1
|
Feng Z, Zheng Y, Jiang Y, Pei J, Huang L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci Rep 2024; 14:9783. [PMID: 38684694 PMCID: PMC11059183 DOI: 10.1038/s41598-024-58934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Thiers KLL, da Silva JHM, Vasconcelos DCA, Aziz S, Noceda C, Arnholdt-Schmitt B, Costa JH. Polymorphisms in alternative oxidase genes from ecotypes of Arabidopsis and rice revealed an environment-induced linkage to altitude and rainfall. PHYSIOLOGIA PLANTARUM 2023; 175:e13847. [PMID: 36562612 DOI: 10.1111/ppl.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We investigated SNPs in alternative oxidase (AOX) genes and their connection to ecotype origins (climate, altitude, and rainfall) by using genomic data sets of Arabidopsis and rice populations from 1190 and 90 ecotypes, respectively. Parameters were defined to detect non-synonymous SNPs in the AOX ORF, which revealed amino acid (AA) changes in AOX1c, AOX1d, and AOX2 from Arabidopsis and AOX1c from rice in comparison to AOX references from Columbia-0 and Japonica ecotypes, respectively. Among these AA changes, Arabidopsis AOX1c_A161E&G165R and AOX1c_R242S revealed a link to high rainfall and high altitude, respectively, while all other changes in Arabidopsis and rice AOX was connected to high altitude and rainfall. Comparative 3D modeling showed that all mutant AOX presented structural differences in relation to the respective references. Molecular docking analysis uncovered lower binding affinity values between AOX and the substrate ubiquinol for most of the identified structures compared to their reference, indicating better enzyme-substrate binding affinities. Thus, our in silico data suggest that the majority of the AA changes found in the available ecotypes will confer better enzyme-subtract interactions and thus indicate environment-related, more efficient AOX activity.
Collapse
Affiliation(s)
- Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | | | | | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
- Facultad de Ciencias de la ingeniería, Universidad Estatal de Milagro, Milagro, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
3
|
Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration. Int J Mol Sci 2022; 23:ijms232012080. [PMID: 36292964 PMCID: PMC9603726 DOI: 10.3390/ijms232012080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
To systematically determine their phylogenetic relationships and develop molecular markers for species discrimination of Salvia bowleyana, S. splendens, and S. officinalis, we sequenced their chloroplast genomes using the Illumina Hiseq 2500 platform. The chloroplast genomes length of S. bowleyana, S. splendens, and S. officinalis were 151,387 bp, 150,604 bp, and 151,163 bp, respectively. The six genes ndhB, rpl2, rpl23, rps7, rps12, and ycf2 were present in the IR regions. The chloroplast genomes of S. bowleyana, S. splendens, and S. officinalis contain 29 tandem repeats; 35, 29, 24 simple-sequence repeats, and 47, 49, 40 interspersed repeats, respectively. The three specific intergenic sequences (IGS) of rps16-trnQ-UUG, trnL-UAA-trnF-GAA, and trnM-CAU-atpE were found to discriminate the 23 Salvia species. A total of 91 intergenic spacer sequences were identified through genetic distance analysis. The two specific IGS regions (trnG-GCC-trnM-CAU and ycf3-trnS-GGA) have the highest K2p value identified in the three studied Salvia species. Furthermore, the phylogenetic tree showed that the 23 Salvia species formed a monophyletic group. Two pairs of genus-specific DNA barcode primers were found. The results will provide a solid foundation to understand the phylogenetic classification of the three Salvia species. Moreover, the specific intergenic regions can provide the probability to discriminate the Salvia species between the phenotype and the distinction of gene fragments.
Collapse
|
4
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|
5
|
Costa JH, Mohanapriya G, Bharadwaj R, Noceda C, Thiers KLL, Aziz S, Srivastava S, Oliveira M, Gupta KJ, Kumari A, Sircar D, Kumar SR, Achra A, Sathishkumar R, Adholeya A, Arnholdt-Schmitt B. ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control - a Complex Early Trait ('CoV-MAC-TED') for Combating SARS-CoV-2-Induced Cell Reprogramming. Front Immunol 2021; 12:673692. [PMID: 34305903 PMCID: PMC8293103 DOI: 10.3389/fimmu.2021.673692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
6
|
Pirko Y, Postovoitova A, Rabokon A, Kalafat L, Privаlikhin S, Bilonozhko Y, Pirko N, Blume Y. Study of intron length polymorphism of the α-tubulin genes as a method of analysis the genetic differentiation in plants. UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj75.06.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. Int J Mol Sci 2018; 19:ijms19020597. [PMID: 29462998 PMCID: PMC5855819 DOI: 10.3390/ijms19020597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.
Collapse
|
8
|
Campos MD, Valadas V, Campos C, Morello L, Braglia L, Breviario D, Cardoso HG. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples. PLoS One 2018; 13:e0190668. [PMID: 29293638 PMCID: PMC5749836 DOI: 10.1371/journal.pone.0190668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Vera Valadas
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Catarina Campos
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Milan, Italy
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Milan, Italy
| | | | - Hélia G. Cardoso
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- * E-mail:
| |
Collapse
|
9
|
Nogales A, Nobre T, Cardoso HG, Muñoz-Sanhueza L, Valadas V, Campos MD, Arnholdt-Schmitt B. Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in a highly variable intron. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2015.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Arnholdt-Schmitt B, Ragonezi C, Cardoso H. Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis? Methods Mol Biol 2016; 1359:87-100. [PMID: 26619859 DOI: 10.1007/978-1-4939-3061-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review highlights a four-step rational for the hypothesis that mitochondria play an upstream central role for stress-induced somatic embryogenesis (SE): (1) Initiation of SE is linked to programmed cell death (PCD) (2) Mitochondria are crucially connected to cell death (3) SE is challenged by stress per se (4) Mitochondria are centrally linked to plant stress response and its management. Additionally the review provides a rough perspective for the use of mitochondrial-derived functional marker (FM) candidates to improve SE efficiency. It is proposed to apply SE systems as phenotyping tool for identifying superior genotypes with high general plasticity under severe plant stress conditions.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal.
| | - Carla Ragonezi
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| |
Collapse
|
11
|
Velada I, Cardoso HG, Ragonezi C, Nogales A, Ferreira A, Valadas V, Arnholdt-Schmitt B. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. FRONTIERS IN PLANT SCIENCE 2016; 7:1043. [PMID: 27563303 PMCID: PMC4980395 DOI: 10.3389/fpls.2016.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in H. perforatum, in order to explore their functional role in optimizing photosynthesis and in the control of reactive oxygen species (ROS) levels during the process.
Collapse
Affiliation(s)
- Isabel Velada
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Hélia G. Cardoso
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- *Correspondence: Hélia G. Cardoso
| | - Carla Ragonezi
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Amaia Nogales
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia-Universidade de LisboaLisboa, Portugal
| | - Alexandre Ferreira
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Vera Valadas
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- Birgit Arnholdt-Schmitt
| |
Collapse
|
12
|
Velada I, Ragonezi C, Arnholdt-Schmitt B, Cardoso H. Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS One 2014; 9:e115206. [PMID: 25503716 PMCID: PMC4263753 DOI: 10.1371/journal.pone.0115206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/19/2014] [Indexed: 01/17/2023] Open
Abstract
Reverse transcription-quantitative real-time PCR (RT-qPCR) is a widely used technique for gene expression analysis. The reliability of this method depends largely on the suitable selection of stable reference genes for accurate data normalization. Hypericum perforatum L. (St. John's wort) is a field growing plant that is frequently exposed to a variety of adverse environmental stresses that can negatively affect its productivity. This widely known medicinal plant with broad pharmacological properties (anti-depressant, anti-tumor, anti-inflammatory, antiviral, antioxidant, anti-cancer, and antibacterial) has been overlooked with respect to the identification of reference genes suitable for RT-qPCR data normalization. In this study, 11 candidate reference genes were analyzed in H. perforatum plants subjected to cold and heat stresses. The expression stability of these genes was assessed using GeNorm, NormFinder and BestKeeper algorithms. The results revealed that the ranking of stability among the three algorithms showed only minor differences within each treatment. The best-ranked reference genes differed between cold- and heat-treated samples; nevertheless, TUB was the most stable gene in both experimental conditions. GSA and GAPDH were found to be reliable reference genes in cold-treated samples, while GAPDH showed low expression stability in heat-treated samples. 26SrRNA and H2A had the highest stabilities in the heat assay, whereas H2A was less stable in the cold assay. Finally, AOX1, AOX2, CAT1 and CHS genes, associated with plant stress responses and oxidative stress, were used as target genes to validate the reliability of identified reference genes. These target genes showed differential expression profiles over time in treated samples. This study not only is the first systematic analysis for the selection of suitable reference genes for RT-qPCR studies in H. perforatum subjected to temperature stress conditions, but may also provide valuable information about the roles of genes associated with temperature stress responses.
Collapse
Affiliation(s)
- Isabel Velada
- EU Marie Curie Chair, ICAAM, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA, Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Ragonezi
- EU Marie Curie Chair, ICAAM, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA, Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7006-554 Évora, Portugal
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA, Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7006-554 Évora, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA, Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7006-554 Évora, Portugal
- * E-mail:
| |
Collapse
|
13
|
Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M. Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 2013; 21:41-52. [PMID: 24086082 PMCID: PMC3925393 DOI: 10.1093/dnares/dst039] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
Collapse
|
14
|
Gupta S, Kumari K, Das J, Lata C, Puranik S, Prasad M. Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.). Genome 2011; 54:586-602. [PMID: 21751869 DOI: 10.1139/g11-020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ∼97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
15
|
cTBP: A Successful Intron Length Polymorphism (ILP)-Based Genotyping Method Targeted to Well Defined Experimental Needs. DIVERSITY-BASEL 2010. [DOI: 10.3390/d2040572] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Guerra Cardoso H, Doroteia Campos M, Rita Costa A, Catarina Campos M, Nothnagel T, Arnholdt-Schmitt B. Carrot alternative oxidase gene AOX2a demonstrates allelic and genotypic polymorphisms in intron 3. PHYSIOLOGIA PLANTARUM 2009; 137:592-608. [PMID: 19941625 DOI: 10.1111/j.1399-3054.2009.01299.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) are becoming important genetic markers for major crop species. In this study, we focus on variations at genomic level of the Daucus carota L. AOX2a gene. The use of gene-specific primers designed in exon regions on the boundaries of introns permitted to recognize intron length polymorphism (ILP) in intron 3 AOX2a by simple polymerase chain reaction (PCR) assays. The length of intron 3 can vary in individual carrot plants. Thus, allelic variation can be used as a tool to discriminate between single plant genotypes. Using this approach, individual plants from cv. Rotin and from diverse breeding lines and cultivars were identified that showed genetic variability by AOX2a ILPs. Repetitive patterns of intron length variation have been observed which allows grouping of genotypes. Polymorphic and identical PCR fragments revealed underlying high levels of sequence polymorphism. Variability was due to InDel events and intron single nucleotide polymorphisms (ISNPs), with a repetitive deletion in intron 3 affecting a putative pre-miRNA site. The results suggest that high AOX2a gene diversity in D. carota can be explored for the development of functional markers related to agronomic traits.
Collapse
Affiliation(s)
- Hélia Guerra Cardoso
- EU Marie Curie Chair, ICAAM, University of Evora, Apartado 94, 7002-554 Evora, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Campos MD, Cardoso HG, Linke B, Costa JH, de Melo DF, Justo L, Frederico AM, Arnholdt-Schmitt B. Differential expression and co-regulation of carrot AOX genes (Daucus carota). PHYSIOLOGIA PLANTARUM 2009; 137:578-91. [PMID: 19825008 DOI: 10.1111/j.1399-3054.2009.01282.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (AOX) is a mitochondrial protein encoded by the nuclear genome. In higher plants AOX genes form a small multigene family mostly consisting of the two subfamilies AOX1 and AOX2. Daucus carota L. is characterized by a unique extension pattern of AOX genes. Different from other plant species studied so far it contains two genes in both subfamilies. Therefore, carrot was recently highlighted as an important model in AOX stress research to understand the evolutionary importance of both AOX subfamilies. Here we report on the expression patterns of DcAOX1a, DcAOX1b and DcAOX2a and DcAOX2b. Our results demonstrate that all of the four carrot AOX genes are expressed. Differential expression was observed in organs, tissues and during de novo induction of secondary root phloem explants to growth and development. DcAOX1a and DcAOX2a indicated a differential transcript accumulation but a similar co-expression pattern. The genes of each carrot AOX sub-family revealed a differential regulation and responsiveness. DcAOX2a indicated high inducibility in contrast to DcAOX2b, which generally revealed low transcript abundance and rather weak responses. In search for within-gene sequence differences between both genes as a potential reason for the differential expression patterns, the structural organization of the two genes was compared. DcAOX2a and DcAOX2b showed high sequence similarity in their open reading frames (ORFs). However, length variability was observed in the N-terminal exon1 region. The predicted cleavage site of the mitochondrial targeting sequence in this locus is untypical small for both genes and consists of 35 amino acids for DcAOX2a and of 21 amino acids for DcAOX2b. The importance of structural gene organization and the relevancy of within-gene sequence variations are discussed. Our results strengthen the value of carrot as a model plant for future studies on the importance of AOX sub family evolution.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- EU Marie Curie Chair, ICAAM, University of Evora, Apartado 94, 7002-554 Evora, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Costa JH, de Melo DF, Gouveia Z, Cardoso HG, Peixe A, Arnholdt-Schmitt B. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. PHYSIOLOGIA PLANTARUM 2009; 137:553-65. [PMID: 19682279 DOI: 10.1111/j.1399-3054.2009.01267.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.
Collapse
Affiliation(s)
- José Hélio Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, PO Box 6029, 60455-900, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Polidoros AN, Mylona PV, Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants. PHYSIOLOGIA PLANTARUM 2009; 137:342-53. [PMID: 19781002 DOI: 10.1111/j.1399-3054.2009.01284.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (Aox) has been proposed as a functional marker for breeding stress tolerant plant varieties. This requires presence of polymorphic Aox allele sequences in plants that affect plant phenotype in a recognizable way. In this review, we examine the hypothesis that organization of genomic Aox sequences and gene expression patterns are highly variable in relation to the possibility that such a variation may allow development of Aox functional markers in plants. Aox is encoded by a small multigene family, typically with four to five members in higher plants. The predominant structure of genomic Aox sequences is that of four exons interrupted by three introns at well conserved positions. Evolutionary intron loss and gain has resulted in the variation of intron numbers in some Aox members that may harbor two to four introns and three to five exons in their sequence. Accumulating evidence suggests that Aox gene structure is polymorphic enough to allow development of Aox markers in many plant species. However, the functional significance of Aox structural variation has not been examined exhaustively. Aox expression patterns display variability and typically Aox genes fall into two discrete subfamilies, Aox1 and Aox2, the former being present in all plants and the latter restricted in eudicot species. Typically, although not exclusively, the Aox1-type genes are induced by many different kinds of stress, whereas Aox2-type genes are expressed in a constitutive or developmentally regulated way. Specific Aox alleles are among the first and most intensively stress-induced genes in several experimental systems involving oxidative stress. Differential response of Aox genes to stress may provide a flexible plan of plant defense where an energy-dissipating system in mitochondria is involved. Evidence to link structural variation and differential allele expression patterns is scarce. Much research is still required to understand the significance of polymorphisms within AOX gene sequences for gene regulation and its potential for breeding on important agronomic traits. Association studies and mapping approaches will be helpful to advance future perspectives for application more efficiently.
Collapse
Affiliation(s)
- Alexios N Polidoros
- Department of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
20
|
Frederico AM, Campos MD, Cardoso HG, Imani J, Arnholdt-Schmitt B. Alternative oxidase involvement in Daucus carota somatic embryogenesis. PHYSIOLOGIA PLANTARUM 2009; 137:498-508. [PMID: 19863756 DOI: 10.1111/j.1399-3054.2009.01278.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant alternative oxidase (AOX) is a mitochondrial inner membrane enzyme involved in alternative respiration. The critical importance of the enzyme during acclimation upon stress of plant cells is not fully understood and is still an issue of intensive research and discussion. Recently, a role of AOX was suggested for the ability of plant cells to change easily its fate upon stress. In order to get new insights about AOX involvement in cell reprogramming, quantitative real-time polymerase chain reaction (PCR) and inhibitor studies were performed during cell redifferentiation and developmental stages of Daucus carota L. somatic embryogenesis. Transcript level analysis shows that D. carota AOX genes (DcAOX1a and DcAOX2a) are differentially expressed during somatic embryogenesis. DcAOX1a shows lower expression levels, being mainly down-regulated, whereas DcAOX2a presented a large up-regulation during initiation of the realization phase of somatic embryogenesis. However, when globular embryos start to develop, both genes are down-regulated, being this state transient for DcAOX2a. In addition, parallel studies were performed using salicylhydroxamic acid (SHAM) in order to inhibit AOX activity during the realization phase of somatic embryogenesis. Embryogenic cells growing in the presence of the inhibitor were unable to develop embryogenic structures and its growth rate was diminished. This effect was reversible and concentration dependent. The results obtained contribute to the hypothesis that AOX activity supports metabolic reorganization as an essential part of cell reprogramming and, thus, enables restructuring and de novo cell differentiation.
Collapse
|
21
|
Frederico AM, Zavattieri MA, Campos MD, Cardoso HG, McDonald AE, Arnholdt-Schmitt B. The gymnosperm Pinus pinea contains both AOX gene subfamilies, AOX1 and AOX2. PHYSIOLOGIA PLANTARUM 2009; 137:566-77. [PMID: 19863755 DOI: 10.1111/j.1399-3054.2009.01279.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The gymnosperm Pinus pinea L. (stone pine) is a typical Mediterranean pine used for nuts and timber production, and as an ornamental around the world. Pine genomes are large in comparison to other species. The hypothesis that retrotransposons, such as gymny, made a large contribution to this alteration in genome size was recently confirmed. However, P. pinea is unique in other various aspects. P. pinea demonstrates a different pattern of gymny organization than other Pinus subgenera. Additionally, P. pinea has a highly recalcitrant behaviour in relation to standard conifer protocols for the induction of somatic embryogenesis or rooting. Because such types of cell reprogramming can be explained as a reaction of plant cells to external stress, it is of special interest to study sequence peculiarities in stress-inducible genes, such as the alternative oxidase (AOX). This is the first report containing molecular evidence for the existence of AOX in gymnosperms at the genetic level. P. pinea AOXs were isolated by a polymerase chain reaction (PCR) approach and three genes were identified. Two of the genes belong to the AOX1 subfamily and one belongs to the AOX2 subfamily. The existence of both AOX subfamilies in gymnosperms is reported here for the first time. This discovery supports the hypothesis that AOX1 and AOX2 subfamilies arose prior to the separation of gymnosperms and angiosperms, and indicates that the AOX2 is absent in monocots because of subsequent gene loss events. Polymorphic P. pinea AOX1 sequences from a selected genetic clone are presented indicating non-allelic, non-synonymous and synonymous translation products.
Collapse
|
22
|
Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. PHYSIOLOGIA PLANTARUM 2009; 137:532-52. [PMID: 19941624 DOI: 10.1111/j.1399-3054.2009.01302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR length variation can be explored in future studies for effects on gene regulation and a potential linkage to olive rooting phenotypes in view of marker-assisted plant selection.
Collapse
|