1
|
Stabentheiner A, Kovac H. A mixed model of heat exchange in stationary honeybee foragers. Sci Rep 2023; 13:4655. [PMID: 36944672 PMCID: PMC10030634 DOI: 10.1038/s41598-023-31320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
During foraging honeybees are always endothermic to stay ready for immediate flight and to promote fast exploitation of resources. This means high energetic costs. Since energy turnover of foragers may vary in a broad range, energetic estimations under field conditions have remained uncertain. We developed an advanced model, combining the benefits of mechanistic and correlative models, which enables estimation of the energy turnover of stationary foragers from measurements of body surface temperature, ambient air temperature and global radiation. A comprehensive dataset of simultaneously measured energy turnover (ranging from 4 to 85 mW) and body surface temperature (thorax surface temperature ranging from 33.3 to 45 °C) allowed the direct verification of model accuracy. The model variants enable estimation of the energy turnover of stationary honeybee foragers with high accuracy both in shade and in sunshine, with SD of residuals = 5.7 mW and R2 = 0.89. Its prediction accuracy is similar throughout the main range of environmental conditions foragers usually experience, covering any combination of ambient air temperature of 14-38 °C and global radiation of 3-1000 W m-2.
Collapse
Affiliation(s)
- Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
2
|
Jarčuška B, Krištín A, Kaňuch P. Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
3
|
Yang CL, Meng JY, Zhou L, Yao MS, Zhang CY. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones 2021; 26:527-539. [PMID: 33609257 PMCID: PMC8065089 DOI: 10.1007/s12192-021-01198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, 550081, People's Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
4
|
Wagener C, Kruger N, Measey J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J Exp Biol 2021; 224:jeb.233031. [PMID: 34424980 DOI: 10.1242/jeb.233031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.
Collapse
Affiliation(s)
- Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
5
|
Rozen‐Rechels D, Rutschmann A, DupouÉ A, Blaimont P, Chauveau V, Miles DB, Guillon M, Richard M, Badiane A, Meylan S, Clobert J, Le Galliard J. Interaction of hydric and thermal conditions drive geographic variation in thermoregulation in a widespread lizard. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- David Rozen‐Rechels
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
| | - Alexis Rutschmann
- School of Biological Sciences University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - AndrÉaz DupouÉ
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
| | - Pauline Blaimont
- Department of Ecology and Evolutionary Biology University of California Santa Cruz 1156 High Street Santa Cruz California 95060 USA
- Department of Biology Rider University 2083 Lawrenceville Road Lawrenceville New Jersey08648 USA
| | - Victor Chauveau
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
| | - Donald B. Miles
- Department of Biological Sciences Ohio University Athens Ohio 45701 USA
| | - Michael Guillon
- Centre d’Études Biologiques de Chizé CNRS La Rochelle Université 405 Route de Prissé la Charrière Villiers‐en‐Bois 79360 France
| | - Murielle Richard
- Station d’Ecologie Théorique et Expérimentale (SETE) USR5321CNRS Moulis09200France
| | - Arnaud Badiane
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
| | - Sandrine Meylan
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
- Sorbonne Université ESPE de Paris 10 rue Molitor Paris 75016 France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale (SETE) USR5321CNRS Moulis09200France
| | - Jean‐François Le Galliard
- Sorbonne Université CNRS IRD INRA Institut d’écologie et des sciences de l’environnement (IEES) 4 place Jussieu Paris 75005 France
- Département de biologie Ecole normale supérieure Centre de recherche en écologie expérimentale et prédictive (CEREEP‐Ecotron IleDeFrance) CNRS PSL University Saint‐Pierre‐lès‐Nemours 77140 France
| |
Collapse
|
6
|
Yadav S, Stow A, Dudaniec RY. Elevational partitioning in species distribution, abundance and body size of Australian alpine grasshoppers (Kosciuscola
). AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Adam Stow
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| |
Collapse
|
7
|
Köhler G, Schielzeth H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol Evol 2020; 10:441-450. [PMID: 31988736 PMCID: PMC6972831 DOI: 10.1002/ece3.5908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/06/2022] Open
Abstract
Ectothermic animals depend on external heat sources for pursuing their daily activities. However, reaching sufficiently high temperature can be limiting at high altitudes, where nights are cold and seasons short. We focus on the role of a green-brown color polymorphism in grasshoppers from alpine habitats. The green-brown polymorphism is phylogenetically and spatially widespread among Orthopterans and the eco-evolutionary processes that contribute to its maintenance have not yet been identified.We here test whether green and brown individuals heat up to different temperatures under field conditions. If they do, this would suggest that thermoregulatory capacity might contribute to the maintenance of the green-brown polymorphism.We recorded thorax temperatures of individuals sampled and measured under field conditions. Overall, thorax temperatures ranged 1.7-42.1°C. Heat up during morning hours was particularly rapid, and temperatures stabilized between 31 and 36°C during the warm parts of the day. Female body temperatures were significantly higher than body temperatures of males by an average of 2.4°C. We also found that brown morphs were warmer by 1.5°C on average, a pattern that was particularly supported in the polymorphic club-legged grasshopper Gomphocerus sibiricus and the meadow grasshopper Pseudochorthippus parallelus.The difference in body temperature between morphs might lead to fitness differences that can contribute to the maintenance of the color polymorphism in combination with other components, such as crypsis, that functionally trade-off with the ability to heat up. The data may be of more general relevance to the maintenance of a high prevalence polymorphism in Orthopteran insects.
Collapse
Affiliation(s)
- Günter Köhler
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| | - Holger Schielzeth
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| |
Collapse
|
8
|
Nufio CR, Buckley LB. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019. [DOI: 10.1002/ecs2.2866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- César R. Nufio
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309 USA
- University of Colorado Natural History Museum University of Colorado Boulder Colorado 80309 USA
- National Science Foundation Alexandria Virginia 22314 USA
| | - Lauren B. Buckley
- Department of Biology University of Washington Seattle Washington 98195‐1800 USA
| |
Collapse
|
9
|
Tougeron K, van Baaren J, Llopis S, Ridel A, Doyon J, Brodeur J, Le Lann C. Disentangling plasticity from local adaptation in diapause expression in parasitoid wasps from contrasting thermal environments: a reciprocal translocation experiment. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kévin Tougeron
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, du Général Leclerc, Rennes, France
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Joan van Baaren
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, du Général Leclerc, Rennes, France
| | - Stéphanie Llopis
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, du Général Leclerc, Rennes, France
| | - Aurélien Ridel
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, du Général Leclerc, Rennes, France
| | - Josée Doyon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, du Général Leclerc, Rennes, France
| |
Collapse
|
10
|
Caldwell AJ, While GM, Wapstra E. Plasticity of thermoregulatory behaviour in response to the thermal environment by widespread and alpine reptile species. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Llewelyn J, Macdonald S, Hatcher A, Moritz C, Phillips BL. Thermoregulatory behaviour explains countergradient variation in the upper thermal limit of a rainforest skink. OIKOS 2016. [DOI: 10.1111/oik.03933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Stewart Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University Canberra Australia
| | - Ben L. Phillips
- School of BioSciences, University of Melbourne Melbourne Australia
| |
Collapse
|
12
|
Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia. PLoS One 2016; 11:e0150393. [PMID: 27008409 PMCID: PMC4805286 DOI: 10.1371/journal.pone.0150393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Understanding the potential of animals to immediately respond to changing temperatures is imperative for predicting the effects of climate change on biodiversity. Ectothermic animals, such as insects, use behavioural thermoregulation to keep their body temperature within suitable limits. It may be particularly important at warm margins of species occurrence, where populations are sensitive to increasing air temperatures. In the field, we studied thermal requirements and behavioural thermoregulation in low-altitude populations of the Satyrinae butterflies Erebia aethiops, E. euryale and E. medusa. We compared the relationship of individual body temperature with air and microhabitat temperatures for the low-altitude Erebia species to our data on seven mountain species, including a high-altitude population of E. euryale, studied in the Alps. We found that the grassland butterfly E. medusa was well adapted to the warm lowland climate and it was active under the highest air temperatures and kept the highest body temperature of all species. Contrarily, the woodland species, E. aethiops and a low-altitude population of E. euryale, kept lower body temperatures and did not search for warm microclimates as much as other species. Furthermore, temperature-dependence of daily activities also differed between the three low-altitude and the mountain species. Lastly, the different responses to ambient temperature between the low- and high-altitude populations of E. euryale suggest possible local adaptations to different climates. We highlight the importance of habitat heterogeneity for long-term species survival, because it is expected to buffer climate change consequences by providing a variety of microclimates, which can be actively explored by adults. Alpine species can take advantage of warm microclimates, while low-altitude grassland species may retreat to colder microhabitats to escape heat, if needed. However, we conclude that lowland populations of woodland species may be more severely threatened by climate warming because of the unavailability of relatively colder microclimates.
Collapse
|
13
|
Reprint of: The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. J Therm Biol 2015; 54:12-9. [PMID: 26615722 DOI: 10.1016/j.jtherbio.2015.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44 °C ± 0.4 °C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change.
Collapse
|
14
|
Plastic Responses to Temperature Versus Local Adaptation at the Cold Extreme of the Climate Gradient. Evol Biol 2015. [DOI: 10.1007/s11692-015-9341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. J Therm Biol 2015; 52:75-83. [DOI: 10.1016/j.jtherbio.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/17/2015] [Accepted: 06/07/2015] [Indexed: 11/19/2022]
|
16
|
Kaňuch P, Jarčuška B, Kovács L, Krištín A. Environmentally driven variability in size-selective females’ mating frequency of bush-cricket Pholidoptera griseoaptera. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9784-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Webber MM, Gibbs AG, Rodríguez-Robles JA. Hot and not-so-hot females: reproductive state and thermal preferences of female Arizona Bark Scorpions (Centruroides sculpturatus). J Evol Biol 2015; 28:368-75. [PMID: 25495081 DOI: 10.1111/jeb.12569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Abstract
For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb ) selected by individuals can affect offspring fitness and parental survival. Reproductive trade-offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influenced thermoregulation in female Arizona Bark Scorpions (Centruroides sculpturatus). We predicted that gravid females select higher Tb and thermoregulate more precisely than nonreproductive females. Gravid C. sculpturatus gain body mass throughout gestation, which exposes larger portions of their pleural membrane, possibly increasing their rates of transcuticular water loss in arid environments. Accordingly, we tested whether gravid C. sculpturatus lose water faster than nonreproductive females. We determined the preferred Tb of female scorpions in a thermal gradient and measured water loss rates using flow-through respirometry. Gravid females preferred significantly higher Tb than nonreproductive females, suggesting that gravid C. sculpturatus alter their thermoregulatory behaviour to promote offspring fitness. However, all scorpions thermoregulated with equal precision, perhaps because arid conditions create selective pressure on all females to thermoregulate effectively. Gravid females lost water faster than nonreproductive animals, indicating that greater exposure of the pleural membrane during gestation enhances the desiccation risk of reproductive females. Our findings suggest that gravid C. sculpturatus experience a trade-off, whereby selection of higher Tb and increased mass during gestation increase females' susceptibility to water loss, and thus their mortality risk. Elucidating the mechanisms that influence thermal preferences may reveal how reproductive trade-offs shape the life history of ectotherms in arid environments.
Collapse
Affiliation(s)
- M M Webber
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | | | | |
Collapse
|
18
|
Buckley LB, Nufio CR. Elevational clines in the temperature dependence of insect performance and implications for ecological responses to climate change. CONSERVATION PHYSIOLOGY 2014; 2:cou035. [PMID: 27293656 PMCID: PMC4806720 DOI: 10.1093/conphys/cou035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 06/06/2023]
Abstract
To what extent is insect hopping and feeding performance, which constrains the ability to obtain and assimilate resources, thermally adapted along an elevation gradient? Does temperature dependence vary between populations and species and can differences account for individualistic responses to past climate change? We investigate these questions for three species of grasshoppers along a Rocky Mountain elevation gradient. All species and populations exhibit warm adaptation for consumption and digestion, with only modest inter- and intra-specific differences. Species differ substantially in the temperature of peak hopping performance. Low-elevation populations of the warm-adapted species exhibit the highest performance at high temperatures and the lowest performance at low temperatures. Developmental plasticity influences the temperature dependence of performance; grasshoppers reared at higher temperatures perform better at higher temperatures and possess broader thermal tolerance. We fitted thermal performance curves to examine whether performance shifts can account for changes in abundance between initial surveys in 1958-1960 and recent surveys since 2006. All species and populations are able to achieve greater feeding rates now. Estimated shifts in hopping performance vary between species and along the elevation gradient. The cool-adapted species has experienced declines in hopping performance, particularly at the lower elevation sites, while the warm-adapted species has experienced increases in performance concentrated at higher elevations. These estimated performance shifts broadly concur with observed abundance shifts. Performance metrics may have a greater potential to elucidate differential responses to climate change between populations and species than coarser and oft-used proxies, such as thermal tolerance. Assessing performance directly when temperature dependence varies between processes such as the acquisition and assimilation of energy may be essential to understanding population- and species-level impacts.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - César R. Nufio
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- University of Colorado Natural History Museum, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
19
|
Buckley LB, Nufio CR, Kingsolver JG. Phenotypic clines, energy balances and ecological responses to climate change. J Anim Ecol 2013; 83:41-50. [DOI: 10.1111/1365-2656.12083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/10/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Lauren B. Buckley
- Department of Biology; University of North Carolina; Chapel Hill NC 27599 USA
| | - César R. Nufio
- Department of Ecology and Evolutionary Biology; University of Colorado; Boulder CO 80309 USA
- University of Colorado Natural History Museum; University of Colorado; Boulder CO 80309 USA
| | - Joel G. Kingsolver
- Department of Biology; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
20
|
Buckley LB, Miller EF, Kingsolver JG. Ectotherm Thermal Stress and Specialization Across Altitude and Latitude. Integr Comp Biol 2013; 53:571-81. [DOI: 10.1093/icb/ict026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Vallin N, Nonaka Y, Feng J, Qvarnström A. Relative performance of hybrid nestlings in Ficedula flycatchers: a translocation experiment. Ecol Evol 2013; 3:356-64. [PMID: 23467681 PMCID: PMC3586645 DOI: 10.1002/ece3.472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
Ecological speciation predicts that hybrids should experience relatively low fitness in the local environments of their parental species. In this study, we performed a translocation experiment of nestling hybrids between collared and pied flycatchers into the nests of conspecific pairs of their parental species. Our aim was to compare the performance of hybrids with purebred nestlings. Nestling collared flycatchers are known to beg and grow faster than nestling pied flycatchers under favorable conditions, but to experience higher mortality than nestling pied flycatchers under food limitation. The experiment was performed relatively late in the breeding season when food is limited. If hybrid nestlings have an intermediate growth potential and begging intensity, we expected them to beg and grow faster, but also to experience lower survival than pied flycatchers. In comparison with nestling collared flycatchers, we expected them to beg and grow slower, but to survive better. We found that nestling collared flycatchers indeed begged significantly faster and experienced higher mortality than nestling hybrids. Moreover, nestling hybrids had higher weight and tended to beg faster than nestling pied flycatchers, but we did not detect a difference in survival between the latter two groups of nestlings. We conclude that hybrid Ficedula nestlings appear to have a better intrinsic adaptation to food limitation late in the breeding season compared with nestling collared flycatchers. We discuss possible implications for gene flow between the two species.
Collapse
Affiliation(s)
- Niclas Vallin
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | | | | | | |
Collapse
|
22
|
Harris RM, McQuillan P, Hughes L. A test of the thermal melanism hypothesis in the wingless grasshopper Phaulacridium vittatum. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:51. [PMID: 23909454 PMCID: PMC3740933 DOI: 10.1673/031.013.5101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Altitudinal clines in melanism are generally assumed to reflect the fitness benefits resulting from thermal differences between colour morphs, yet differences in thermal quality are not always discernible. The intra-specific application of the thermal melanism hypothesis was tested in the wingless grasshopper Phaulacridium vittatum (Sjöstedt) (Orthoptera: Acrididae) first by measuring the thermal properties of the different colour morphs in the laboratory, and second by testing for differences in average reflectance and spectral characteristics of populations along 14 altitudinal gradients. Correlations between reflectance, body size, and climatic variables were also tested to investigate the underlying causes of clines in melanism. Melanism in P. vittatum represents a gradation in colour rather than distinct colour morphs, with reflectance ranging from 2.49 to 5.65%. In unstriped grasshoppers, darker morphs warmed more rapidly than lighter morphs and reached a higher maximum temperature (lower temperature excess). In contrast, significant differences in thermal quality were not found between the colour morphs of striped grasshoppers. In support of the thermal melanism hypothesis, grasshoppers were, on average, darker at higher altitudes, there were differences in the spectral properties of brightness and chroma between high and low altitudes, and temperature variables were significant influences on the average reflectance of female grasshoppers. However, altitudinal gradients do not represent predictable variation in temperature, and the relationship between melanism and altitude was not consistent across all gradients. Grasshoppers generally became darker at altitudes above 800 m a.s.l., but on several gradients reflectance declined with altitude and then increased at the highest altitude.
Collapse
Affiliation(s)
- Rebecca M. Harris
- School of Geography and Environmental Studies, University of Tasmania, Private Bag 78 Hobart, 7001, Australia
| | - Peter McQuillan
- School of Geography and Environmental Studies, University of Tasmania, Private Bag 78 Hobart, 7001, Australia
| | - Lesley Hughes
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
23
|
Ducatez S, Baguette M, Trochet A, Chaput-Bardy A, Legrand D, Stevens V, Fréville H. Flight endurance and heating rate vary with both latitude and habitat connectivity in a butterfly species. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.20947.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Grasshopper community response to climatic change: variation along an elevational gradient. PLoS One 2010; 5:e12977. [PMID: 20886093 PMCID: PMC2944887 DOI: 10.1371/journal.pone.0012977] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/26/2010] [Indexed: 12/02/2022] Open
Abstract
Background The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology. Methodology/Principal Findings This study utilizes past (1959–1960) and present (2006–2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season. Conclusions Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process-oriented and predictive framework for understanding community level phenological responses to climate change.
Collapse
|
25
|
Antoniazza S, Burri R, Fumagalli L, Goudet J, Roulin A. Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba). Evolution 2010; 64:1944-54. [PMID: 20148951 DOI: 10.1111/j.1558-5646.2010.00969.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.
Collapse
Affiliation(s)
- Sylvain Antoniazza
- Department of Ecology and Evolution, University of Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Pincebourde S, Sanford E, Helmuth B. An Intertidal Sea Star Adjusts Thermal Inertia to Avoid Extreme Body Temperatures. Am Nat 2009; 174:890-7. [DOI: 10.1086/648065] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 2008; 83:339-55. [PMID: 18979595 DOI: 10.1111/j.1469-185x.2008.00046.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.
Collapse
Affiliation(s)
- Ken Bowler
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | |
Collapse
|
28
|
Karl I, Janowitz SA, Fischer K. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16522.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Kroder S, Samietz J, Stabentheiner A, Dorn S. Body temperature of the parasitic wasp Pimpla turionellae (Hymenoptera) during host location by vibrational sounding. PHYSIOLOGICAL ENTOMOLOGY 2008; 33:17-24. [PMID: 22140295 PMCID: PMC3227732 DOI: 10.1111/j.1365-3032.2007.00595.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The pupal parasitoid Pimpla turionellae (L.) uses self-produced vibrations transmitted on the plant substrate, so-called vibrational sounding, to locate immobile concealed pupal hosts. The wasps are able to use vibrational sounding reliably over a broad range of ambient temperatures and even show an increased signal frequency and intensity at low temperatures. The present study investigates how control of body temperature in the wasps by endothermic mechanisms may facilitate host location under changing thermal environments. Insect body temperature is measured with real-time IR thermography on plant-stem models at temperature treatments of 10, 18, 26 and 30 °C, whereas behaviour is recorded with respect to vibrational host location. The results reveal a low-level endothermy that likely interferes with vibrational sound production because it occurs only in nonsearching females. At the lowest temperature of 10 °C, the thoracic temperature is 1.15 °C warmer than the ambient surface temperature whereas, at the high temperatures of 26 and 30 ° C, the wasps cool down their thorax by 0.29 and 0.47 °C, respectively, and their head by 0.45 and 0.61 °C below ambient surface temperature. By contrast, regardless of ambient temperature, searching females always have a slightly elevated body temperature of at most 0.30 °C above the ambient surface temperature. Behavioural observations indicate that searching females interrupt host location more frequently at suboptimal temperatures, presumably due to the requirements of thermoregulation. It is assumed that both mechanisms, producing vibrations for host location and low-level endothermy, are located in the thorax. Endothermy by thoracic muscle work probably disturbs signal structure of vibrational sounding, so the processes cannot be used at the same time.
Collapse
Affiliation(s)
- Stefan Kroder
- Institute of Plant Sciences, Applied Entomology, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
31
|
Karl I, A. Janowitz S, Fischer K. Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. OIKOS 2008. [DOI: 10.1111/j.2008.0030-1299.16522.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. ADVANCES IN INSECT PHYSIOLOGY 2006; 33:50-152. [PMID: 19212462 PMCID: PMC2638997 DOI: 10.1016/s0065-2806(06)33002-0] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | | |
Collapse
|