1
|
Zhang E, Zhu X, Wang W, Sun Y, Tian X, Chen Z, Mou X, Zhang Y, Wei Y, Fang Z, Ravenscroft N, O’Connor D, Chang X, Yan M. Metabolomics reveals the response of hydroprimed maize to mitigate the impact of soil salinization. FRONTIERS IN PLANT SCIENCE 2023; 14:1109460. [PMID: 37351217 PMCID: PMC10282767 DOI: 10.3389/fpls.2023.1109460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/09/2023] [Indexed: 06/24/2023]
Abstract
Soil salinization is a major environmental stressor hindering global crop production. Hydropriming has emerged as a promising approach to reduce salt stress and enhance crop yields on salinized land. However, a better mechanisitic understanding is required to improve salt stress tolerance. We used a biochemical and metabolomics approach to study the effect of salt stress of hydroprimed maize to identify the types and variation of differentially accumulated metabolites. Here we show that hydropriming significantly increased catalase (CAT) activity, soluble sugar and proline content, decreased superoxide dismutase (SOD) activity and peroxide (H2O2) content. Conversely, hydropriming had no significant effect on POD activity, soluble protein and MDA content under salt stress. The Metabolite analysis indicated that salt stress significantly increased the content of 1278 metabolites and decreased the content of 1044 metabolites. Ethisterone (progesterone) was the most important metabolite produced in the roots of unprimed samples in response to salt s tress. Pathway enrichment analysis indicated that flavone and flavonol biosynthesis, which relate to scavenging reactive oxygen species (ROS), was the most significant metabolic pathway related to salt stress. Hydropriming significantly increased the content of 873 metabolites and significantly decreased the content of 1313 metabolites. 5-Methyltetrahydrofolate, a methyl donor for methionine, was the most important metabolite produced in the roots of hydroprimed samples in response to salt stress. Plant growth regulator, such as melatonin, gibberellin A8, estrone, abscisic acid and brassinolide involved in both treatment. Our results not only verify the roles of key metabolites in resisting salt stress, but also further evidence that flavone and flavonol biosynthesis and plant growth regulator relate to salt tolerance.
Collapse
Affiliation(s)
- Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xingjian Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wenli Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ziyi Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinshang Mou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yanli Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yueheng Wei
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zhixuan Fang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Neil Ravenscroft
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
- International Agriculture University, Tashkent, Uzbekistan
| | - David O’Connor
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
| | - Xianmin Chang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, United Kingdom
| | - Min Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00444-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
4
|
Genc Y, Oldach K, Taylor J, Lyons GH. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. THE NEW PHYTOLOGIST 2016; 210:145-56. [PMID: 26607560 DOI: 10.1111/nph.13757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/14/2015] [Indexed: 05/08/2023]
Abstract
The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp. durum with and without the Na(+) exclusion gene Nax2) differing in Na(+) exclusion were grown in a potting mix under sodicity (Na(+) humate) and salinity (NaCl), and water use, leaf nutrient profiles and yield were determined. Under sodicity, Na(+)-excluding bread wheat and durum wheat with the Nax2 gene had higher yield than Na(+)-accumulating barley and durum wheat without the Nax2 gene. However, under salinity, despite a 100-fold difference in leaf Na(+), all species yielded similarly, indicating that osmotic stress negated the benefits of Na(+) exclusion. In conclusion, Na(+) exclusion can be an effective mechanism for sodicity tolerance, while osmoregulation and tissue tolerance to Na(+) and/or Cl(-) should be the main foci for further improvement of salinity tolerance in cereals. This represents a paradigm shift for breeding cereals with salinity tolerance.
Collapse
Affiliation(s)
- Yusuf Genc
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Klaus Oldach
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Graham H Lyons
- South Australian Research and Development Institute, Plant Genomics Centre, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
5
|
Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B. A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 2016; 6:19736. [PMID: 26813144 PMCID: PMC4728436 DOI: 10.1038/srep19736] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50-400 mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na(+) accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hou Qing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhao Sheng Zhou
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.,Department of Plant Science, College of Life Science, Henan Agricultural University, Henan 450002, China
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.,Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, TA 77843, USA
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
6
|
Gao Y, Lu Y, Wu M, Liang E, Li Y, Zhang D, Yin Z, Ren X, Dai Y, Deng D, Chen J. Ability to Remove Na + and Retain K + Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1716. [PMID: 27899930 PMCID: PMC5110517 DOI: 10.3389/fpls.2016.01716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 05/06/2023]
Abstract
Maize is moderately sensitive to salt stress; therefore, soil salinity is a serious threat to its production worldwide. Here, excellent salt-tolerant maize inbred line TL1317 and extremely salt-sensitive maize inbred line SL1303 were screened to understand the maize response to salt stress and its tolerance mechanisms. Relative water content, membrane stability index, stomatal conductance, chlorophyll content, maximum photochemical efficiency, photochemical efficiency, shoot and root fresh/dry weight, and proline and water soluble sugar content analyses were used to identify that the physiological effects of osmotic stress of salt stress were obvious and manifested at about 3 days after salt stress in maize. Moreover, the ion concentration of two maize inbred lines revealed that the salt-tolerant maize inbred line could maintain low Na+ concentration by accumulating Na+ in old leaves and gradually shedding them to exclude excessive Na+. Furthermore, the K+ uptake and retention abilities of roots were important in maintaining K+ homeostasis for salt tolerance in maize. RNA-seq and qPCR results revealed some Na+/H+ antiporter genes and Ca2+ transport genes were up-regulated faster and higher in TL1317 than those in SL1303. Some K+ transport genes were down-regulated in SL1303 but up-regulated in TL1317. RNA-seq results, along with the phenotype and physiological results, suggested that the salt-tolerant maize inbred line TL1317 possesses more rapidly and effectively responses to remove toxic Na+ ions and maintain K+ under salt stress than the salt-sensitive maize inbred line SL1303. This response should facilitate cell homoeostasis under salt stress and result in salt tolerance in TL1317.
Collapse
Affiliation(s)
- Yong Gao
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yi Lu
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
| | - Meiqin Wu
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
| | - Enxing Liang
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
| | - Yan Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Dongping Zhang
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Zhitong Yin
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Xiaoyun Ren
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
| | - Yi Dai
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
| | - Dexiang Deng
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Jianmin Chen
- College of Bioscience and Biotechnology, Yangzhou UniversityYangzhou, China
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
- *Correspondence: Jianmin Chen,
| |
Collapse
|
7
|
Zörb C, Mühling KH, Kutschera U, Geilfus CM. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting? PLoS One 2015; 10:e0118406. [PMID: 25760715 PMCID: PMC4356557 DOI: 10.1371/journal.pone.0118406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/15/2015] [Indexed: 01/19/2023] Open
Abstract
As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves.
Collapse
Affiliation(s)
- Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|