance and the Newman–Keuls post hoc test were used for statistical analysis. A two-tailed p-value of less than 0.05 was considered to be statistically significant. Results In the combined treatment group, the PPD reduction was 2.00 ± 0.38 mm (32%), CAL gain was 1.25 ± 0.31 mm (17.9%), and RBF was 0.75 ± 0.31 mm (20.7%) after 6 months. In the combined treatment + doxycycline group, these values were 2.75 ± 0.37 mm (44%), 1.5 ± 0.27 mm (21.1%), and 1.13 ± 0.23 mm (28.1%), respectively. AHR values for the groups without and with doxycycline were 12.5% and 9.4%, respectively. Conclusion There was no significant difference in the regeneration of noncontained periodontal infrabony defects between groups treated with DFDBA and barrier membrane with or without doxycycline.
Collapse
Affiliation(s)
- Ashish Agarwal
- Department of Periodontics, Institute of Dental Sciences, Bareilly, India
| | - N D Gupta
- Department of Periodontics, DR. Z.A. Dental College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
22
|
In vitro effects of N-acetyl cysteine alone and in combination with antibiotics on Prevotella intermedia. J Microbiol 2015; 53:321-9. [PMID: 25935303 DOI: 10.1007/s12275-015-4500-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
N-acetyl cysteine (NAC) is an antioxidant that possesses anti-inflammatory activities in tissues. In the field of dentistry, NAC was demonstrated to prevent the expression of LPS-induced inflammatory mediators in phagocytic cells and gingival fibroblasts during the inflammatory process, but the effect of NAC on oral pathogens has been rarely studied. Here, we examined the effect of NAC against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. NAC showed antibacterial activity against the planktonic P. intermedia with MIC value of 3 mg/ml and significantly decreased biofilm formation by the bacterium even at sub MIC. NAC did not affect the antibiotic susceptibility of planktonic P. intermedia, showing indifference (fractional inhibitory concentration index of 0.5-4) results against the bacterium in combination with ampicillin, ciprofloxacin, tetracycline or metronidazole. On the other hand, viability of the pre-established bacterial biofilm exposed to the antibiotics except metronidazole was increased in the presence of NAC. Collectively, NAC may be used for prevention of the biofilm formation by P. intermedia rather than eradication of the pre-established bacterial biofilm. Further studies are required to explore antibacterial and anti-biofilm activity of NAC against mixed population of oral bacteria and its modulatory effect on antibiotics used for oral infectious diseases.
Collapse
|
23
|
Agarwal A, Bhattacharya HS, Srikanth G, Singh A. Comparative evaluation of decalcified freeze dried bone allograft with and without local doxycycline in non-contained human periodontal infrabony defects. J Indian Soc Periodontol 2013; 17:490-4. [PMID: 24174730 PMCID: PMC3800413 DOI: 10.4103/0972-124x.118322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/11/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Doxycycline has been advocated as useful adjuncts in periodontal therapy not only due to their antimicrobial actions, but also to their recently recognized anti-collagenolytic, anti-inflammatory, osteoclast inhibitory and fibroblast stimulating property. The purpose of the present cohort study was to evaluate the regenerative outcomes of bone graft with or without local doxycycline in non-contained infrabony periodontal defects. MATERIALS AND METHODS 16 one or two wall infrabony defects, in 11 patients suffering from moderate to severe chronic periodontitis, aged 35-60 years, were randomly divided for bone graft, alone (control) and with doxycycline (test) for the study. At baseline, after 3 months and after 6 months of post-operative period, pocket probing depth (PPD), clinical attachment level (CAL), radiological bone fill (RBF) and alveolar height reduction were recorded. Analysis of variance and Newman-Keuls post-hoc test were used or statistical analysis. A two-tailed probability (P) value P < 0.05 was considered to be statistically significant. RESULTS For the control group PPD reduction 2.00 ± 0.18 mm, CAL gain 1.38 ± 0.17 mm, RBF 0.63 ± 0.27 mm (18.0%) was observed while in the test group PPD reduction 2.00 ± 0.38 mm, CAL gain 1.25 ± 0.31 mm, RBF 0.75 ± 0.31 mm (20.7%) was evaluated. While alveolar height reduction for the control group and test group was 13% and 12.5% respectively. CONCLUSION The study confirmed no added benefits of local doxycycline, as compared with bone graft alone, for regeneration of non-contained human periodontal infrabony defects.
Collapse
Affiliation(s)
- Ashish Agarwal
- Department of Periodontology, Institute of Dental Sciences, Bareilly, India
| | | | | | | |
Collapse
|
24
|
Moon JH, Kim C, Lee HS, Kim SW, Lee JY. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia. J Med Microbiol 2013; 62:1307-1316. [DOI: 10.1099/jmm.0.053553-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml−1) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Cheul Kim
- Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Department of Oral Medicine and Diagnosis, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hee-Su Lee
- Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Anatomy and Histology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sung-Woon Kim
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Yong Lee
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Asahi Y, Noiri Y, Igarashi J, Suga H, Azakami H, Ebisu S. Synergistic effects of antibiotics and an N-acyl homoserine lactone analog on Porphyromonas gingivalis biofilms. J Appl Microbiol 2011; 112:404-11. [PMID: 22093286 DOI: 10.1111/j.1365-2672.2011.05194.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the effects of the combined application of an N-acyl homoserine lactone (HSL) analog and antibiotics on biofilms of Porphyromonas gingivalis, a major pathogen of periodontal disease. METHODS AND RESULTS Antibiotics used were cefuroxime, ofloxacin and minocycline. A flow-cell model was used for biofilm formation. Samples were divided into four groups: control, analog-treated, antibiotic-treated and combined application groups. Biofilm cell survival was determined using adenosine triphosphate (ATP) bioluminescence and confocal laser microscopy (CLSM). In the combined application group, the ATP count in biofilm cells was significantly decreased compared with the antibiotic-treated group (Games-Howell test, P < 0·05). A combination of cefuroxime and the analog was most effective against the P. gingivalis biofilm. CLSM observations revealed that the proportion of dead cells was highest in the combined application group. CONCLUSIONS The combined application of the N-acyl HSL analog and antibiotics was effective at reducing the viability of P. gingivalis cells in biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY The combined application of the N-acyl HSL analog and antibiotics may be successful for eradicating infections involving bacterial biofilms, such as periodontitis.
Collapse
Affiliation(s)
- Y Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Athanassiadis B, Abbott PV, George N, Walsh LJ. An in vitro study of the antimicrobial activity of some endodontic medicaments against Enteroccus faecalis biofilms. Aust Dent J 2010; 55:150-5. [DOI: 10.1111/j.1834-7819.2010.01222.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Wakabayashi H, Kondo I, Kobayashi T, Yamauchi K, Toida T, Iwatsuki K, Yoshie H. Periodontitis, periodontopathic bacteria and lactoferrin. Biometals 2010; 23:419-24. [PMID: 20155438 DOI: 10.1007/s10534-010-9304-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/03/2010] [Indexed: 11/28/2022]
Abstract
Lactoferrin (LF) is a component of saliva and is suspected to be a defense factor against oral pathogens including Streptococcus mutans and Candida albicans. Periodontitis is a very common oral disease caused by periodontopathic bacteria. Antimicrobial activities and other biological effects of LF against representative periodontopathic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, have been widely studied. Association of polymorphisms in LF with incidence of aggressive periodontitis and the role of LF in the gingival crevicular fluid as a marker of periodontitis severity have also been reported. Periodontopathic bacteria reside as a biofilm in supragingival and subgingival plaque. Our recent study indicated that LF exhibits antibacterial activity against planktonic forms of P. gingivalis and P. intermedia at higher concentrations, and furthermore, LF effectively inhibits biofilm formation and reduces the established biofilm of these bacteria at physiological concentrations. A small-scale clinical study indicated that oral administration of bovine LF reduces P. gingivalis and P. intermedia in the subgingival plaque of chronic periodontitis patients. LF seems to be a biofilm inhibitor of periodontopathic bacteria in vitro and in vivo.
Collapse
Affiliation(s)
- Hiroyuki Wakabayashi
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 228-8583, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fujii R, Saito Y, Tokura Y, Nakagawa KI, Okuda K, Ishihara K. Characterization of bacterial flora in persistent apical periodontitis lesions. ACTA ACUST UNITED AC 2010; 24:502-5. [PMID: 19832803 DOI: 10.1111/j.1399-302x.2009.00534.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Microorganisms are able to survive and induce persistent infection in periapical tissues. The aim of this study was to investigate the composition of the microflora of persistent apical periodontitis lesions. METHODS Twenty apical lesion samples were obtained from 20 patients with chronic apical periodontitis by root end surgery and processed using aerobic or anaerobic culture techniques. All isolated strains were identified by 16S ribosomal DNA sequence analysis. RESULTS Seventy-four strains were isolated, belonging to 31 bacterial species obtained from the 20 apical lesions that were isolated. The majority of the strains were facultative anaerobes (51.6%). Propionibacterium acnes, Staphylococcus epidermidis, Pseudomonas aeruginosa and Fusobacterium nucleatum were isolated from 16.2, 9.5, 6.8 and 5.4% of the samples, respectively. Fifteen samples harboured more than one species. The predominant association was P. acnes, S. epidermidis and F. nucleatum. CONCLUSION The microbiota of persistent apical periodontitis lesions is composed by diverse types of microorganisms with biofilm-forming capacity, including P. acnes, S. epidermidis and F. nucleatum.
Collapse
Affiliation(s)
- R Fujii
- Department of Endodontics, Pulp and Periapical Biology, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 2009; 53:4628-39. [PMID: 19721076 DOI: 10.1128/aac.00454-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms gain resistance to various antimicrobial agents, and the presence of antibiotic resistance genes is thought to contribute to a biofilm-mediated antibiotic resistance. Here we showed the interplay between the tetracycline resistance efflux pump TetA(C) and the ampicillin resistance gene (bla(TEM-1)) in biofilms of Escherichia coli harboring pBR322 in the presence of the mixture of ampicillin and tetracycline. E. coli in the biofilms could obtain the high-level resistance to ampicillin, tetracycline, penicillin, erythromycin, and chloramphenicol during biofilm development and maturation as a result of the interplay between the marker genes on the plasmids, the increase of plasmid copy number, and consequently the induction of the efflux systems on the bacterial chromosome, especially the EmrY/K and EvgA/S pumps. In addition, we characterized the overexpression of the TetA(C) pump that contributed to osmotic stress response and was involved in the induction of capsular colanic acid production, promoting formation of mature biofilms. However, this investigated phenomenon was highly dependent on the addition of the subinhibitory concentrations of antibiotic mixture, and the biofilm resistance behavior was limited to aminoglycoside antibiotics. Thus, marker genes on plasmids played an important role in both resistance of biofilm cells to antibiotics and in formation of mature biofilms, as they could trigger specific chromosomal resistance mechanisms to confer a high-level resistance during biofilm formation.
Collapse
|
30
|
Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 2009; 53:3308-16. [PMID: 19451301 DOI: 10.1128/aac.01688-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with >or=130 microg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and >or=6 microg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (>or=8 microg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.
Collapse
|
31
|
Abstract
The role of extracellular DNA in the maintenance of biofilms formed by gram-positive and gram-negative bacteria was studied. This study evaluated all the bacterial strains that were tested for the presence of extracellular DNA with an average size of 30 kb in the matrix. Our results indicate changes in community biomass, architecture, morphology, and the numbers of CFU in the presence of DNase. This effect seems to be common to biofilms established by various unrelated gram-positive and gram-negative bacteria. The cleavage of extracellular DNA leads to the formation of an altered biofilm that permits the increased penetration of antibiotics. Thus, the addition of DNase enhances the effect of antibiotics, resulting in decreased biofilm biomass and numbers of CFU.
Collapse
|