1
|
Comas M, Zamora-Camacho FJ, Garrido-Bautista J, Moreno-Rueda G, Martín J, López P. Mounting an immune response reduces male attractiveness in a lizard. Integr Zool 2024. [PMID: 39219026 DOI: 10.1111/1749-4877.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Parasites impact host fitness and constitute an important selective pressure on the host's life history. According to parasite-mediated sexual selection, ornaments are presumed to honestly indicate immune capacity or resistance against parasites, and the chooser sex (typically females) obtains an advantage by selecting more ornamented, thus more immunocompetent mates. Therefore, signalers mounting an immune response must allocate resources from the sexual signal to the immune system, hence reducing the expression of the ornament and becoming less attractive to the choosing sex. Here, we test this idea in the lizard Psammodromus algirus. We inoculated a subsample of males with lipopolysaccharide (LPS) of the cell wall of Escherichia coli, while others served as sham controls. The inoculation of LPS decreased the proportion of ergosterol (pro-vitamin D2) in femoral secretions, and chemosensory tests showed that the scent of LPS-inoculated males was less attractive to females than the scent of control males. Given that ergosterol is a precursor of vitamin D, which has physiological functions as an immune modulator, immunocompromised males likely needed to divert vitamin D to the immune system, reducing the allocation of ergosterol to secretions. In this way, females could detect "sick" males, preferring the apparently healthy males. Overall, our study shows that mounting an immune response is costly in terms of reduced attractiveness. Moreover, we disentangle the underlying mechanism, which involves an honest signal based on vitamin D allocation.
Collapse
Affiliation(s)
- Mar Comas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Francisco J Zamora-Camacho
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, C.S.I.C, Madrid, Spain
- Departamento de Biología de Organismos y Sistemas, Área de Zoología, Universidad de Oviedo, Oviedo, Spain
| | | | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, Madrid, Spain
| | - Pilar López
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, Madrid, Spain
| |
Collapse
|
2
|
Mendoza-Díaz de León L, Cordero-Molina S, Krams I, Contreras-Garduño J. Lie to me to lay with me: Females deceive males via terminal investment. PLoS One 2024; 19:e0301942. [PMID: 38976699 PMCID: PMC11230575 DOI: 10.1371/journal.pone.0301942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024] Open
Abstract
Historically, males have frequently been portrayed as the manipulative and deceptive gender, while females are often seen as adopting a coy and passive role. In this context, it is proposed that males use a terminal investment strategy, misleading females about their true poor condition, while females passively opt to mate with these deceptive males. However, we hypothesize that females in suboptimal condition may also engage in a terminal investment strategy by mimicking or enhancing their attractiveness to match that of females in better conditions. We studied this hypothesis in Tenebrio molitor, by subjecting females to three varying doses of lipopolysaccharides of Escherichia coli (LPS; 0.25, 0.5, or 1 mg ml-1), or three doses of the pro-oxidant Paraquat (PQ; 20, 40 or 80 mM), and subsequently assessing their survival and attractiveness to males. The LPS treatments and 20 mM of PQ had no significant effect on the survival or attractiveness of the females. However, females treated with 40 or 80 mM PQ survived fewer days compared to the control group. Those injected with 40 mM were more attractive than their control counterparts, while those treated with 80 mM were less attractive. Since the identical doses of LPS, which induce terminal investment in males, had no effect on females, we suggest sexual dimorphism in terminal investment. Furthermore, similar to males, if the stressor reaches a sufficiently high level, the signal becomes honest. These findings highlight how the quantity of stressors influences support for the terminal investment strategy in both males and females. Notably, this study challenges prevailing notions regarding gender roles in sexual selection, indicating that females, not just males, conceal their poor condition to attract mating partners.
Collapse
Affiliation(s)
- Laura Mendoza-Díaz de León
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sagrario Cordero-Molina
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Indikris Krams
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Rīga, Latvia
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Cargnelutti F, Castillo-Pérez U, Reyes-Ramírez A, Rocha-Ortega M, Córdoba-Aguilar A. Copulatory courtship, body temperature and infection in Tenebrio molitor. PLoS One 2023; 18:e0291384. [PMID: 37682968 PMCID: PMC10490994 DOI: 10.1371/journal.pone.0291384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Ectothermic animals can raise their body temperature under varying circumstances. Two such situations occur during sexual activity (as metabolic rate rises during copulatory movements) and during infection (to control pathogens more effectively). We have investigated these two situations using Tenebrio molitor males. We recorded the copulatory courtship behavior of sick (= infected with Metharizium robertsii fungus) vs healthy males and its link with body temperature. We predicted a positive relation between copulatory courtship (measured as antennal and leg contact behavior) and body temperature, especially in sick males. We found that the intensity of contacts correlated with increased body temperature in sick males. Previous studies in this species indicated that partner females laid fewer eggs after mating with sick males above a certain male body temperature threshold. Thus, our present findings suggest that females may detect male infection via intensity of antennal-mediated courtship, body temperature or their combination. If this is the case, females may assess male cues directly related to health status such as body temperature.
Collapse
Affiliation(s)
- Franco Cargnelutti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Ulises Castillo-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México
| |
Collapse
|
4
|
Duffield KR, Rosales AM, Muturi EJ, Behle RW, Ramirez JL. Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. INSECTS 2023; 14:667. [PMID: 37623376 PMCID: PMC10455440 DOI: 10.3390/insects14080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
The cabbage looper Trichoplusia ni is an important agricultural pest worldwide and is frequently used as a model organism for assessing entomopathogenic fungi virulence, though few studies have measured the host response repertoire to fungal biocontrol agents. Here, we quantified the immune response of T. ni larvae following exposure to two entomopathogenic fungal species: Beauveria bassiana and Cordyceps javanica. Results from our study demonstrate that T. ni larvae exposed to fungal entomopathogens had higher total phenoloxidase activity compared to controls, indicating that the melanization cascade is one of the main immune components driving defense against fungal infection and contrasting observations from other insect-fungi interaction studies. We also observed differences in host response depending on the species of entomopathogenic fungi, with significantly higher induction observed during infections with B. bassiana than with C. javanica. Larvae exposed to B. bassiana had an increased expression of genes involved in prophenoloxidase response and the Imd, JNK, and Jak/STAT immune signaling pathways. Our results indicate a notable absence of Toll pathway-related responses, further contrasting results to other insect-fungi pathosystems. Important differences were also observed in the induction of antimicrobial effectors, with B. bassiana infections eliciting three antimicrobial effectors (lysozyme, gloverin, and cecropin), while C. javanica only induced cecropin expression. These results provide insight into the host response strategies employed by T. ni for protection against entomopathogenic fungi and increase our understanding of insect-fungal entomopathogen interactions, aiding in the design of more effective microbial control strategies for this important agricultural pest.
Collapse
Affiliation(s)
- Kristin R. Duffield
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | | | - Ephantus J. Muturi
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - Robert W. Behle
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - José L. Ramirez
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| |
Collapse
|
5
|
Rutkowski NAJ, Foo YZ, Jones TM, McNamara KB. Age, but not an immune challenge, triggers terminal investment in the Pacific field cricket, Teleogryllus oceanicus. Behav Ecol 2023; 34:468-479. [PMID: 37192922 PMCID: PMC10183208 DOI: 10.1093/beheco/arad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/22/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
The terminal investment hypothesis proposes that, when individuals are faced with a threat to survival, they will increase investment in current reproduction. The level of the threat necessary to elicit terminal investment (the dynamic terminal investment threshold) may vary based on other factors that also influence future reproduction. Here, we tested whether there is an interactive effect of age and an immune challenge on the dynamic terminal investment threshold in the Pacific field cricket, Teleogryllus oceanicus. We measured the courtship call, mating attractiveness, ejaculate size, and offspring production of T. oceanicus males. We found only limited support for the dynamic terminal investment threshold: there was no consistent evidence of a positive interaction between male age and immune challenge intensity. However, we found evidence for age-related terminal investment: older males produced a larger spermatophore than younger males. Older males also had a slower calling rate compared to younger males, suggesting a potential trade-off between these two pre- and post-copulatory traits. As some, but not all, reproductive traits responded plastically to cues for terminal investment, our research highlights the importance of considering a broad range of pre-and post-copulatory traits when exploring the potential for terminal investment to occur.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Hossain MI, Saleh NUA, Numan A, Hossain MM, Uddin MA, Hossain MS. Bombyx mori as a model for Niallia circulans pathogenicity. Drug Discov Ther 2023; 17:18-25. [PMID: 36843035 DOI: 10.5582/ddt.2022.01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Increasing incidences of resistance to antibiotics by pathogenic bacteria is a worldwide concern and isolation of antibiotic-resistant strains of Niallia circulans (formerly known as Bacillus circulans), an opportunistic human pathogen, has been reported. Due to their lack of ethical constraints as well as their cost-effective rearing, invertebrates have been commonly used to study infection by bacteria pathogenic to humans. In this study, we demonstrate that a foodborne strain of N. circulans kills larvae of the silkworm, Bombyx mori within 48 h after hemolymph injection. The infected larvae turned black with an increase in the phenoloxidase (PO) activity in the hemolymph. Midgut injection of N. circulans resulted in the killing of larvae within 96 h. A significant increase in bacterial load was observed in the hemolymph 12 h after infection. The viable hemocyte number decreased to 48% within 12 h of injection. RT-qPCR analysis revealed that upon hemolymph infection with N. circulans the expression of the antimicrobial peptide (AMP) genes, Bmdefensin-B and Bmgloverin-3, were upregulated 2.5- and 1.8-fold, respectively, whereas 1.6-fold upregulation was observed for BmToll-2 in the larval fat body. Therapeutic effects of antibiotics like tetracycline, imipenem, ceftriaxone, ampicillin, and clindamycin were observed against N. circulans in the Bombyx larvae with varying efficacies. Results from this study suggest that larvae of B. mori can be used as infection models for screening therapeutics that are effective against N. circulans.
Collapse
Affiliation(s)
- M Ismail Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat U A Saleh
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Al Numan
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - M Mahtab Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - M Aftab Uddin
- Bangladesh Sericulture Research and Training Institute, Rajshahi, Bangladesh
| | - Muktadir S Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Lo LK, R R, Tewes LJ, Milutinović B, Müller C, Kurtz J. Immune Stimulation via Wounding Alters Chemical Profiles of Adult Tribolium castaneum. J Chem Ecol 2023; 49:46-58. [PMID: 36539674 PMCID: PMC9941273 DOI: 10.1007/s10886-022-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Group-living individuals experience immense risk of disease transmission and parasite infection. In social and in some non-social insects, disease control with immunomodulation arises not only via individual immune defenses, but also via infochemicals such as contact cues and (defensive) volatiles to mount a group-level immunity. However, little is known about whether activation of the immune system elicits changes in chemical phenotypes, which may mediate these responses. We here asked whether individual immune experience resulting from wounding or injection of heat-killed Bacillus thuringiensis (priming) leads to changes in the chemical profiles of female and male adult red flour beetles, Tribolium castaneum, which are non-social but gregarious. We analyzed insect extracts using GC-FID to study the chemical composition of (1) cuticular hydrocarbons (CHCs) as candidates for the transfer of immunity-related information between individuals via contact, and (2) stink gland secretions, with analysis of benzoquinones as main active compounds regulating 'external immunity'. Despite a pronounced sexual dimorphism in CHC profiles, wounding stimulation led to similar profile changes in males and females with increases in the proportion of methyl-branched alkanes compared to naïve beetles. While changes in the overall secretion profiles were less pronounced, absolute amounts of benzoquinones were transiently elevated in wounded compared to naïve females. Responses to priming were insignificant in CHCs and secretions. We suggest that changes in different infochemicals after wounding may mediate immune status signaling in the context of both internal and external immune responses in groups of this non-social insect, thus showing parallels to social immunity.
Collapse
Affiliation(s)
- Lai Ka Lo
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Reshma R
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Lisa Johanna Tewes
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Barbara Milutinović
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Caroline Müller
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| |
Collapse
|
8
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor. Sci Rep 2022; 12:19747. [PMID: 36396809 PMCID: PMC9671880 DOI: 10.1038/s41598-022-24334-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In the theory of ageing, it has been assumed that ageing is associated with a decline in somatic defences, including the immune system, as a consequence of a trade-off with reproduction. While overall immunity suffers from age-related deterioration (immune senescence), the different components of the immune response appear to age differently. It is also likely that investment among the many arms of the immune system and reproduction with age is finely adjusted to the organisms' reproductive strategy. We investigated this possibility in females of Tenebrio molitor, a species of long-lived insect with reproductive strategies similar to those of long-lived mammals. We specifically tested the effects of immunological challenges imposed early or late in adult life on immune pathway activation as well as fertility early and late in life. We found complex patterns of changes in immune defences with age and age-specific immune challenges with contrasted relationships with female reproduction. While cellular and enzymatic defences showed signs of ageing, they did not trade-off with reproduction. By contrast, the induced antibacterial immune response was found to be unaffected by age and to be highly connected to female fecundity. These findings suggest that these immunological pathways have different functions with regard to female ageing in this insect species.
Collapse
Affiliation(s)
- Charly Jehan
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Camille Sabarly
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Thierry Rigaud
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Yannick Moret
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
9
|
Pham HT, Elgar MA, van Lieshout E, McNamara KB. Experimental immune challenges reduce the quality of male antennae and female pheromone output. Sci Rep 2022; 12:3578. [PMID: 35246550 PMCID: PMC8897396 DOI: 10.1038/s41598-022-07100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Sexual signalling is a key feature of reproductive investment, yet the effects of immune system activation on investment into chemical signalling, and especially signal receiver traits such as antennae, are poorly understood. We explore how upregulation of juvenile immunity affects male antennal functional morphology and female pheromone attractiveness in the gumleaf skeletonizer moth, Uraba lugens. We injected final-instar larvae with a high or low dose of an immune elicitor or a control solution and measured male antennal morphological traits, gonad investment and female pheromone attractiveness. Immune activation affected male and female signalling investment: immune challenged males had a lower density of antennal sensilla, and the pheromone of immune-challenged females was less attractive to males than their unchallenged counterparts. Immune challenge affected female investment into ovary development but not in a linear, dose-dependent manner. While there was no effect of immune challenge on testes size, there was a trade-off between male pre- and post-copulatory investment: male antennal length was negatively correlated with testes size. Our study highlights the costs of elaborate antennae and pheromone production and demonstrates the capacity for honest signalling in species where the costs of pheromone production were presumed to be trivial.
Collapse
Affiliation(s)
- Hieu T Pham
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Entomology, Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emile van Lieshout
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
When is a male too hot? Fitness outcomes when mating with high temperature, sick males. J Therm Biol 2022; 105:103222. [DOI: 10.1016/j.jtherbio.2022.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022]
|
11
|
Waddell JC, Crampton WGR. Reproductive effort and terminal investment in a multi‐species assemblage of Amazon electric fish. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joseph C. Waddell
- Department of Biology University of Central Florida 4100 Libra Dr 32816 Orlando FL USA
- Department of Integrative and Computational Neurobiology Instituto de Investigaciones Biológicas Clemente Estable Av. Italia 3318 Montevideo 11600 Uruguay
| | | |
Collapse
|
12
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J Anim Ecol 2021; 91:101-111. [PMID: 34626485 DOI: 10.1111/1365-2656.13604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
The terminal investment hypothesis predicts that as an organism's prospects for survival decrease, through age or when exposed to a pathogenic infection, it will invest more in reproduction, which should trade-off against somatic maintenance (including immunity) and therefore future survival. Attempts to test this hypothesis have produced mixed results, which, in addition, mainly rely on the assessment of changes in reproductive effort and often overlooking its impact on somatic defences and survival. Alternatively, animals may restrain current reproduction to sustain somatic protection, increasing the chance of surviving for additional reproductive opportunities. We tested both of these hypotheses in females of the yellow mealworm beetle, Tenebrio molitor, an iteroparous insect with reproductive tactics similar to that of long-lived organisms. To achieve this, we mimicked pathogenic bacterial infections early or late in the life of breeding females by injecting them with a suspension of inactivated Bacillus cereus, a known natural pathogen of T. molitor, and measured female age-specific fecundity, survival, body mass and immunity. Inconsistent with a terminal investment, females given either an early or late-life immune challenge did not exhibit reduced survival or enhance their reproductive output. Female fecundity declined with age and was reduced by the early but not the late immune challenge. Both early and late-life fecundity correlated positively with life expectancy. Finally, young and old females exhibited similar antibacterial immune responses, suggesting that they both restrained reproduction to sustain immunity. Our results clearly demonstrate that age-specific reproduction of T. molitor females under pathogenic threat is inconsistent with a terminal investment. In contrast, our results instead suggest that females used a reproductive restraint strategy to sustain immunity and therefore subsequent reproductive opportunities. However, as infections were mimicked only, the fitness benefit of this reproductive restraint could not be shown.
Collapse
Affiliation(s)
- Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Camille Sabarly
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
13
|
How healthy is your mate? Sex-specific consequences of parasite infections in the moth Helicoverpa armigera. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Cargnelutti F, Reyes Ramírez A, Cristancho S, Sandoval‐García IA, Rocha‐Ortega M, Calbacho‐Rosa L, Palacino F, Córdoba‐Aguilar A. Condition-dependent male copulatory courtship and its benefits for females. Ecol Evol 2021; 11:9848-9855. [PMID: 34306667 PMCID: PMC8293791 DOI: 10.1002/ece3.7815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022] Open
Abstract
Postcopulatory sexual selection has shaped the ornaments used during copulatory courtship. However, we know relatively little about whether these courtship ornaments are costly to produce or whether they provide indirect benefits to females. We used the mealworm beetle, Tenebrio molitor, to explore this. We challenged males using an entomopathogenic fungus and compared their courtship (frequency of leg and antennal contacts to the female), copulation duration, number of eggs laid, and hatching rate against control males. Infected males copulated for longer yet they reduced their leg and antennal contacts compared to control males. However, there was no obvious relation between infection, copulation duration, and courtship with egg production and hatching success. In general, our results indicate that the ornaments used during postcopulatory courtship are condition-dependent. Moreover, such condition dependence cannot be linked to male fitness.
Collapse
Affiliation(s)
- Franco Cargnelutti
- Departamento de Diversidad Biológica y EcologíaFacultad de Ciencias ExactasFísicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
- Laboratorio de Biología Reproductiva y EvoluciónConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Instituto de Diversidad y Ecología Animal (IDEA)CórdobaArgentina
| | - Alicia Reyes Ramírez
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
| | - Shara Cristancho
- Grupo de Investigación en Odonatos de Colombia (GINOCO)Grupo de Investigación en Biología (GRIB)Centro de Investigación en AcarologíaDepartamento de BiologíaUniversidad El BosqueBogotáColombia
| | - Iván A. Sandoval‐García
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
| | - Maya Rocha‐Ortega
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
| | - Lucía Calbacho‐Rosa
- Departamento de Diversidad Biológica y EcologíaFacultad de Ciencias ExactasFísicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
- Laboratorio de Biología Reproductiva y EvoluciónConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Instituto de Diversidad y Ecología Animal (IDEA)CórdobaArgentina
| | - Freddy Palacino
- Grupo de Investigación en Odonatos de Colombia (GINOCO)Grupo de Investigación en Biología (GRIB)Centro de Investigación en AcarologíaDepartamento de BiologíaUniversidad El BosqueBogotáColombia
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
| |
Collapse
|
15
|
Reyes-Ramírez A, Rocha-Ortega M, Córdoba-Aguilar A. Feeding and condition shifts after encountering a pathogen. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Feeding behaviour is a dynamic process, especially if an individual is dealing with an infection. Here, we used Tenebrio molitor beetles to evaluate the effects of changes in diet macronutrients (protein:carbohydrate) on: (i) feeding behaviour before and after infection (using the entomopathogenic fungus Metarhizium robertsii) in males; and (ii) body condition, measured as the amount of proteins, carbohydrates, and lipids in the body, in males and females. Given that females also depend on the nutrients from the spermatophore, we also addressed the impact on female condition of using spermatophores from males whose diets differed in macronutrients whether they were confronting an infection. We found that males with different diets and regardless of their infection status, and females with different diets, all consumed less of the protein-rich diet but more of the carbohydrate-rich diet. In addition, infection in males produced anorexia. The infection resulted in males and the females they mated with, with fewer body proteins and lipids. This suggests that unlike studies in other insects, T. molitor does not consume large amounts of protein during the adult stage, even during an infection. Females’ condition depended strongly on that of their mates, improving even when paired with infected males. This implies that females may be using the nutrients that the males transfer during mating for maintenance.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, México
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, México
| |
Collapse
|
16
|
Saaristo M, Craft JA, Tyagi S, Johnstone CP, Allinson M, Ibrahim KS, Wong BBM. Transcriptome-wide changes associated with the reproductive behaviour of male guppies exposed to 17α-ethinyl estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116286. [PMID: 33360600 DOI: 10.1016/j.envpol.2020.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Although many pharmaceutical compounds (and their metabolites) can induce harmful impacts at the molecular, physiological and behavioural levels, their underlying mechanistic associations have remained largely unexplored. Here, we utilized RNA-Seq to build a whole brain transcriptome profile to examine the impact of a common endocrine disrupting pharmaceutical (17α-ethinyl estradiol, EE2) on reproductive behaviour in wild guppies (Poecilia reticulata). Specifically, we annotated 16,791 coding transcripts in whole brain tissue in relation to the courtship behaviour (i.e. sigmoid display) of EE2 exposed (at environmentally relevant concentration of 8 ng/L for 28-days) and unexposed guppies. Further, we obtained 10,960 assembled transcripts matching in the non-coding orthologous genomes. Behavioural responses were assessed using a standard mate choice experiment, which allowed us to disentangle chemical cues from visual cues. We found that a high proportion of the RNAseq reads aligned back to our de novo assembled transcriptome with 80.59% mapping rate. Behavioural experiments showed that when males were presented only with female visual cues, there was a significant interaction between male treatment and female treatment in the time spent in the preference zone. This is one of the first studies to show that transcriptome-wide changes are associated with the reproductive behaviour of fish: EE2 exposed male guppies that performed high levels of courtship had a gene profile that deviated the most from the other treatment groups, while both non-courting EE2 and control males had similar gene signatures. Using Gene Ontology pathway analysis, our study shows that EE2-exposed males had gene transcripts enriched for pathways associated with altered immunity, starvation, altered metabolism and spermatogenesis. Our study demonstrates that multiple gene networks orchestrate courting behaviour, emphasizing the importance of investigating impacts of pharmaceuticals on gene networks instead of single genes.
Collapse
Affiliation(s)
- Minna Saaristo
- EPA Victoria, Water Sciences, Melbourne, Australia; School of Biological Sciences, Monash University, Australia; Department of Biosciences, Åbo Akademi University, Finland.
| | - John A Craft
- Life Sciences, Glasgow Caledonian University, UK
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Australia
| | | | - Mayumi Allinson
- Department of Chemical Engineering, University of Melbourne, Australia
| | - Khalid S Ibrahim
- Life Sciences, Glasgow Caledonian University, UK; Department of Biology, University of Zakho, Kurdistan Region, Iraq
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
17
|
Reyes-Ramírez A, Rocha-Ortega M, Córdoba-Aguilar A. Dietary macronutrient balance and fungal infection as drivers of spermatophore quality in the mealworm beetle. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100009. [PMID: 36003606 PMCID: PMC9387488 DOI: 10.1016/j.cris.2021.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Males of many insects deliver ejaculates with nutritious substances to females in the form of a spermatophore. Different factors can affect spermatophore quality. We manipulated males' diet and health to determine the balance of macronutrients deposited in the spermatophores of Tenebrio molitor beetles. For diet, we varied the concentration of proteins and carbohydrates, while for health status we used a fungal infection. Males with different condition copulated with unmanipulated females, and spermatophores were extracted to measure the amount of proteins, lipids and carbohydrates. Diet and infection had an effect on the quality of the spermatophore. Diets with high protein and low carbohydrate contents produced spermatophores with higher protein, carbohydrate, and lipid contents. In contrast, diets with little protein and high in carbohydrates led to low quality spermatophores. Infected males produced spermatophores with the highest amount of all three macronutrients. In general, spermatophore content was carbohydrates>proteins>=lipids. The fact that sick males produced richer spermatophores can be explained as a terminal investment strategy. The large investment of carbohydrates may be related to the preparation of spermatozoa in males, and eggs in females.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| |
Collapse
|
18
|
Reyes-Ramírez A, Sandoval-García IA, Rocha-Ortega M, Córdoba-Aguilar A. Mutual mate choice and its benefits for both sexes. Sci Rep 2020; 10:19492. [PMID: 33173125 PMCID: PMC7656247 DOI: 10.1038/s41598-020-76615-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
In mating interactions, it is common in nature for both sexes to choose simultaneously. However, this mutual mate choice and its consequences for progeny has received relatively little study; an approach where both male and female condition is manipulated is thus desirable. We compared both sexes' preferences in Tenebrio molitor beetles when individual condition varied (healthy vs infected with a fungus), and observed the direct benefits of those preferences. We predicted that: (a) females and males in good condition would prefer high quality mates; (b) preferences would be weaker when the choosing individual is in poor condition (and thus less selective given, for example, time and energetic constrains); and, (c) high quality mates would lay a larger number of total eggs and/or viable eggs than low quality mates. We found that both males and females in good condition were not more likely to choose mates that were also in good condition. However, poor-condition animals were more likely to prefer similar quality animals, while high-condition animals did not necessarily prefer mates of similar condition. Choosing sick males or females had a negative impact on egg number and viability. Our results suggest a non-adaptive mate choice in this species. Possibly, a deteriorated condition may drive individuals to invest more in attracting mates, because their chances of surviving the infection are very low. However, we do not discount the possibility that the fungus is manipulating individuals to increase its transmission during mating.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, Mexico
| | - Iván Antonio Sandoval-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, Mexico
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, Mexico
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Distrito Federal, Mexico.
| |
Collapse
|
19
|
Zurowski K, Janmaat AF, Kabaluk T, Cory JS. Modification of reproductive schedule in response to pathogen exposure in a wild insect: Support for the terminal investment hypothesis. J Evol Biol 2020; 33:1558-1566. [PMID: 32780527 DOI: 10.1111/jeb.13691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Trade-offs in the time and energy allocated to different functions, such as reproductive activities, can be driven by alterations in condition which reduce resources, often in response to extrinsic factors such as pathogens or parasites. When individuals are challenged by a pathogen, they may either reduce reproduction as a cost of increasing defence mechanisms or, alternatively, modify reproductive activities so as to increase fecundity thereby minimizing the fitness costs of earlier death, a behaviour consistent with the terminal investment hypothesis (TIH). The TIH predicts that individuals with decreased likelihood of future reproduction will maximize current reproductive effort, which may include shifts in reproductive timing. We examined how wild, adult female click beetles (Agriotes obscurus) responded after exposure to the fungal pathogen Metarhizium brunneum. Field-collected beetles exposed to a high concentration of M. brunneum died earlier and in greater numbers than those exposed to a low concentration. Using a multivariate approach, we examined the impact of pathogen challenge on lifespan and a suite of reproductive traits. Stepdown regression analysis showed that only female lifespan differed among the fungal treatments. Fungal-induced reductions in lifespan drove changes in the reproductive schedule, characterized by a decrease in preoviposition period. Moving the start of egg laying forward allowed the females to offset the costs of a shortened lifespan. These changes suggest that there is a threshold for terminal investment, which is dependent on strength of the survival threat. From an applied perspective, our findings imply that exposing adult click beetles to M. brunneum to reduce their population density might not succeed and is an approach that needs further investigation.
Collapse
Affiliation(s)
- Kari Zurowski
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alida F Janmaat
- Department of Biology, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Todd Kabaluk
- Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
20
|
Sasson DA, Johnson TD, Scott ER, Fowler-Finn KD. Short-term water deprivation has widespread effects on mating behaviour in a harvestman. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Kiss J, Rádai Z, Rosa ME, Kosztolányi A, Barta Z. Seasonal changes in immune response and reproductive investment in a biparental beetle. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104000. [PMID: 31863762 DOI: 10.1016/j.jinsphys.2019.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Immunity and reproduction are physiologically demanding processes, therefore trade-offs are expected between these life history traits. Furthermore, investments in these traits are also known to be affected by factors such as sex, body size, individual condition, seasonal changes and parasite infection. The relationship between immunity and reproduction and the effect of other factors on this relationship were investigated in many species, but there are a small number of studies on these patterns in biparental invertebrates. Lethrus apterus is an iteroparous biparental beetle with predominant female care in respect of collecting and processing food for larvae. Males guard the nest built underground and also their mate. Here we investigate how sex, body size, time within the reproductive season and parasite load may influence the relationship between immunocompetence and reproductive investment in this species. In beetles from a natural population we quantified immune response by measuring the encapsulation response, antimicrobial activity of hemolymph, the investment into reproductive tissues by measuring the size of testis follicles in males and total egg size in females, and parasite load by counting the number of mites on the beetles. We found that the encapsulation response is condition-dependent, as large individuals showed significantly higher encapsulation ability than small ones. Antimicrobial capacity was significantly higher in females than in males. In case of antimicrobial activity there was also a seasonal change in the relationship between immunity and reproductive investment, but only under heavy mite load. Reproductive investment was influenced by the interaction between body size and season (in females) and by body size and season (in males). Furthermore in females the interaction between antimicrobial activity and season indicated that reproductive investment increased with antimicrobial activity early in the reproductive season. By investigating the relationship between immunity and reproductive investment in a natural population of a biparental beetle species, we can conclude that investments into these important life history traits are governed by complex interactions between physiological and environmental factors. Our results are discussed in the context of life history evolution, highlighting the role of the assessed factors in shaping trade-offs themselves (in invertebrates).
Collapse
Affiliation(s)
- Johanna Kiss
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary; Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.
| | - Zoltán Rádai
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Márta Erzsébet Rosa
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary; Doctoral School of Biological Sciences, Szent István University, Gödöllő, Hungary
| | - András Kosztolányi
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
The costs of the immune memory within generations. Naturwissenschaften 2019; 106:59. [DOI: 10.1007/s00114-019-1657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|
23
|
Reyes-Ramírez A, Rocha-Ortega M, Córdoba-Aguilar A. Female preferences when female condition and male ornament expression vary. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Variation in the condition of females can affect their mate preferences. This may explain variation in the expression of male ornaments. We tested these ideas in the mealworm beetle (Tenebrio molitor), a species in which females choose males based on their pheromones. We modified female condition using diets that differed in proteins and carbohydrates. We then allowed females to choose among males in which we had previously modified pheromone expression (either by varying diets as in females, or by fungal infection). Females were offered a choice between two males, both of which had been fed the same diet as the female, but which differed in whether they were infected or not. We repeated the same diet and infection treatments to determine whether poor (lower carbohydrate) diets decrease survival in both sexes. There was no effect of female diet on mate choice, but the infection state of the male did have an effect, with infected males being preferred. It is possible that infected males invest their resources in producing pheromones rather than attacking the pathogen. Both sexes, independent of infection, had higher survival when fed carbohydrate-rich diets. The results showed no effect of female condition on their preferences, at least not prior to copulation.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México
| |
Collapse
|
24
|
Kirschman LJ, Morales D, Crawford E, Zera AJ, Warne RW. Sex and life history shape the strength of cellular and humoral immune responses in a wing dimorphic cricket. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:70-76. [PMID: 31029600 DOI: 10.1016/j.jinsphys.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Immune function is a complex collection of responses that often trade-off with one another and with other life history traits, because of the high costs of mounting and maintaining immune responses. Animals, even those from the same populations, may emphasize different aspects of immune function depending on their habitat and phenotype. For example, host population density mediates the threat from density-dependent parasites. Animals at high densities may emphasize fast-acting humoral responses, while those at low densities may favor slower, but more specific, cellular responses. However, these predictions may be dependent on other life history traits, like sex, which is associated with variation in many immune responses. We used wing dimorphic Gryllus firmus crickets to test humoral responses, measured by lysozyme and phenoloxidase activities, and cellular immune responses, measured by encapsulation, between morphs and sex. We found that both morphs and sexes differed in aspects of immune function. Long wing morphs had stronger encapsulation responses than short winged morphs. Additionally, females exhibited higher PO activity than males, and by contrast, males had higher lysozyme activity than females. Our study suggests that G. firmus morphs prioritize different immune responses that may reflect a balancing between the costs of immunity and differing pathogen threats. Male and female crickets exhibit differences in humoral immune responses that may reflect their different life history demands.
Collapse
Affiliation(s)
- Lucas J Kirschman
- Department of Zoology, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Daniel Morales
- Department of Zoology, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Emily Crawford
- Department of Zoology, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Anthony J Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Robin W Warne
- Department of Zoology, Southern Illinois University Carbondale, Carbondale, IL, USA
| |
Collapse
|
25
|
Wilson KM, Walker SE. Age at mating and male quality influence female patterns of reproductive investment and survival. Ecol Evol 2019; 9:5440-5449. [PMID: 31110692 PMCID: PMC6509372 DOI: 10.1002/ece3.5137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023] Open
Abstract
The trade-off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade-offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade-offs change based on females' age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high-quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade-off between age at first mating and eggs laid appears to be mediated through higher egg-laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg-laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade-off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.
Collapse
Affiliation(s)
- Kerianne M. Wilson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Sean E. Walker
- Department of Biological SciencesCalifornia State UniversityFullertonCalifornia
| |
Collapse
|
26
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
27
|
Reyes-Ramírez A, Enríquez-Vara JN, Rocha-Ortega M, Téllez-García A, Córdoba-Aguilar A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 2019. [DOI: 10.1111/eth.12854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología; Ciudad Universitaria, Universidad Nacional Autónoma de México; Distrito Federal México
| | - Jhony N. Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC; Zapopan Mexico
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología; Ciudad Universitaria, Universidad Nacional Autónoma de México; Distrito Federal México
| | - Aldo Téllez-García
- Departamento de Ecología Evolutiva, Instituto de Ecología; Ciudad Universitaria, Universidad Nacional Autónoma de México; Distrito Federal México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología; Ciudad Universitaria, Universidad Nacional Autónoma de México; Distrito Federal México
| |
Collapse
|
28
|
Gallagher JD, Siva-Jothy MT, Evison SEF. Social cues trigger differential immune investment strategies in a non-social insect, Tenebrio molitor. Biol Lett 2018; 14:rsbl.2017.0709. [PMID: 29438053 DOI: 10.1098/rsbl.2017.0709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 01/19/2023] Open
Abstract
Social immunization (SI) is a horizontal transfer of immunity that protects naive hosts against infection following exposure to infected nestmates. While mainly documented in eusocial insects, non-social species also share similar ecological features which favour the development of group-level immunity. Here, we investigate SI in Tenebrio molitor by pairing naive females with a pathogen-challenged conspecific for 72 h before measuring a series of immune and fitness traits. We found no evidence for SI, as beetles who cohabited with a live pathogen-challenged conspecific were not better protected against bacterial challenge. However, exposure to a heat-killed-bacteria-challenged conspecific appeared to increase pathogen tolerance, which manifested in differential fitness investment. Our results together suggest that T. molitor do respond to immune-related cues in the social environment, despite not showing a classic immunization response as predicted.
Collapse
Affiliation(s)
- Joe D Gallagher
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael T Siva-Jothy
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sophie E F Evison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
29
|
Moore MP, Lis C, Martin RA. Immune deployment increases larval vulnerability to predators and inhibits adult life-history traits in a dragonfly. J Evol Biol 2018; 31:1365-1376. [PMID: 29927003 DOI: 10.1111/jeb.13337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
While deploying immune defences early in ontogeny can trade-off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade-offs with important adult traits. Here, we tested for predator-dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune-challenged larvae had later emergence overall and lower survival in pools with predators. Immune-challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages.
Collapse
Affiliation(s)
- Michael P Moore
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
30
|
Ramirez JL, Muturi EJ, Dunlap C, Rooney AP. Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Sci Rep 2018; 8:9896. [PMID: 29967469 PMCID: PMC6028645 DOI: 10.1038/s41598-018-28210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
Development of alternative vector control strategies are becoming more pressing given the rapid evolution of insecticide resistance and the rise of vector borne pathogens affecting public health such as dengue, chikungunya and Zika. Fungal-based biopesticides are promising alternatives to synthetic insecticides because they are ecofriendly and are highly effective at infecting insects through contact. This study evaluated the susceptibility of the yellow fever mosquito Ae. aegypti to a range of entomopathogenic fungal strains from the genus Isaria. We observed a diverse variation in the virulence of the Isaria strains tested, with two strains showing high pathogenicity towards adult mosquitoes. Mosquito susceptibility to fungal infection was further corroborated through the molecular quantification of fungal loads and the transcript evaluation of a fungal-specific pathogen recognition molecule in the mosquito body. Moreover, quantitative analysis of transcript abundance coupled with enzymatic assays revealed strain-specific subversion of the melanization cascade, an important immune response component. Our study contributes critical insights for a better understanding of fungal-mosquito interactions.
Collapse
Affiliation(s)
- José L Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA.
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| |
Collapse
|
31
|
Ramirez JL, Dunlap CA, Muturi EJ, Barletta ABF, Rooney AP. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl Trop Dis 2018; 12:e0006433. [PMID: 29684026 PMCID: PMC5933799 DOI: 10.1371/journal.pntd.0006433] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/03/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023] Open
Abstract
Alternative methods of mosquito control are needed to tackle the rising burden of mosquito-borne diseases while minimizing the use of synthetic insecticides, which are threatened by the rapid increase in insecticide resistance in mosquito populations. Fungal biopesticides show great promise as potential alternatives because of their ecofriendly nature and ability to infect mosquitoes on contact. Here we describe the temporospatial interactions between the mosquito Aedes aegypti and several entomopathogenic fungi. Fungal infection assays followed by the molecular assessment of infection-responsive genes revealed an intricate interaction between the mosquito immune system and entomopathogenic fungi. We observed contrasting tissue and time-specific differences in the activation of immune signaling pathways and antimicrobial peptide expression. In addition, these antifungal responses appear to vary according to the fungal entomopathogen used in the infection. Enzyme activity-based assays coupled with gene expression analysis of prophenoloxidase genes revealed a reduction in phenoloxidase (PO) activity in mosquitoes infected with the most virulent fungal strains at 3 and 6d post-fungal infection. Moreover, fungal infection led to an increase in midgut microbiota that appear to be attributed in part to reduced midgut reactive oxygen species (ROS) activity. This indicates that the fungal infection has far reaching effects on other microbes naturally associated with mosquitoes. This study also revealed that despite fungal recognition and immune elicitation by the mosquito, it is unable to successfully eliminate the entomopathogenic fungal infection. Our study provides new insights into this intricate multipartite interaction and contributes to a better understanding of mosquito antifungal immunity. Fungal biopesticides constitute potential alternative methods of vector control to tackle the rising burden of mosquito-borne diseases and the development of insecticide resistance in mosquitoes. Insect-fungi interactions represent an intricate co-evolutionary arms race between the invading pathogen and its arthropod host. New knowledge gathered through such studies can lead to the design of more effective microbial control strategies. Here we explored the temporospatial interaction of the mosquito Aedes aegypti with three different entomopathogenic fungi. Infection assays followed by gene expression studies revealed tissue-specific immune responses that appear to be temporal and fungal strain-specific. Our data shows that fungal infection causes significant reduction in phenoloxidase activity at the later stages of infection. The multifaceted response mounted by the mosquito against the fungal challenge appears to result in the dysregulation of midgut homeostasis, noted by an increase in midgut microbiota, especially in mosquitoes infected with the most virulent strains. Our study demonstrates an intricate mosquito-fungi interaction that, despite fungal recognition and immune response by the mosquito, results in death of the host.
Collapse
Affiliation(s)
- José L. Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
- * E-mail: ,
| | - Christopher A. Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Ephantus J. Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Ana B. F. Barletta
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alejandro P. Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| |
Collapse
|
32
|
Duffield KR, Hampton KJ, Houslay TM, Hunt J, Rapkin J, Sakaluk SK, Sadd BM. Age‐dependent variation in the terminal investment threshold in male crickets. Evolution 2018; 72:578-589. [DOI: 10.1111/evo.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Kristin R. Duffield
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences Illinois State University Normal Illinois 61761
| | - Kylie J. Hampton
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences Illinois State University Normal Illinois 61761
| | - Thomas M. Houslay
- Center for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn TR10 9FE United Kingdom
| | - John Hunt
- Center for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn TR10 9FE United Kingdom
- School of Science and Health and Hawkesbury Institute for the Environment, Western Sydney University Penrith NSW 2751 Australia
| | - James Rapkin
- Center for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn TR10 9FE United Kingdom
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences Illinois State University Normal Illinois 61761
| | - Ben M. Sadd
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences Illinois State University Normal Illinois 61761
| |
Collapse
|
33
|
Abstract
Although reproductive strategies can be influenced by a variety of intrinsic and extrinsic factors, life history theory provides a rigorous framework for explaining variation in reproductive effort. The terminal investment hypothesis proposes that a decreased expectation of future reproduction (as might arise from a mortality threat) should precipitate increased investment in current reproduction. Terminal investment has been widely studied, and a variety of intrinsic and extrinsic cues that elicit such a response have been identified across an array of taxa. Although terminal investment is often treated as a static strategy, the level at which a cue of decreased future reproduction is sufficient to trigger increased current reproductive effort (i.e., the terminal investment threshold) may depend on context, including the internal state of the organism or its current external environment, independent of the cue that triggers a shift in reproductive investment. Here, we review empirical studies that address the terminal investment hypothesis, exploring both the intrinsic and extrinsic factors that mediate its expression. Based on these studies, we propose a novel framework within which to view the strategy of terminal investment, incorporating factors that influence an individual's residual reproductive value beyond a terminal investment trigger - the dynamic terminal investment threshold.
Collapse
|
34
|
Brannelly LA, Webb R, Skerratt LF, Berger L. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis. Open Biol 2017; 6:rsob.150251. [PMID: 27358291 PMCID: PMC4929933 DOI: 10.1098/rsob.150251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd. In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized.
Collapse
Affiliation(s)
- Laura A Brannelly
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Rebecca Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Lee F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Clancy LM, Cooper AL, Griffith GW, Santer RD. Increased Male-Male Mounting Behaviour in Desert Locusts during Infection with an Entomopathogenic Fungus. Sci Rep 2017; 7:5659. [PMID: 28720859 PMCID: PMC5515840 DOI: 10.1038/s41598-017-05800-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/05/2017] [Indexed: 11/17/2022] Open
Abstract
Same-sex sexual behaviour occurs across diverse animal taxa, but adaptive explanations can be difficult to determine. Here we investigate male-male mounting (MMM) behaviour in female-deprived desert locust males infected with the entomopathogenic fungus Metarhizium acridum. Over a four-week period, infected locusts performed more MMM behaviours than healthy controls. Among infected locusts, the probability of MMM, and the duration of time spent MMM, significantly increased with the mounting locust’s proximity to death. In experimental trials, infected locusts were also significantly more likely than controls to attempt to mount healthy males. Therefore, we demonstrate that MMM is more frequent among infected than healthy male locusts, and propose that this may be explained by terminal reproductive effort and a lowered mate acceptance threshold in infected males. However, during experimental trials mounting attempts were more likely to be successful if the mounted locusts were experimentally manipulated to have a reduced capacity to escape. Thus, reduced escape capability resulting from infection may also contribute to the higher frequency of MMM among infected male locusts. Our data demonstrate that pathogen infection can affect same-sex sexual behaviour, and suggest that the impact of such behaviours on host and pathogen fitness will be a novel focus for future research.
Collapse
Affiliation(s)
- Lisa M Clancy
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, UK
| | - Amy L Cooper
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, UK
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, UK
| | - Roger D Santer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, SY23 3FG, UK.
| |
Collapse
|
36
|
Nystrand M, Cassidy EJ, Dowling DK. No effect of mitochondrial genotype on reproductive plasticity following exposure to a non-infectious pathogen challenge in female or male Drosophila. Sci Rep 2017; 7:42009. [PMID: 28181526 PMCID: PMC5299430 DOI: 10.1038/srep42009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial genetic variation shapes the expression of life-history traits associated with reproduction, development and survival, and has also been associated with the prevalence and progression of infectious bacteria and viruses in humans. The breadth of these effects on multifaceted components of health, and their link to disease susceptibility, led us to test whether variation across mitochondrial haplotypes affected reproductive success following an immune challenge in the form of a non-infectious pathogen. We test this, by challenging male and female fruit flies (Drosophila melanogaster), harbouring each of three distinct mitochondrial haplotypes in an otherwise standardized genetic background, to either a mix of heat-killed bacteria, or a procedural control, prior to measuring their subsequent reproductive performance. The effect of the pathogen challenge on reproductive success did not differ across mitochondrial haplotypes; thus there was no evidence that patterns of reproductive plasticity were modified by the mitochondrial genotype following a non-infectious pathogen exposure. We discuss the implications of our data, and suggest future research avenues based on these results.
Collapse
Affiliation(s)
- M Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - E J Cassidy
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Department of Plant and Organismal Biology, University of Copenhagen, Denmark
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
37
|
González-Tokman D, Martínez-Morales I, Farrera A, Del Rosario Ortiz-Zayas M, Lumaret JP. Effects of an herbicide on physiology, morphology, and fitness of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:96-102. [PMID: 27206992 DOI: 10.1002/etc.3498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 05/26/2023]
Abstract
Some agrochemical compounds threaten nontarget organisms and their functions in the ecosystem. The authors experimentally evaluated the effects of one of the most common herbicide mixtures used worldwide, containing 2,4-dichlorophenoxyacetic acid and picloram, on dung beetles, which play fundamental roles in the function of natural and managed ecosystems. The present study employed techniques of physiology and geometric morphometrics, besides including fitness measurements, to assess the effects of the herbicide in the introduced beetle Euoniticellus intermedius. Because herbicide components promote oxidative stress and affect survival in certain insects, the authors predicted negative effects on the beetles. Unexpectedly, no effect of herbicide concentration was found on clutch size, sex ratio, and fluctuating asymmetry, and it even increased physiological condition and body size in exposed beetles. Because the studied species presents 2 male morphs, the authors, for the first time, evaluated the effect of a pollutant on the ratio of these morphs. Contrary to the prediction, the herbicide mixture increased the proportion of major males. Thus, the herbicide does not threaten populations of the studied beetles. The present study discusses how both negative and positive effects of pollutants on wild animals modify natural and sexual selection processes occurring in nature, which ultimately impact population dynamics. The authors recommend the use of physiological and geometric morphometrics techniques to assess the impact of pollutants on nontarget animals. Environ Toxicol Chem 2017;36:96-102. © 2016 SETAC.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, Instituto de Ecología, Xalapa, Veracruz, México
- Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | | | - Arodi Farrera
- Posgrado en Antropología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Distrito Federal, México
| | | | - Jean-Pierre Lumaret
- Laboratoire de Zoogéographie, Centre d'Ecologie Fontctionnelle et Evolutive, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier, Montpellier, France
| |
Collapse
|
38
|
Bowers EK, Bowden RM, Thompson CF, Sakaluk SK. Elevated corticosterone during egg production elicits increased maternal investment and promotes nestling growth in a wild songbird. Horm Behav 2016; 83:6-13. [PMID: 27189763 PMCID: PMC4915999 DOI: 10.1016/j.yhbeh.2016.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
Glucocorticoids circulating in breeding birds during egg production accumulate within eggs, and may provide a potent form of maternal effect on offspring phenotype. However, whether these steroids affect offspring development remains unclear. Here, we employed a non-invasive technique that experimentally elevated the maternal transfer of corticosterone to eggs in a wild population of house wrens. Feeding corticosterone-injected mealworms to free-living females prior to and during egg production increased the number of eggs that females produced and increased corticosterone concentrations in egg yolks. This treatment also resulted in an increase in the amount of yolk allocated to eggs. Offspring hatching from these eggs begged for food at a higher rate than control offspring and eventually attained increased prefledging body condition, a trait predictive of their probability of recruitment as breeding adults in the study population. Our results indicate that an increase in maternal glucocorticoids within the physiological range can enhance maternal investment and offspring development.
Collapse
Affiliation(s)
- E Keith Bowers
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | - Rachel M Bowden
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Charles F Thompson
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
39
|
Krams I, Burghardt GM, Krams R, Trakimas G, Kaasik A, Luoto S, Rantala MJ, Krama T. A dark cuticle allows higher investment in immunity, longevity and fecundity in a beetle upon a simulated parasite attack. Oecologia 2016; 182:99-109. [PMID: 27245343 DOI: 10.1007/s00442-016-3654-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Abstract
Cuticle melanism in insects is linked to a number of life history traits: a positive relationship is hypothesized between melanism, immune function, fecundity and lifespan. However, it is not clear how activation of the immune system affects trade-offs between life history traits in female mealworm beetles (Tenebrio molitor) differing in cuticle melanization. The females with tan, brown and black cuticles examined in the present study did not differ in the intensity of encapsulation response, fecundity and longevity when their immune system was not activated. However, we found that immune activation and cuticle melanization have a significant effect on life history traits. Offspring number and lifespan decreased in females with tan and brown cuticles, while the fecundity and lifespan of black females were not affected. Importantly, we inserted the implants again and found a significant decrease in the strength of encapsulation response in females with tan and brown cuticles. In contrast, black females increased melanotic reactions against the nylon implant, suggesting immunological priming. The results show that cuticle melanization plays an important adaptive role under the risk of being infected, while the lack of these benefits before the insertion of nylon monofilaments suggests that there are costs associated with an activated immunity system.
Collapse
Affiliation(s)
- Indrikis Krams
- Department of Psychology, University of Tennessee, Knoxville, TN, USA. .,Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia. .,Institute of Ecology and Earth Science, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| | - Gordon M Burghardt
- Departments of Psychology and Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Ronalds Krams
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia
| | - Giedrius Trakimas
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia.,Center for Ecology and Environmental Research, Vilnius University, Vilnius, Lithuania
| | - Ants Kaasik
- Institute of Ecology and Earth Science, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Severi Luoto
- English, Drama and Writing Studies & School of Psychology, University of Auckland, Auckland, New Zealand
| | - Markus J Rantala
- Department of Biology, Turku Brain and Mind Centre, University of Turku, Turku, Finland
| | - Tatjana Krama
- Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Tartu, Estonia
| |
Collapse
|
40
|
Kervinen M, Lebigre C, Soulsbury CD. Simultaneous age‐dependent and age‐independent sexual selection in the lekking black grouse(Lyrurus tetrix). J Anim Ecol 2016; 85:715-25. [DOI: 10.1111/1365-2656.12496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Matti Kervinen
- Department of Biological and Environmental Science University of Jyväskylä P. O. Box 35 Jyväskylä FI‐40014 Finland
| | - Christophe Lebigre
- Earth and Life Institute Place de la Croix du Sud 4 Carnoy building B‐1348 Louvain‐la‐Neuve Belgium
| | - Carl D. Soulsbury
- Joseph Banks Laboratories School of Life Sciences University of Lincoln Lincoln LN6 7TS UK
| |
Collapse
|
41
|
Kelly CD, Telemeco MSC, Bartholomay LC. Are attractive male crickets better able to pay the costs of an immune challenge? PeerJ 2015; 3:e1501. [PMID: 26713249 PMCID: PMC4690353 DOI: 10.7717/peerj.1501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
Reproduction and immunity are fitness-related traits that trade-off with each other. Parasite-mediated theories of sexual selection suggest, however, that higher-quality males should suffer smaller costs to reproduction-related traits and behaviours (e.g., sexual display) from an immune challenge because these males possess more resources with which to deal with the challenge. We used Gryllus texensis field crickets to test the prediction that attractive males should better maintain the performance of fitness-related traits (e.g., calling effort) in the face of an immune challenge compared with unattractive males. We found no support for our original predictions. However, that immune activation causes attractive males to significantly increase their calling effort compared with unattractive males suggests that these males might terminally invest in order to compensate for decreased future reproduction.
Collapse
Affiliation(s)
- Clint D Kelly
- Département des Sciences Biologiques, Univeristé du Québec à Montréal , Montréal, Québec , Canada ; Department of Ecology, Evolution and Organismal Biology, Iowa State University , Ames, IA , United States
| | - Melissa S C Telemeco
- Department of Ecology, Evolution and Organismal Biology, Iowa State University , Ames, IA , United States ; Science and Education Division, Pacific Science Center , Seattle, WA , United States
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin , Madison, WI , United States ; Department of Entomology, Iowa State University , Ames, IA , United States
| |
Collapse
|
42
|
Reavey CE, Silva FWS, Cotter SC. Bacterial Infection Increases Reproductive Investment in Burying Beetles. INSECTS 2015; 6:926-42. [PMID: 26529021 PMCID: PMC4693179 DOI: 10.3390/insects6040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
Abstract
The Nicrophorus genus lives and breeds in a microbe rich environment. As such, it would be expected that strategies should be in place to counter potentially negative effects of the microbes common to this environment. In this study, we show the response of Nicrophorus vespilloides to the common soil bacterium, Bacillus subtilis. Phenoloxidase (PO) levels are not upregulated in response to the challenge and the bacteria are observed to multiply within the haemolymph of the host. Despite the growth of B. subtilis, survival is not affected, either in virgin or in breeding beetles. Some limit on bacterial growth in the haemolymph does seem to be occurring, suggesting mechanisms of resistance, in addition to tolerance mechanisms. Despite limited detrimental effects on the individual, the challenge by Bacillus subtilis appears to act as a cue to increase reproductive investment. The challenge may indicate a suite of negative environmental conditions that could compromise future breeding opportunities. This could act as a cue to increase parental investment in the current bout.
Collapse
Affiliation(s)
- Catherine E Reavey
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Farley W S Silva
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- Department of Entomology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil.
| | - Sheena C Cotter
- School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK.
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| |
Collapse
|
43
|
Kuczynski MC, Bello-DeOcampo D, Getty T. No Evidence of Terminal Investment in the Gray Treefrog (Hyla versicolor): Older Males Do Not Signal at Greater Effort. COPEIA 2015. [DOI: 10.1643/ce-14-156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Duffield KR, Hunt J, Rapkin J, Sadd BM, Sakaluk SK. Terminal investment in the gustatory appeal of nuptial food gifts in crickets. J Evol Biol 2015. [PMID: 26201649 DOI: 10.1111/jeb.12703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investment in current versus future reproduction represents a prominent trade-off in life-history theory and is likely dependent on an individual's life expectancy. The terminal investment hypothesis posits that a reduction in residual reproductive value (i.e. potential for future offspring) will result in increased investment in current reproduction. We tested the hypothesis that male decorated crickets (Gryllodes sigillatus), when cued to their impending mortality, should increase their reproductive effort by altering the composition of their nuptial food gifts (i.e. spermatophylaxes) to increase their gustatory appeal to females. Using a repeated-measures design, we analysed the amino acid composition of spermatophylaxes derived from males both before and after injection of either a saline control or a solution of heat-killed bacteria. The latter, although nonpathogenic, represents an immune challenge that may signal an impending survival threat. One principal component explaining amino acid variation in spermatophylaxes, characterized by a high loading to histidine, was significantly lower in immune-challenged versus control males. The relevance of this difference for the gustatory appeal of gifts to females was assessed by mapping spermatophylax composition onto a fitness surface derived in an earlier study identifying the amino acid composition of spermatophylaxes preferred by females. We found that immune-challenged males maintained the level of attractiveness of their gifts post-treatment, whereas control males produced significantly less attractive gifts post-injection. These results are consistent with the hypothesis that cues of a survival-threatening infection stimulate terminal investment in male decorated crickets with respect to the gustatory appeal of their nuptial food gifts.
Collapse
Affiliation(s)
- K R Duffield
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - J Hunt
- Center for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - J Rapkin
- Center for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - B M Sadd
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - S K Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
45
|
Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes. PLoS One 2015; 10:e0133240. [PMID: 26181517 PMCID: PMC4504673 DOI: 10.1371/journal.pone.0133240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Gender differences in the immune response of insects are driven by natural selection for females and sexual selection for males. These natural forces entail a multitude of extrinsic and intrinsic factors involved in a genotype-environment interaction that results in sex-biased expression of the genes shared by males and females. However, little is known about how an infection at a particular ontogenetic stage may influence later stages, or how it may impact sexual immune dimorphism. Using Aedes aegypti mosquitoes, the aim of the present study was to analyze the effect of a bacterial exposure at the larval stage on adult immunity in males and females. The parameters measured were phenoloxidase activity, nitric oxide production, antimicrobial activity, and the antimicrobial peptide transcript response. As a measure of the immune response success, the persistence of injected bacteria was also evaluated. The results show that males, as well as females, were able to enhance survival in the adult stage as a result of being exposed at the larval stage, which indicates a priming effect. Moreover, there was a differential gender immune response, evidenced by higher PO activity in males as well as higher NO production and greater antimicrobial activity in females. The greater bacterial persistence in females suggests a gender-specific strategy for protection after a previous experience with an elicitor. Hence, this study provides a primary characterization of the complex and gender-specific immune response of male and female adults against a bacterial challenge in mosquitoes primed at an early ontogenetic stage.
Collapse
|
46
|
Giery ST, Layman CA. Interpopulation Variation in a Condition-Dependent Signal: Predation Regime Affects Signal Intensity and Reliability. Am Nat 2015; 186:187-95. [PMID: 26655148 DOI: 10.1086/682068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In many models of sexual selection, conspicuous ornaments are preferred by mates because they indicate heritable signaler viability. To function as indicators, ornaments must exhibit a proportional relationship between expression and viability. In cases where the evolutionary interests of signaler and receiver diverge, selection favors exploitative exaggeration by low-viability individuals producing unreliable signals. Theory suggests that the evolutionary stability of such communication systems requires costs that prevent low-viability males from expressing disproportionately intense signals. Therefore, given ecological variation in signaling cost, the reliability of signaling systems will vary concomitantly. In this study, we assess the effect of a variable signal cost, predation, on signal intensity and reliability among 16 populations of Bahamas mosquitofish (Gambusia hubbsi) that use colorful dorsal fins in courtship displays. We found that fin coloration was more intense in low-predation sites and could be used to predict body condition. However, this predictive relationship was apparent only in populations subject to predation risk. We demonstrate an important role for ecological signaling cost in communication and show that ecological heterogeneity drives interpopulation variation in both the intensity and the reliability of a sexual signal.
Collapse
Affiliation(s)
- Sean T Giery
- Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, Florida 33181
| | | |
Collapse
|
47
|
Bowers EK, Bowden RM, Sakaluk SK, Thompson CF. Immune activation generates corticosterone-mediated terminal reproductive investment in a wild bird. Am Nat 2015; 185:769-83. [PMID: 25996862 DOI: 10.1086/681017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite classical expectations of a trade-off between immune activity and reproduction, an emergent view suggests that individuals experiencing activation of their immune system actually increase reproductive effort and allocation to offspring as a form of terminal investment in response to reduced survival probability. However, the components and mechanisms of increased parental investment following immunostimulation are currently unknown. We hypothesize that increased glucocorticoid production following immunostimulation modulates the increase in reproductive effort that constitutes terminal investment. We activated the immune system of breeding female house wrens (Troglodytes aedon) with an immunogen and cross-fostered the eggs that they subsequently produced to separate prenatal and postnatal components of maternal investment. Cross-fostering revealed an increase in both pre- and postnatal allocation from immunostimulated females, which was confirmed by quantification of egg constituents and maternal provisioning behavior. The increase in maternal provisioning was mediated, at least in part, by increased corticosterone in these females. Offspring immune responsiveness was also enhanced through transgenerational immune priming via the egg. Thus, our results indicate that maternal immunostimulation induces transgenerational effects on offspring through both pre- and postnatal parental effects and support an important role for corticosterone in mediating parental investment.
Collapse
Affiliation(s)
- E Keith Bowers
- Behavior, Ecology, Evolution, and Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | | | | | | |
Collapse
|
48
|
Abstract
In sexual reproduction different types of symbiotic relationships between insects and microbes have become established. For example, some bacteria have evolved almost exclusive vertical transmission and even define the compatibility of insect mating partners. Many strictly sexually transmitted diseases have also been described in insects. Apart from such rather specific relationships the role of opportunistic infections in the reproductive process has been widely neglected. Opportunistic microbes transmitted passively during mating might impose an energetic cost, as the immune system will need to be alert and will use resources to fight potential intruders. Through mating wounds and contaminated reproductive organs opportunistic microbes might be transferred to mating partners and even enter the body cavity. Females as the "receiving" sex are particularly likely to have evolved adaptations to avoid or reduce opportunistic infections. Males of several species show highly complex seminal fluids, which as well as containing components that influence a males' fertilization success, also possess antimicrobial substances. The role of antimicrobials in the reproductive process is not well understood. Some evidence hints at the protection of sperm against microbes, indicating a role for natural selection in shaping the evolution of reproductive traits. By highlighting the potential importance of microbes in sexual selection and their role in reproduction in general I will make a case for studies in sexual selection, especially the ones investigating postcopulatory processes, that should incorporate environmental, as well as genotypic variation, in reproductive traits.
Collapse
Affiliation(s)
- Oliver Otti
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse, 30, 95440, Bayreuth, Germany
| |
Collapse
|
49
|
Female house mice initially shun infected males, but do not avoid mating with them. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1884-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Resource availability as a proxy for terminal investment in a beetle. Oecologia 2015; 178:339-45. [PMID: 25582868 DOI: 10.1007/s00442-014-3210-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Terminal investment hypothesis is a longstanding theoretical idea that organisms should increase their reproductive effort as their prospects for survival and reproduction decline. However, numerous attempts to test the terminal investment in reproduction have yielded contradictory results. This study reports an experimental confirmation of the terminal investment hypothesis. It was predicted that immune-challenged yellow mealworm beetles (Tenebrio molitor) are more likely to follow terminal investment strategy when their food resources are limited. Our results suggest the key role of food resources while making decisions to follow a terminal investment strategy. We found that male individuals invested in their sexual attractiveness at the expense of immune response and survival when food was not available. In contrast, the beetles did not decrease their lifespan and did not invest in the attractiveness of their sex odours under conditions of food ad libitum. Our results show the importance of food availability and quality in understanding the evolution of reproductive strategies.
Collapse
|