1
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators. PLoS Comput Biol 2021; 17:e1008783. [PMID: 33852573 PMCID: PMC8104450 DOI: 10.1371/journal.pcbi.1008783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Current hypotheses suggest that speech segmentation—the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing—is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires “flexible” theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech. Oscillatory activity in auditory cortex is believed to play an important role in auditory and speech processing. One suggested function of these rhythms is to divide the speech stream into candidate phonemes, syllables, words, and phrases, to be matched with learned linguistic templates. This requires brain rhythms to flexibly synchronize with regular acoustic features of the speech stream. How neuronal circuits implement this task remains unknown. In this study, we explored the contribution of inhibitory currents to flexible phase-locking in neuronal theta oscillators, believed to perform initial syllabic segmentation. We found that a combination of specific intrinsic inhibitory currents at multiple timescales, present in a large class of cortical neurons, enabled exceptionally flexible phase-locking, which could be used to precisely segment speech by identifying vowels at mid-syllable. This suggests that the cells exhibiting these currents are a key component in the brain’s auditory and speech processing architecture.
Collapse
|
3
|
Sato J, Hirano Y, Hirakawa N, Takahashi J, Oribe N, Kuga H, Nakamura I, Hirano S, Ueno T, Togao O, Hiwatashi A, Nakao T, Onitsuka T. Lower Hippocampal Volume in Patients with Schizophrenia and Bipolar Disorder: A Quantitative MRI Study. J Pers Med 2021; 11:jpm11020121. [PMID: 33668432 PMCID: PMC7918861 DOI: 10.3390/jpm11020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Since patients with schizophrenia (SZ) and bipolar disorder (BD) share many biological features, detecting biomarkers that differentiate SZ and BD patients is crucial for optimized treatments. High-resolution magnetic resonance imaging (MRI) is suitable for detecting subtle brain structural differences in patients with psychiatric disorders. In the present study, we adopted a neuroanatomically defined and manually delineated region of interest (ROI) method to evaluate the amygdalae, hippocampi, Heschl’s gyrus (HG), and planum temporale (PT), because these regions are crucial in the development of SZ and BD. ROI volumes were measured using high resolution MRI in 31 healthy subjects (HS), 23 SZ patients, and 21 BD patients. Right hippocampal volumes differed significantly among groups (HS > BD > SZ), whereas left hippocampal volumes were lower in SZ patients than in HS and BD patients (HS = BD > SZ). Volumes of the amygdalae, HG, and PT did not differ among the three groups. For clinical correlations, there were no significant associations between ROI volumes and demographics/clinical symptoms. Our study revealed significant lower hippocampal volume in patients with SZ and BD, and we suggest that the right hippocampal volume is a potential biomarker for differentiation between SZ and BD.
Collapse
Affiliation(s)
- Jinya Sato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| | - Noriaki Hirakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Hironori Kuga
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Takefumi Ueno
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| |
Collapse
|
4
|
Hirano Y, Uhlhaas PJ. Editorial: Current MEG Research in Psychiatry. Front Psychiatry 2021; 12:647085. [PMID: 33603691 PMCID: PMC7884450 DOI: 10.3389/fpsyt.2021.647085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Psychiatry, Harvard Medical School, VA Boston Healthcare System, Boston, MA, United States
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Hirano S, Spencer KM, Onitsuka T, Hirano Y. Language-Related Neurophysiological Deficits in Schizophrenia. Clin EEG Neurosci 2020; 51:222-233. [PMID: 31741393 DOI: 10.1177/1550059419886686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe psychiatric disorder that affects all aspects of one's life with several cognitive and social dysfunctions. However, there is still no objective and universal index for diagnosis and treatment of this disease. Many researchers have studied language processing in schizophrenia since most of the patients show symptoms related to language processing, such as thought disorder, auditory verbal hallucinations, or delusions. Electroencephalography (EEG) and magnetoencephalography (MEG) with millisecond order high temporal resolution, have been applied to reveal the abnormalities in language processing in schizophrenia. The aims of this review are (a) to provide an overview of recent findings in language processing in schizophrenia with EEG and MEG using neurophysiological indices, providing insights into underlying language related pathophysiological deficits in this disease and (b) to emphasize the advantage of EEG and MEG in research on language processing in schizophrenia.
Collapse
Affiliation(s)
- Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Hironaga N, Takei Y, Mitsudo T, Kimura T, Hirano Y. Prospects for Future Methodological Development and Application of Magnetoencephalography Devices in Psychiatry. Front Psychiatry 2020; 11:863. [PMID: 32973591 PMCID: PMC7472776 DOI: 10.3389/fpsyt.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a functional neuroimaging tool that can record activity from the entire cortex on the order of milliseconds. MEG has been used to investigate numerous psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, dementia, and autism spectrum disorder. Although several review papers on the subject have been published, perspectives and opinions regarding the use of MEG in psychiatric research have primarily been discussed from a psychiatric research point of view. Owing to a newly developed MEG sensor, the use of MEG devices will soon enter a critical period, and now is a good time to discuss the future of MEG use in psychiatric research. In this paper, we will discuss MEG devices from a methodological point of view. We will first introduce the utilization of MEG in psychiatric research and the development of its technology. Then, we will describe the principle theory of MEG and common algorithms, which are useful for applying MEG tools to psychiatric research. Next, we will consider three topics-child psychiatry, resting-state networks, and cortico-subcortical networks-and address the future use of MEG in psychiatry from a broader perspective. Finally, we will introduce the newly developed device, the optically-pumped magnetometer, and discuss its future use in MEG systems in psychiatric research from a methodological point of view. We believe that state-of-the-art electrophysiological tools, such as this new MEG system, will further contribute to our understanding of the core pathology in various psychiatric disorders and translational research.
Collapse
Affiliation(s)
- Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takako Mitsudo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kimura
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Arikan MK, Metin B, Tarhan N. EEG gamma synchronization is associated with response to paroxetine treatment. J Affect Disord 2018; 235:114-116. [PMID: 29655071 DOI: 10.1016/j.jad.2018.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Resistance to medication is a significant problem in psychiatric practice, and effective methods for predicting response are needed to optimize treatment efficacy and limit morbidity. Gamma oscillations are considered as an index of the brain's general cognitive activity; however, the role of gamma oscillations in disease has not been studied sufficiently. AIM This study aimed to determine if gamma power during rest can be used to predict response to anti-depressant medication treatment. METHOD Hamilton Depression Rating Scale (HDRS) score and resting state gamma power was measured in 18 medication-free patients during an episode of major depression. After 6 weeks of paroxetine monotherapy HDRS was administered again. RESULTS Baseline gamma power at frontal, central and temporal electrodes before treatment was significantly related to post-treatment change in HDRS scores. CONCLUSION The results indicate that gamma oscillations could be considered a marker of response to paroxetine treatment in patients with major depression.
Collapse
Affiliation(s)
| | - Baris Metin
- Uskudar University, Department of Psychology, Turkey.
| | - Nevzat Tarhan
- Uskudar University, Department of Psychology, Turkey
| |
Collapse
|
8
|
Atagun MI, Balaban OD, Yesilbas D, Keskinkilic C, Evren C. Effect of Lateralization on Motor and Mental Speed in Bipolar Disorder. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20120827114812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Murat Ilhan Atagun
- Namık Kemal University Medical School, Department of Psychiatry, Tekirdağ - Turkey
| | - Ozlem Devrim Balaban
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, İstanbul - Turkey
| | - Dilek Yesilbas
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, İstanbul - Turkey
| | - Cahit Keskinkilic
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, İstanbul - Turkey
| | - Cuneyt Evren
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, İstanbul - Turkey
| |
Collapse
|
9
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
10
|
Nakamura I, Hirano Y, Ohara N, Hirano S, Ueno T, Tsuchimoto R, Kanba S, Onitsuka T. Early integration processing between faces and vowel sounds in human brain: an MEG investigation. Neuropsychobiology 2016; 71:187-95. [PMID: 26044647 DOI: 10.1159/000377680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Unconscious fast integration of face and voice information is a crucial brain function necessary for communicating effectively with others. Here, we investigated for evidence of rapid face-voice integration in the auditory cortex. METHODS Magnetic fields (P50m and N100m) evoked by visual stimuli (V), auditory stimuli (A) and audiovisual stimuli (VA), i.e. by face, vowel and simultaneous vowel-face stimuli, were recorded in 22 healthy subjects. Magnetoencephalographic data from 28 channels around bilateral auditory cortices were analyzed. RESULTS In both hemispheres, AV - V showed significantly larger P50m amplitudes than A. Additionally, compared with A, the N100m amplitudes and dipole moments of AV - V were significantly smaller in the left hemisphere, but not in the right hemisphere. CONCLUSIONS Differential changes in P50m (bilateral) and N100m (left hemisphere) that occur when V (faces) are associated with A (vowel sounds) indicate that AV (face-voice) integration occurs in early processing, likely enabling us to communicate effectively in our lives.
Collapse
Affiliation(s)
- Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
12
|
Investigation of Heschl's gyrus and planum temporale in patients with schizophrenia and bipolar disorder: a proton magnetic resonance spectroscopy study. Schizophr Res 2015; 161:202-9. [PMID: 25480359 PMCID: PMC4308441 DOI: 10.1016/j.schres.2014.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Superior temporal cortices include brain regions dedicated to auditory processing and several lines of evidence suggest structural and functional abnormalities in both schizophrenia and bipolar disorder within this brain region. However, possible glutamatergic dysfunction within this region has not been investigated in adult patients. METHODS Thirty patients with schizophrenia (38.67±12.46years of age), 28 euthymic patients with bipolar I disorder (35.32±9.12years of age), and 30 age-, gender- and education-matched healthy controls were enrolled. Proton magnetic resonance spectroscopy data were acquired using a 3.0T Siemens MAGNETOM TIM Trio MR system and single voxel Point REsolved Spectroscopy Sequence (PRESS) in order to quantify brain metabolites within the left and right Heschl's gyrus and planum temporale of superior temporal cortices. RESULTS There were significant abnormalities in glutamate (Glu) (F(2,78)=8.52, p<0.0001), N-acetyl aspartate (tNAA) (F(2,81)=5.73, p=0.005), creatine (tCr) (F(2,83)=5.91, p=0.004) and inositol (Ins) (F(2,82)=8.49, p<0.0001) concentrations in the left superior temporal cortex. In general, metabolite levels were lower for bipolar disorder patients when compared to healthy participants. Moreover, patients with bipolar disorder exhibited significantly lower tCr and Ins concentrations when compared to schizophrenia patients. In addition, we have found significant correlations between the superior temporal cortex metabolites and clinical measures. CONCLUSION As the left auditory cortices are associated with language and speech, left hemisphere specific abnormalities may have clinical significance. Our findings are suggestive of shared glutamatergic abnormalities in schizophrenia and bipolar disorder.
Collapse
|
13
|
Stone DB, Coffman BA, Bustillo JR, Aine CJ, Stephen JM. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia. Front Hum Neurosci 2014; 8:788. [PMID: 25414652 PMCID: PMC4220133 DOI: 10.3389/fnhum.2014.00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/17/2014] [Indexed: 12/21/2022] Open
Abstract
Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.
Collapse
Affiliation(s)
- David B Stone
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute Albuquerque, NM, USA
| | - Brian A Coffman
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute Albuquerque, NM, USA ; Department of Psychology, Clinical Neuroscience Center, University of New Mexico Albuquerque NM, USA
| | - Juan R Bustillo
- Department of Psychiatry, Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| | - Cheryl J Aine
- Department of Radiology, Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute Albuquerque, NM, USA
| |
Collapse
|
14
|
Atagün Mİ, Güntekin B, Maşalı B, Tülay E, Başar E. Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res 2014; 223:43-8. [PMID: 24819306 DOI: 10.1016/j.pscychresns.2014.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/02/2023]
Abstract
Decreased delta oscillation upon cognitive load is common in patients with Alzheimer׳s disease, mild cognitive impairment, and schizophrenia. However, there is no previous study analyzing the delta responses in euthymic medication-free patients with bipolar disorder. Participants comprised of 22 euthymic medication-free patients with DSM-IV diagnoses of bipolar disorder and 21 healthy controls who were matched to the patients for sex, age, and education. Electroencephalographic activity was recorded at 30 electrode sites using an application of an auditory oddball paradigm. The maximum peak-to-peak amplitudes for each subject׳s averaged delta response (0.5-3.5Hz) were measured. There was a significant inter-group difference in evoked and event-related delta (0.5-3.5Hz) responses. Post-hoc comparisons revealed that the event-related delta oscillatory responses of the bipolar patient group were significantly lower than those of the healthy control group over the temporo-parietal and occipital electrode sites. Euthymic bipolar patients showed reduced event-related delta oscillatory responses in comparison to healthy subjects under cognitive load. The decrease of delta oscillations may be a common phenomenon that can be observed in different neuropsychiatric disorders with cognitive dysfunction.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey; Ankara Ataturk Training and Education Hospital, Ankara, Turkey; Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | | | - Elif Tülay
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey.
| |
Collapse
|
15
|
Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23393413 PMCID: PMC3553572 DOI: 10.31887/dcns.2012.14.4/gbuzsaki] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or "chunk" neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms.
Collapse
Affiliation(s)
- György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
16
|
A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 2013; 90:99-117. [PMID: 23892065 DOI: 10.1016/j.ijpsycho.2013.07.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
This review describes a wide range of functional correlates of gamma oscillations in whole-brain work, in neuroethology, sensory-cognitive dynamics, emotion, and cognitive impairment. This survey opens a new window towards understanding the brain's gamma activity. Gamma responses are selectively distributed in the whole brain, and do not reflect only a unique, specific function of the nervous system. Sensory responses from cortex, thalamus, hippocampus, and reticular formations in animal and human brains, and also cognitive responses, were described by several authors. According to reviewed results, it becomes obvious that cognitive disorders, and medication-which influence the transmitter release-change entirely the understanding of the big picture in cognitive processes. Gamma activity is evoked or induced by different sensory stimuli or cognitive tasks. Thus, it is argued that gamma-band synchronization is an elementary and fundamental process in whole-brain operation. In conclusion, reasoning and suggestions for understanding gamma activity are highlighted.
Collapse
|
17
|
Yener GG, Başar E. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:343-63. [PMID: 24053048 DOI: 10.1016/b978-0-7020-5307-8.00016-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This survey covers the potential use of neurophysiological changes as a biomarker in four neuropsychiatric diseases (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), bipolar disorder (BD), and schizophrenia (SZ)). Great developments have been made in the search of biomarkers in these disorders, especially in AD. Nevertheless, there is a tremendous need to develop an efficient, low-cost, potentially portable, non-invasive biomarker in the diagnosis, course, or treatment of the above-mentioned disorders. Electrophysiological methods would provide a tool that would reflect functional brain dynamic changes within milliseconds and also may be used as an ensemble of biomarkers that is greatly needed in the evaluation of cognitive changes seen in these disorders. The strategies for measuring cognitive changes include spontaneous electroencephalography (EEG), sensory evoked oscillation (SEO), and event-related oscillations (ERO). Further selective connectivity deficit in sensory or cognitive networks is reflected by coherence measurements. Possible candidate biomarkers discussed in an interactive panel can be summarized as follows: for ADHD: (a) elevation of delta and theta, (b) diminished alpha and beta responses in spontaneous EEG; for SZ: (a) decrease of ERO gamma responses, (b) decreased ERO in all other frequency ranges, (c) invariant ERO gamma response in relation to working memory demand; for euthymic BD: (a) decreased event-related gamma coherence, (b) decreased alpha in ERO and in spontaneous EEG; for manic BD: (a) lower alpha and higher beta in ERO, (b) decreased event-related gamma coherence, (c) lower alpha and beta in ERO after valproate; and for AD: (a) decreased alpha and beta, and increased theta and delta in spontaneous EEG, (b) hyperexcitability of motor cortices as shown by transcortical magnetic stimulation, (c) hyperexcitability of visual sensory cortex as indicated by increased SEO theta responses, (d) lower delta ERO, (e) lower delta, theta, and alpha event-related coherence, (f) higher theta synchrony and higher alpha event-related coherence in cholinergically treated AD subjects. In further research in the search for biomarkers, multimodal methods should be introduced to electrophysiology for validation purposes. Also, providing the protocols for standardization and harmonization of user-friendly acquisition or analysis methods that would be applied in larger cohort populations should be used to incorporate these electrophysiologic methods into the clinical criteria. In an extension to conventional anatomical, biochemical and brain imaging biomarkers, the use of neurophysiologic markers may lead to new applications for functional interpretrations and also the possibility to monitor treatments tailored for individuals.
Collapse
Affiliation(s)
- Görsev G Yener
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir 35340, Turkey.
| | | |
Collapse
|
18
|
Review of delta, theta, alpha, beta, and gamma response oscillations in neuropsychiatric disorders. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:303-41. [DOI: 10.1016/b978-0-7020-5307-8.00019-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Neurophysiological findings in patients with bipolar disorder. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:197-206. [DOI: 10.1016/b978-0-7020-5307-8.00013-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Ozerdema A, Güntekind B, Atagüne MI, Başar E. Brain oscillations in bipolar disorder in search of new biomarkers. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:207-21. [PMID: 24053042 DOI: 10.1016/b978-0-7020-5307-8.00014-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This report presents six cardinal results obtained with methods of oscillatory brain dynamics in euthymic and manic bipolar patients in comparison to healthy controls. Measurements include changes in oscillatory response activities in the theta, alpha, beta, and gamma frequency ranges. The analysis shows that spontaneous and response activities in the alpha range are highly reduced in euthymic and manic patients, respectively; conversely, beta responses are increased in euthymic and manic patients. Lithium use seems to be associated with further and significant increase in the beta frequency range in euthymic patients. Theta responses to auditory target stimulus during odd-ball paradigm appeared in two different frequency bands (4-6 and 6-8 Hz) in healthy participants. However, only fast theta responses were highly reduced under cognitive load in drug-free euthymic patients. The analysis of connectivity was performed by assessment of long-distance coherence function in the gamma frequency range. Both manic and euthymic patients presented significantly decreased fronto-temporal coherence function during visual odd-ball task, indicating a selective reduction in connectivity during cognitive processing. The present report also discusses that these six oscillatory parameters may serve as an ensemble of biomarkers for diagnostic purposes and tracking treatment response in bipolar disorder.
Collapse
Affiliation(s)
- Ayşegül Ozerdema
- Department of Psychiatry, Dokuz Eylül University Medical School, Narlidere, 35340 Izmir, Turkey.
| | | | | | | |
Collapse
|
21
|
Atagün Mİ, Güntekin B, Ozerdem A, Tülay E, Başar E. Decrease of theta response in euthymic bipolar patients during an oddball paradigm. Cogn Neurodyn 2012; 7:213-23. [PMID: 24427202 DOI: 10.1007/s11571-012-9228-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/01/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4-6 Hz, 6-8 Hz). In healthy subjects, slow theta (4-6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6-8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes.
Collapse
Affiliation(s)
- M İ Atagün
- Department of Psychiatry, Namik Kemal University Medical School, Tekirdag, Turkey ; Bakirkoy Research and Training Hospital for Psychiatry Neurology, Neurosurgery, Istanbul, Turkey
| | - B Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - A Ozerdem
- Department of Psychiatry, Dokuz Eylul University Medical School, Izmir, Turkey ; Department of Neuroscience, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey ; Multidisciplinary Brain Dynamics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - E Tülay
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - E Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
22
|
Current world literature. Curr Opin Psychiatry 2012; 25:155-62. [PMID: 22297717 DOI: 10.1097/yco.0b013e3283514a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|