1
|
Sakouhi L, Kadri O, Werghi S, Massoud MB, Kharbech O, Murata Y, Chaoui A. Seed pretreatment with melatonin confers cadmium tolerance to chickpea seedlings through cellular redox homeostasis and antioxidant gene expression improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27562-5. [PMID: 37191750 DOI: 10.1007/s11356-023-27562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Several phytoremediation strategies have been undertaken to alleviate cadmium (Cd)-mediated injury to crop yield resulting from agricultural land pollution. In the present study, the potentially beneficial effect of melatonin (Me) was appraised. Therefore, chickpea (Cicer arietinum L.) seeds were imbibed for 12 H in distilled water or Me (10 µM) solution. Then, the seeds germinated in the presence or the absence of 200 µM CdCl2 for 6 days. Seedlings obtained from Me-pretreated seeds exhibited enhanced growth traits, reflected by fresh biomass and length increase. This beneficial effect was associated with a decreased Cd accumulation in seedling tissues (by 46 and 89% in roots and shoots, respectively). Besides, Me efficiently protected the cell membrane integrity of Cd-subjected seedlings. This protective effect was manifested by the decreased lipoxygenase activity and the subsequently reduced accumulation of 4-hydroxy-2-nonenal. Melatonin counteracted the Cd-mediated stimulation of the pro-oxidant NADPH-oxidase (90 and 45% decrease compared to non-pretreated Cd-stressed roots and shoots, respectively) and NADH-oxidase activities (almost 40% decrease compared to non-pretreated roots and shoots), preventing, thus, hydrogen peroxide overaccumulation (50 and 35% lesser than non-pretreated roots and shoots, respectively). Furthermore, Me enhanced the cellular content of pyridine nicotinamide reduced forms [NAD(P)H] and their redox state. This effect was associated with the Me-mediated stimulation of the glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase activities, concomitantly with the inhibition of NAD(P)H-consuming activities. These effects were accompanied by the up-regulation of G6PDH gene expression (45% increase in roots) and the down-regulation of the respiratory burst oxidase homolog protein F (RBOHF) gene expression (53% decrease in roots and shoots). Likewise, Me induced an increased activity and gene transcription of the Asada-Halliwell cycle, namely ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, concomitantly with a reduction of the glutathione peroxidase activity. This modulating effect led to the restoration of the redox homeostasis of the ascorbate and the glutathione pools. Overall, current results attest that seed pretreatment with Me is effective in Cd stress relief and can be a beneficial crop-protective approach.
Collapse
Affiliation(s)
- Lamia Sakouhi
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia.
| | - Oumayma Kadri
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Marouane Ben Massoud
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
- School of Biological, Earth & Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23N73K, Ireland
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Abdelilah Chaoui
- Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, University of Carthage, 7021, Bizerte, Tunisia
| |
Collapse
|
2
|
Turc B, Vollenweider P, Le Thiec D, Gandin A, Schaub M, Cabané M, Jolivet Y. Dynamics of Foliar Responses to O 3 Stress as a Function of Phytotoxic O 3 Dose in Hybrid Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:679852. [PMID: 34262582 PMCID: PMC8273248 DOI: 10.3389/fpls.2021.679852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
With background concentrations having reached phytotoxic levels during the last century, tropospheric ozone (O3) has become a key climate change agent, counteracting carbon sequestration by forest ecosystems. One of the main knowledge gaps for implementing the recent O3 flux-based critical levels (CLs) concerns the assessment of effective O3 dose leading to adverse effects in plants. In this study, we investigate the dynamics of physiological, structural, and morphological responses induced by two levels of O3 exposure (80 and 100 ppb) in the foliage of hybrid poplar, as a function of phytotoxic O3 dose (POD0) and foliar developmental stage. After a latency period driven by foliar ontological development, the gas exchanges and chlorophyll content decreased with higher POD0 monotonically. Hypersensitive response-like lesions appeared early during exposure and showed sigmoidal-like dynamics, varying according to leaf age. At current POD1_SPEC CL, notwithstanding the aforementioned reactions and initial visible injury to foliage, the treated poplars had still not shown any growth or biomass reduction. Hence, this study demonstrates the development of a complex syndrome of early reactions below the flux-based CL, with response dynamics closely determined by the foliar ontological stage and environmental conditions. General agreement with patterns observed in the field appears indicative of early O3 impacts on processes relevant, e.g., biodiversity ecosystem services before those of economic significance - i.e., wood production, as targeted by flux-based CL.
Collapse
Affiliation(s)
- Benjamin Turc
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pierre Vollenweider
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Didier Le Thiec
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Anthony Gandin
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Marcus Schaub
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mireille Cabané
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
3
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
4
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
5
|
Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Corpas FJ, Barroso JB. Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants (Basel) 2019; 8:antiox8100448. [PMID: 31581524 PMCID: PMC6827146 DOI: 10.3390/antiox8100448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO2 group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability. To extend our knowledge about the regulation of this key cofactor by this nitric oxide (NO)-related post-translational modification, we analyzed the effect of tyrosine nitration on another NADPH-generating enzyme, the NADP-malic enzyme (NADP-ME), under LT stress. In Arabidopsis thaliana seedlings exposed to short-term LT (4 °C for 48 h), a 50% growth reduction accompanied by an increase in the content of superoxide, nitric oxide, and peroxynitrite, in addition to diminished cytosolic NADP-ME activity, were found. In vitro assays confirmed that peroxynitrite inhibits cytosolic NADP-ME2 activity due to tyrosine nitration. The mass spectrometric analysis of nitrated NADP-ME2 enabled us to determine that Tyr-73 was exclusively nitrated to 3-nitrotyrosine by peroxynitrite. The in silico analysis of the Arabidopsis NADP-ME2 protein sequence suggests that Tyr73 nitration could disrupt the interactions between the specific amino acids responsible for protein structure stability. In conclusion, the present data show that short-term LT stress affects the metabolism of ROS and RNS, which appears to negatively modulate the activity of cytosolic NADP-ME through the tyrosine nitration process.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - María V Gómez-Rodríguez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Javier López-Jaramillo
- Institute of Biotechnology, Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| |
Collapse
|
6
|
Dusart N, Vaultier MN, Olry JC, Buré C, Gérard J, Jolivet Y, Le Thiec D. Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1687-1697. [PMID: 31284211 DOI: 10.1016/j.envpol.2019.06.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Collapse
Affiliation(s)
- Nicolas Dusart
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | | | - Jean-Charles Olry
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Cyril Buré
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Didier Le Thiec
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France.
| |
Collapse
|
7
|
Chen Q, Wang B, Ding H, Zhang J, Li S. Review: The role of NADP-malic enzyme in plants under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:206-212. [PMID: 30824053 DOI: 10.1016/j.plantsci.2019.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants constantly encounter various fluctuating environmental stresses, which potentially restrict plant growth, plant development and even limit crop productivity. In addition to carbon fixation activity in C4 photosynthesis, NADP-dependent malic enzyme (NADP-ME) has been suggested to play important roles in diverse stress responses in plants. NADP-ME is one of the essential enzymes metabolizing malate, which is important for stabilizing cytoplasmic pH, controlling stomatal aperture, increasing resistance to aluminum excess and pathogen. Pyruvate, another product of NADP-ME reaction, participates in the synthesis of defense compounds such as flavonoids and lignin, which are involved in stresses tolerance such as mechanical wounding and pathogen invasion. Moreover, NADP-ME provides essential reductive coenzyme NADPH in the biosynthesis of flavonoids and lignin. On the other hand, NADPH is crucial for reactive active species (ROS) metabolizing systems such as the ascorbate-glutathione pathway and NADPH-dependent thioredoxin reductase, and is also required by apoplastic oxidative burst in most plant-pathogen interactions. This mini-review is largely focus on the characteristics of gene expression and activity of NADP-ME, as well as its interaction with ROS signaling under a variety of biotic and abiotic stress responses, which will provide a theoretical foundation for breeding of stress resistant crops.
Collapse
Affiliation(s)
- Qiqi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Bipeng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haiyan Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Dusart N, Gérard J, Le Thiec D, Collignon C, Jolivet Y, Vaultier MN. Integrated analysis of the detoxification responses of two Euramerican poplar genotypes exposed to ozone and water deficit: Focus on the ascorbate-glutathione cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2365-2379. [PMID: 30336426 DOI: 10.1016/j.scitotenv.2018.09.367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Ozone (O3) and drought increase tree oxidative stress. To protect forest health, we need to improve risk assessment, using metric model such as the phytotoxic O3 dose above a threshold of y nmol·m-2·s-1 (PODy), while taking into account detoxification mechanisms and interacting stresses. The impact of drought events on the effect of O3 pollution deserves special attention. Water deficit may decrease O3 entrance into the leaves by reducing stomatal opening; however, water deficit also induces changes in cell redox homeostasis. Besides, the behaviour of the cell antioxidative charge in case of stress combination (water deficit and O3) still remains poorly investigated. To decipher the response of detoxification mechanisms relatively to the Halliwell-Asada-Foyer cycle (HAF), we exposed poplar saplings (Populus nigra × deltoides) composed of two genotypes (Carpaccio and Robusta), to various treatments for 17 days, i.e. i) mild water deficit, ii) 120 ppb O3, and iii) a combination of these two treatments. Ozone similarly impacted the growth of the two genotypes, with an important leaf loss. Water deficit decreased growth by almost one third as compared to the control plants. As for the combined treatment, water deficit protected the saplings from leaf ozone injury, but with an inhibitory effect on growth. The pool of total ascorbate was not modified by the different treatments, while the pool of total glutathione increased with POD0. We noticed a few differences between the two genotypes, particularly concerning the activity of monodehydroascorbate reductase and glutathione reductase relatively to POD0. The expression profiles of genes coding for the dehydroascorbate reductase and glutathione reductase isoforms differed, probably in link with the putative localisation of ROS production in response to water deficit and ozone, respectively. Our result would argue for a major role of MDHAR, GR and glutathione in the preservation of the redox status.
Collapse
Affiliation(s)
- Nicolas Dusart
- Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France
| | - Didier Le Thiec
- Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France
| | | | - Yves Jolivet
- Université de Lorraine, AgroParisTech, Inra, UMR Silva, F-54000 Nancy, France
| | | |
Collapse
|
9
|
Krasensky-Wrzaczek J, Kangasjärvi J. The role of reactive oxygen species in the integration of temperature and light signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3347-3358. [PMID: 29514325 DOI: 10.1093/jxb/ery074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
The remarkable plasticity of the biochemical machinery in plants allows the integration of a multitude of stimuli, enabling acclimation to a wide range of growth conditions. The integration of information on light and temperature enables plants to sense seasonal changes and adjust growth, defense, and transition to flowering according to the prevailing conditions. By now, the role of reactive oxygen species (ROS) as important signaling molecules has been established. Here, we review recent data on ROS as important components in the integration of light and temperature signaling by crosstalk with the circadian clock and calcium signaling. Furthermore, we highlight that different environmental conditions critically affect the interpretation of stress stimuli, and consequently defense mechanisms and stress outcome. For example, day length plays an important role in whether enhanced ROS production under stress conditions is directed towards activation of redox poising mechanisms or triggering programmed cell death (PCD). Furthermore, a mild increase in temperature can cause down-regulation of immunity and render plants more sensitive to biotrophic pathogens. Taken together, the evidence presented here demonstrates the complexity of signaling pathways and outline the importance of their correct interpretation in context with the given environmental conditions.
Collapse
Affiliation(s)
- Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| |
Collapse
|
10
|
Corpas FJ, Aguayo-Trinidad S, Ogawa T, Yoshimura K, Shigeoka S. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:81-9. [PMID: 26878367 DOI: 10.1016/j.jplph.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 05/16/2023]
Abstract
NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Simeón Aguayo-Trinidad
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
11
|
Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism. PLoS One 2015; 10:e0129837. [PMID: 26086807 PMCID: PMC4472234 DOI: 10.1371/journal.pone.0129837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs) of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.
Collapse
|
12
|
Vainonen JP, Kangasjärvi J. Plant signalling in acute ozone exposure. PLANT, CELL & ENVIRONMENT 2015; 38:240-52. [PMID: 24417414 DOI: 10.1111/pce.12273] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 05/08/2023]
Abstract
Exposure of plants to high ozone concentrations causes lesion formation in sensitive plants. Plant responses to ozone involve fast and massive changes in protein activities, gene expression and metabolism even before any tissue damage can be detected. Degradation of ozone and subsequent accumulation of reactive oxygen species (ROS) in the extracellular space activates several signalling cascades, which are integrated inside the cell into a fine-balanced network of ROS signalling. Reversible protein phosphorylation and degradation plays an important role in the regulation of signalling mechanisms in a complex crosstalk with plant hormones and calcium, an essential second messenger. In this review, we discuss the recent advances in understanding the molecular mechanisms of ozone uptake, perception and signalling pathways activated during the early steps of ozone response, and discuss the use of ozone as a tool to study the function of apoplastic ROS in signalling.
Collapse
Affiliation(s)
- Julia P Vainonen
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | | |
Collapse
|
13
|
Dumont J, Cohen D, Gérard J, Jolivet Y, Dizengremel P, LE Thiec D. Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. PLANT, CELL & ENVIRONMENT 2014; 37:2064-2076. [PMID: 24506578 DOI: 10.1111/pce.12293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Ozone induces stomatal sluggishness, which impacts photosynthesis and transpiration. Stomatal responses to variation of environmental parameters are slowed and reduced by ozone and may be linked to difference of ozone sensitivity. Here we determine the ozone effects on stomatal conductance of each leaf surface. Potential causes of this sluggish movement, such as ultrastructural or ionic fluxes modification, were studied independently on both leaf surfaces of three Euramerican poplar genotypes differing in ozone sensitivity and in stomatal behaviour. The element contents in guard cells were linked to the gene expression of ion channels and transporters involved in stomatal movements, directly in microdissected stomata. In response to ozone, we found a decrease in the stomatal conductance of the leaf adaxial surface correlated with high calcium content in guard cells compared with a slight decrease on the abaxial surface. No ultrastructural modifications of stomata were shown except an increase in the number of mitochondria. The expression of vacuolar H(+) /Ca(2+) -antiports (CAX1 and CAX3 homologs), β-carbonic anhydrases (βCA1 and βCA4) and proton H(+) -ATPase (AHA11) genes was strongly decreased under ozone treatment. The sensitive genotype characterized by constitutive slow stomatal response was also characterized by constitutive low expression of genes encoding vacuolar H(+) /Ca(2+) -antiports.
Collapse
Affiliation(s)
- Jennifer Dumont
- INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Champenoux, F-54280, France; Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Vandoeuvre-lès-Nancy, F-54500, France; IFR110 EFABA, Vandoeuvre-lès-Nancy, F-54500, France
| | | | | | | | | | | |
Collapse
|
14
|
Integrative Leaf-Level Phytotoxic Ozone Dose Assessment for Forest Risk Modelling. DEVELOPMENTS IN ENVIRONMENTAL SCIENCE 2013. [DOI: 10.1016/b978-0-08-098349-3.00013-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|