1
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Hu J, Liang Y, Huang X, Chen G, Liu D, Chen Z, Fang Z, Chen X. Thermal Stability Improvement of Core Material via High Internal Phase Emulsion Gels. Polymers (Basel) 2023; 15:4272. [PMID: 37959953 PMCID: PMC10647363 DOI: 10.3390/polym15214272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Biocompatible particle-stabilized emulsions have gained significant attention in the biomedical industry. In this study, we employed dynamic high-pressure microfluidization (HPM) to prepare a biocompatible particle emulsion, which effectively enhances the thermal stability of core materials without the addition of any chemical additives. The results demonstrate that the HPM-treated particle-stabilized emulsion forms an interface membrane with high expansion and viscoelastic properties, thus preventing core material agglomeration at elevated temperatures. Furthermore, the particle concentration used for constructing the emulsion gel network significantly impacts the overall strength and stability of the material while possessing the ability to inhibit oxidation of the thermosensitive core material. This investigation explores the influence of particle concentration on the stability of particle-stabilized emulsion gels, thereby providing valuable insights for the design, improvement, and practical applications of innovative clean label emulsions, particularly in the embedding and delivery of thermosensitive core materials.
Collapse
Affiliation(s)
- Jinhua Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxue Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueyao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guangxue Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dingrong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhuangzhuang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xuelong Chen
- Atera Water Pte Ltd., 1 Corporation Drive, Singapore 619775, Singapore;
| |
Collapse
|
3
|
Phirom-On K, Po-Ngern A, Jaikhan S, Sirichon S, Vichitphan S, Vichitphan K, Apiraksakorn J. Understanding the hindrance factor of bacterial proliferation and γ-aminobutyric acid-producing capability of nondairy strains of Lactiplantibacillus plantarum in milk fermentation. Sci Rep 2023; 13:11464. [PMID: 37454227 PMCID: PMC10349837 DOI: 10.1038/s41598-023-38701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
γ-aminobutyric-acid (GABA) is a mental health-supporting substance that helps release anxiety and depression and improves memory. Lactiplantibacillus plantarum SKKL1, a GABA-producing bacterium, has been introduced to formulate a gut-brain axis product. However, growth and sugar consumption of L. plantarum SKKL1 in milk were ineffective. This obstacle was investigated by varying different types of milk, sugars, fermentation temperatures, and times. The results revealed that none of these parameters improved growth and bacterial metabolism in milk, except addition of soluble protein as found in yeast extract and malt extract. Although a protease deficiency of L. plantarum SKKL1 was discovered, it was not a primary barrier to cell propagation. Insight of this study showed clearly that soluble protein was an essential metabolic activator for growth, nutrient consumption, and protease synthesis, then stimulated lactic acid and GABA productions. While, milk casein and casein hydrolysate, a complex protein structure with low solubility, were not utilized by L. plantarum SKKL1. The novelty of this study is the first in-depth investigation to confirm a significant effect of soluble protein on enrich-GABA milk fermentation by L. plantarum SKKL1 as the sole starter without protease and monosodium glutamate addition.
Collapse
Affiliation(s)
- Konlarat Phirom-On
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anuchida Po-Ngern
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Jaikhan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sasiwan Sirichon
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, Thailand
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, Thailand
| | - Jirawan Apiraksakorn
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Murakami T, Kaku T, Tsukakoshi K, Iwaide S, Itoh Y, Hisada M, Nomura K, Kubo R, Ikebukuro K, Sassa-O'Brien Y, Kametani F. Identification of novel amyloidosis in dogs: α-S1-casein acquires amyloidogenicity in mammary tumor by overexpression and N-terminal truncation. Vet Pathol 2023; 60:203-213. [PMID: 36680468 DOI: 10.1177/03009858221148511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammary tumor-associated amyloidosis (MTAA) in dogs is characterized by amyloid deposition in the stroma of mammary adenoma or carcinoma; however, the amyloid precursor protein remains unknown. We attempted to identify an amyloid precursor protein and elucidated its etiology by characterizing 5 cases of canine MTAA. Proteomic analyses of amyloid extracts from formalin-fixed paraffin-embedded specimens revealed α-S1-casein (CASA1) as a prime candidate and showed the N-terminal truncation of canine CASA1. Both immunohistochemistry and immunoelectron microscopy showed that amyloid deposits or fibrils in MTAA cases were positive for CASA1. Reverse transcription-polymerase chain reaction and quantitative polymerase chain reaction revealed the complete mRNA sequence encoding CASA1, whose expression was significantly higher in the amyloid-positive group. The recombinant protein of the N-terminal-truncated canine CASA1 and the synthetic peptides derived from canine and human CASA1 formed amyloid-like fibrils in vitro. Structural prediction suggested that the N-terminal region of CASA1 was disordered. Previously, full-length CASA1 was reported to inhibit the amyloidogenesis of other proteins; however, we demonstrated that CASA1 acquires amyloidogenicity via excessive synthesis followed by truncation of its disordered N-terminal region. By identifying a novel in vivo amyloidogenic protein in animals and revealing key mechanistic details of its associated pathology, this study provides valuable insights into the integrated understanding of related proteopathies.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Toshisuke Kaku
- Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Kaori Tsukakoshi
- Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Yoshiyuki Itoh
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Miki Hisada
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | - Rikako Kubo
- Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | | | | | - Fuyuki Kametani
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
5
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
6
|
Horvath A, Fuxreiter M, Vendruscolo M, Holt C, Carver JA. Are casein micelles extracellular condensates formed by liquid-liquid phase separation? FEBS Lett 2022; 596:2072-2085. [PMID: 35815989 DOI: 10.1002/1873-3468.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Casein micelles are extracellular polydisperse assemblies of unstructured casein proteins. Caseins are the major component of milk. Within casein micelles, casein molecules are stabilised by binding to calcium phosphate nanoclusters and, by acting as molecular chaperones, through multivalent interactions. In light of such interactions, we discuss whether casein micelles can be considered as extracellular condensates formed by liquid-liquid phase separation. We analyse the sequence, structure and interactions of caseins in comparison to proteins forming intracellular condensates. Furthermore, we review the similarities between caseins and small heat-shock proteins whose chaperone activity is linked to phase separation of proteins. By bringing these observations together, we describe a regulatory mechanism for protein condensates, as exemplified by casein micelles.
Collapse
Affiliation(s)
- Attila Horvath
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B 35131, Padova, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
7
|
Gleeson JP, Chaudhary N, Fein KC, Doerfler R, Hredzak-Showalter P, Whitehead KA. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. SCIENCE ADVANCES 2022; 8:eabm6865. [PMID: 35767604 PMCID: PMC9242445 DOI: 10.1126/sciadv.abm6865] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Breast milk is chock-full of nutrients, immunological factors, and cells that aid infant development. Maternal cells are the least studied breast milk component, and their unique properties are difficult to identify using traditional techniques. Here, we characterized the cells in mature-stage breast milk from healthy donors at the protein, gene, and transcriptome levels. Holistic analysis of flow cytometry, quantitative polymerase chain reaction, and single-cell RNA sequencing data identified the predominant cell population as epithelial with smaller populations of macrophages and T cells. Two percent of epithelial cells expressed four stem cell markers: SOX2, TRA-1-60, NANOG, and SSEA4. Furthermore, milk contained six distinct epithelial lactocyte subpopulations, including three previously unidentified subpopulations programmed toward mucosal defense and intestinal development. Pseudotime analysis delineated the differentiation pathways of epithelial progenitors. Together, these data define healthy human maternal breast milk cells and provide a basis for their application in maternal and infant medicine.
Collapse
Affiliation(s)
- John P. Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Katherine C. Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Glick VJ, Bentley-Condit VK, Power ML. Macronutrient composition of olive baboon (Papio anubis) milk: A comparison to rhesus macaque (Macaca mulatta) milk. Am J Primatol 2021; 83:e23315. [PMID: 34339526 PMCID: PMC9881339 DOI: 10.1002/ajp.23315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 01/31/2023]
Abstract
This study was designed to (1) characterize the macronutrient composition of olive baboon (Papio anubis) milk, (2) compare baboon milk composition to that of rhesus macaques (Macaca mulatta), and (3) evaluate the association between the proportion of milk energy derived from protein and relative growth rate within anthropoid primates. A single milk sample was collected from each of eight lactating olive baboons ranging between 47- and 129-days postparturition and six rhesus macaques from 15- to 92-days living at the same institution under identical management conditions. Macronutrient composition (water, fat, protein sugar, and ash) was determined using standard techniques developed at the Nutrition Laboratory at the Smithsonian National Zoological Park. Baboon milk on average contained 86.0% ± 0.6% water, 4.7% ± 0.5% fat, 1.6% ± 0.04% protein, 7.3% ± 0.07% sugar, and 0.165% ± 0.007% ash. Baboon milk gross energy (GE) averaged 0.81 ± 0.04 kcal/g with 51.9% ± 2.6% from fat, 11.8% ± 0.7% from protein, and 36.2% ± 2.0% from sugar. Baboon milk demonstrated strong similarity to milk composition of the closely phylogenetically related rhesus macaque (86.1% ± 0.3% water, 4.1% ± 0.4% fat, 1.69% ± 0.05% protein, 7.71% ± 0.08% sugar, 0.19% ± 0.01% ash, and 0.78 kcal/g). There was no statistical difference between baboon and macaque milk in the proportions of energy from fat, sugar, and protein. Baboon milk can be described as a high sugar, moderate fat, and low protein milk with moderate energy density, which is consistent with their lactation strategy characterized by frequent, on-demand nursing and relatively slow life history compared to nonprimate mammal taxa. The milk energy from protein of both baboon and macaque (12.8% ± 0.3%) milk was intermediate between the protein milk energy of platyrrhine (19.3%-23.2%) and hominoid (8.9%-12.6%) primates, consistent with their relative growth rates also being intermediate. Compared to these cercopithecid monkeys, platyrrhine primates have both higher relative growth rates and higher milk energy from protein, while apes tend to be lower in both.
Collapse
Affiliation(s)
- Virginia J. Glick
- Center for Species Survival, Smithsonian National Zoological Park & Conservation Biology Institute, Washington, District of Columbia, USA
| | | | - Michael L. Power
- Center for Species Survival, Smithsonian National Zoological Park & Conservation Biology Institute, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Holt C. A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:847-866. [PMID: 33866398 DOI: 10.1007/s00249-021-01533-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Caseins (αS1, αS2, β and κ) are the main protein fraction of bovine milk. Together with nanoclusters of amorphous calcium phosphate (CaP) and divalent cations, they combine to form a polydisperse distribution of particles called casein micelles. A casein micelle model is proposed which is consistent with the way in which intrinsically disordered proteins interact through predominantly polar, short, linear, motifs. Using the model, an expression is derived for the size distribution of casein micelles formed when caseins bind to the CaP nanoclusters and the complexes further associate with each other and the remaining mixture of free caseins. The result is a refined coat-core model in which the core is formed mainly by the nanocluster complexes and the coat is formed exclusively by the free caseins. Example calculations of the size distribution and surface composition of an average bovine milk are compared with experiment. The average size, size distribution and surface composition of the micelles is shown to depend on the affinity of the nanocluster complexes for each other in competition with their affinity for free caseins, and on the concentrations of free caseins, calcium ions and other salts in the continuous phase.
Collapse
Affiliation(s)
- Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Himschoot EA, Wenker ES, Reed EG, Sampson J, Power ML. Macronutrient composition of milk from two captive African elephant (Loxodonta africana) cows. Zoo Biol 2021; 40:192-200. [PMID: 33705586 DOI: 10.1002/zoo.21599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 11/09/2022]
Abstract
We assayed 31 milk samples collected from two African elephant cows housed at the Indianapolis Zoo across lactation (birth to calf age 973 days) for macronutrient composition (water, fat, protein, sugar, gross energy [GE], ash, calcium, and phosphorus). All assays were performed at the Smithsonian National Zoological Park Nutrition Laboratory, Washington, DC (SNZP) using standard methods developed at SNZP. Milk constituents are expressed on a weight-per-weight basis (%) and as a proportion each constituent contributes to milk energy. Calf weights were recorded, and growth rate calculated. The macronutrient composition of the African elephant milk samples was compared to previously published results for Asian elephants using analysis of covariance. African elephant milk is similar to Asian elephant milk, being moderately high in fat and energy and low in sugar. The mean values across lactation (excluding colostrum; n = 28) are 5.6 ± 0.3% crude protein, 3.1 ± 0.3% sugar, 13.0 ± 1.0% fat, and GE of 1.63 ± 0.10 kcal/g. Milk composition did not differ between cows. Milk composition significantly changed over lactation; fat and protein increased, and sugar decreased with calf age, comparable to previously reported data for African and Asian elephant milk. The proportion of milk energy from fat increased and that from sugar decreased over lactation, but the energy from protein was relatively constant. Protein contributed a higher proportion of energy to African elephant milk compared to Asian elephant milk (20.6% vs. 17.0%, p = .001). Despite this, calf growth rate was similar between the species, with the calves in this study gaining about 0.8 kg/day for the first 6 months.
Collapse
Affiliation(s)
- Elizabeth A Himschoot
- Nutrition Laboratory, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
| | - Elizabeth S Wenker
- Nutrition Laboratory, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
| | - Eda G Reed
- Nutrition Laboratory, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
| | | | - Michael L Power
- Nutrition Laboratory, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
| |
Collapse
|
11
|
Post translational modifications of milk proteins in geographically diverse goat breeds. Sci Rep 2021; 11:5619. [PMID: 33692444 PMCID: PMC7946870 DOI: 10.1038/s41598-021-85094-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Goat milk is a source of nutrition in difficult areas and has lesser allerginicity than cow milk. It is leading in the area for nutraceutical formulation and drug development using goat mammary gland as a bioreactor. Post translational modifications of a protein regulate protein function, biological activity, stabilization and interactions. The protein variants of goat milk from 10 breeds were studied for the post translational modifications by combining highly sensitive 2DE and Q-Exactive LC-MS/MS. Here we observed high levels of post translational modifications in 201 peptides of 120 goat milk proteins. The phosphosites observed for CSN2, CSN1S1, CSN1S2, CSN3 were 11P, 13P, 17P and 6P, respectively in 105 casein phosphopeptides. Whey proteins BLG and LALBA showed 19 and 4 phosphosites respectively. Post translational modification was observed in 45 low abundant non-casein milk proteins mainly associated with signal transduction, immune system, developmental biology and metabolism pathways. Pasp is reported for the first time in 47 sites. The rare conserved peptide sequence of (SSSEE) was observed in αS1 and αS2 casein. The functional roles of identified phosphopeptides included anti-microbial, DPP-IV inhibitory, anti-inflammatory and ACE inhibitory. This is first report from tropics, investigating post translational modifications in casein and non-casein goat milk proteins and studies their interactions.
Collapse
|
12
|
Wang J, Liu J, Du G, An Y, Zhao C, Zeng B. The Influence of Ca 2+ and Zn 2+ on the Amyloid Fibril Formation by β-Casein. Protein Pept Lett 2021; 27:915-922. [PMID: 32186269 DOI: 10.2174/0929866527666200318143533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The amyloid fibril formation in different tissues or organs is related to amyloidosis. The Ca2+, Zn2+ and heparan sulfate (HS) are important elements and compositions in human body, which play a key role in regulating various physiological activities. Recently, there are increasing evidence suggest that they are closely linked to the amyloid fibril formation. OBJECTIVE The effect of Ca2+ and Zn2+ on the amyloid fibril formation by β-casein was investigated in the absence and presence of HS, which was significantly to explore the relationship between the concentration changes of Ca2+ and Zn2+ and amyloid fibril formation. METHODS In this work, the influence of Ca2+ and Zn2+ on the β-casein fibril formation in the absence and presence of HS was investigated by various methods of Thioflavin T fluorescence assay, transmission electron microscopy and intrinsic fluorescence measure. RESULTS The results demonstrated that Ca2+ and Zn2+ promoted the β-casein fibril formation. The effect of Ca2+ was greater than that of Zn2+. Meanwhile, the both metal ions had stronger effects when β-casein was incubated with HS together. In addition, it was also observed that the microenvironment of β-casein was changed because the intrinsic fluorescence peaks were red-shifted on the influence of Ca2+ and Zn2+. CONCLUSION Ca2+ and Zn2+ were capable of promoting the β-casein fibril formation in the both absence and presence of HS. This work set up the foundation for further researching of the amyloidosis pathogenesis and provided new insight for us to understand relationship between the inflammation and amyloidosis.
Collapse
Affiliation(s)
- Jia Wang
- Pharmacy College, Jilin University, Changchun, China
| | - Jihua Liu
- Pharmacy College, Jilin University, Changchun, China
| | - Guangguang Du
- Pharmacy College, Jilin University, Changchun, China
| | - Yang An
- Pharmacy College, Jilin University, Changchun, China
| | - Chunfang Zhao
- Pharmacy College, Jilin University, Changchun, China
| | - Baohua Zeng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
13
|
Thorn DC, Bahraminejad E, Grosas AB, Koudelka T, Hoffmann P, Mata JP, Devlin GL, Sunde M, Ecroyd H, Holt C, Carver JA. Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk α S2-casein. Biophys Chem 2020; 270:106530. [PMID: 33545456 DOI: 10.1016/j.bpc.2020.106530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Bovine milk αS2-casein, an intrinsically disordered protein, readily forms amyloid fibrils in vitro and is implicated in the formation of amyloid fibril deposits in mammary tissue. Its two cysteine residues participate in the formation of either intra- or intermolecular disulphide bonds, generating monomer and dimer species. X-ray solution scattering measurements indicated that both forms of the protein adopt large, spherical oligomers at 20 °C. Upon incubation at 37 °C, the disulphide-linked dimer showed a significantly greater propensity to form amyloid fibrils than its monomeric counterpart. Thioflavin T fluorescence, circular dichroism and infrared spectra were consistent with one or both of the dimer isomers (in a parallel or antiparallel arrangement) being predisposed toward an ordered, amyloid-like structure. Limited proteolysis experiments indicated that the region from Ala81 to Lys113 is incorporated into the fibril core, implying that this region, which is predicted by several algorithms to be amyloidogenic, initiates fibril formation of αS2-casein. The partial conservation of the cysteine motif and the frequent occurrence of disulphide-linked dimers in mammalian milks despite the associated risk of mammary amyloidosis, suggest that the dimeric conformation of αS2-casein is a functional, yet amyloidogenic, structure.
Collapse
Affiliation(s)
- David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Tomas Koudelka
- Institute of Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Glyn L Devlin
- Victorian Health and Human Services Building Authority, Melbourne, Victoria 3000, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW 2006, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Carl Holt
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
14
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
15
|
The molecular chaperone β-casein prevents amorphous and fibrillar aggregation of α-lactalbumin by stabilisation of dynamic disorder. Biochem J 2020; 477:629-643. [PMID: 31939601 PMCID: PMC7015860 DOI: 10.1042/bcj20190638] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Deficits in protein homeostasis (proteostasis) are typified by the partial unfolding or misfolding of native proteins leading to amorphous or fibrillar aggregation, events that have been closely associated with diseases including Alzheimer's and Parkinson's diseases. Molecular chaperones are intimately involved in maintaining proteostasis, and their mechanisms of action are in part dependent on the morphology of aggregation-prone proteins. This study utilised native ion mobility–mass spectrometry to provide molecular insights into the conformational properties and dynamics of a model protein, α-lactalbumin (α-LA), which aggregates in an amorphous or amyloid fibrillar manner controlled by appropriate selection of experimental conditions. The molecular chaperone β-casein (β-CN) is effective at inhibiting amorphous and fibrillar aggregation of α-LA at sub-stoichiometric ratios, with greater efficiency against fibril formation. Analytical size-exclusion chromatography demonstrates the interaction between β-CN and amorphously aggregating α-LA is stable, forming a soluble high molecular weight complex, whilst with fibril-forming α-LA the interaction is transient. Moreover, ion mobility–mass spectrometry (IM-MS) coupled with collision-induced unfolding (CIU) revealed that α-LA monomers undergo distinct conformational transitions during the initial stages of amorphous (order to disorder) and fibrillar (disorder to order) aggregation. The structural heterogeneity of monomeric α-LA during fibrillation is reduced in the presence of β-CN along with an enhancement in stability, which provides a potential means for preventing fibril formation. Together, this study demonstrates how IM-MS and CIU can investigate the unfolding of proteins as well as examine transient and dynamic protein–chaperone interactions, and thereby provides detailed insight into the mechanism of chaperone action and proteostasis mechanisms.
Collapse
|
16
|
Chinak OA, Shernyukov AV, Ovcherenko SS, Sviridov EA, Golyshev VM, Fomin AS, Pyshnaya IA, Kuligina EV, Richter VA, Bagryanskaya EG. Structural and Aggregation Features of a Human κ-Casein Fragment with Antitumor and Cell-Penetrating Properties. Molecules 2019; 24:E2919. [PMID: 31408975 PMCID: PMC6721048 DOI: 10.3390/molecules24162919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins play a central role in dynamic regulatory and assembly processes in the cell. Recently, a human κ-casein proteolytic fragment called lactaptin (8.6 kDa) was found to induce apoptosis of human breast adenocarcinoma MCF-7 and MDA-MB-231 cells with no cytotoxic activity toward normal cells. Earlier, we had designed some recombinant analogs of lactaptin and compared their biological activity. Among these analogs, RL2 has the highest antitumor activity, but the amino acid residues and secondary structures that are responsible for RL2's activity remain unclear. To elucidate the structure-activity relations of RL2, we studied the structural and aggregation features of this fairly large intrinsically disordered fragment of human milk κ-casein by a combination of physicochemical methods: NMR, paramagnetic relaxation enhancement (PRE), Electron Paramagnetic Resonance (EPR), circular dichroism, dynamic light scattering, atomic force microscopy, and a cytotoxic activity assay. It was found that in solution, RL2 exists as stand-alone monomeric particles and large aggregates. Whereas the disulfide-bonded homodimer turned out to be more prone to assembly into large aggregates, the monomer predominantly forms single particles. NMR relaxation analysis of spin-labeled RL2 showed that the RL2 N-terminal region, which is essential not only for multimerization of the peptide but also for its proapoptotic action on cancer cells, is more ordered than its C-terminal counterpart and contains a site with a propensity for α-helical secondary structure.
Collapse
Affiliation(s)
- Olga A Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Evgeniy A Sviridov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexander S Fomin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena V Kuligina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Vladimir A Richter
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|
17
|
Sequence characteristics responsible for protein‐protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heat‐shock proteins. Biopolymers 2019; 110:e23319. [DOI: 10.1002/bip.23319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
|
18
|
Wenker ES, Himschoot EA, Henry B, Toddes B, Power ML. Macronutrient composition of longitudinal milk samples from captive aardvarks (
Orycteropus afer
). Zoo Biol 2019; 38:405-413. [DOI: 10.1002/zoo.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Elizabeth S. Wenker
- Nutrition LaboratorySmithsonian Conservation Biology Institute Washington District of Columbia
| | - Elizabeth A. Himschoot
- Nutrition LaboratorySmithsonian Conservation Biology Institute Washington District of Columbia
| | - Barbara Henry
- Department of NutritionCincinnati Zoo and Botanical Garden Cincinnati Ohio
| | | | - Michael L. Power
- Nutrition LaboratorySmithsonian Conservation Biology Institute Washington District of Columbia
| |
Collapse
|
19
|
Crowley SV, Kelly AL, O'Mahony JA, Lucey JA. Colloidal properties of protein complexes formed in β-casein concentrate solutions as influenced by heating and cooling in the presence of different solutes. Colloids Surf B Biointerfaces 2019; 174:343-351. [PMID: 30472620 DOI: 10.1016/j.colsurfb.2018.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/22/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
Abstract
Monomeric bovine β-casein self-associates into micelles under appropriate conditions of protein concentration, serum composition and temperature. The present study investigated self-association characteristics of a β-casein concentrate (BCC) prepared from milk at pilot-scale using membrane filtration. The BCC had a casein:whey protein ratio of 77:23, with ∼95% of casein consisting of β-casein, and the remainder being mostly κ-CN. BCC was reconstituted to 1.2% protein (a typical level in infant formula) in various liquid media at pH 6.8 and incubated at different temperatures from 4 to 63 °C for 30 min. Self-association of β-casein on heating was thermo-reversible in deionised water, lactose (4, 6 or 8%) or calcium (9 mM) solutions. In most serum phases, BCC became highly opaque after incubation at 63 °C, but clarified rapidly during cooling to 25 °C. However, in simulated milk ultrafiltrate (SMUF), which has a high ionic strength and is supersaturated in calcium phosphate (CaP), BCC remained opaque during cooling to 25 °C, and retained residual turbidity after 15 h of holding at 4 °C; if SMUF was prepared without phosphate then turbidity development in BCC solutions was markedly reduced. The complexes responsible for this turbidity development were successfully dissociated with 50 mM trisodium citrate. Analysis of pH during heating and holding at 60 °C indicated that SMUF acidified continuously under the period of study, while acidification in BCC/SMUF mixtures terminated after a short period, indicating that the type of CaP formed on heating is altered in the presence of BCC. This study demonstrates that BCC ingredients exhibit pronounced temperature-dependant changes in colloidal properties that are strongly affected by the presence of minerals commonly found in nutritional product formulations.
Collapse
Affiliation(s)
- Shane V Crowley
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; Department of Food Science, University of Wisconsin-Madison, WI, USA.
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - John A Lucey
- Department of Food Science, University of Wisconsin-Madison, WI, USA; Center for Dairy Research, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
20
|
Carver JA, Holt C. Functional and dysfunctional folding, association and aggregation of caseins. PROTEIN MISFOLDING 2019; 118:163-216. [DOI: 10.1016/bs.apcsb.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Lam E, McKinnon I, Marchesseau S, Otter D, Zhou P, Hemar Y. The effect of transglutaminase on reconstituted skim milks at alkaline pH. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Carver JA, Ecroyd H, Truscott RJW, Thorn DC, Holt C. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Acc Chem Res 2018; 51:745-752. [PMID: 29442498 DOI: 10.1021/acs.accounts.7b00250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular chaperone proteins perform a diversity of roles inside and outside the cell. One of the most important is the stabilization of misfolding proteins to prevent their aggregation, a process that is potentially detrimental to cell viability. Diseases such as Alzheimer's, Parkinson's, and cataract are characterized by the accumulation of protein aggregates. In vivo, many proteins are metastable and therefore under mild destabilizing conditions have an inherent tendency to misfold, aggregate, and hence lose functionality. As a result, protein levels are tightly regulated inside and outside the cell. Protein homeostasis, or proteostasis, describes the network of biological pathways that ensures the proteome remains folded and functional. Proteostasis is a major factor in maintaining cell, tissue, and organismal viability. We have extensively investigated the structure and function of intra- and extracellular molecular chaperones that operate in an ATP-independent manner to stabilize proteins and prevent their misfolding and subsequent aggregation into amorphous particles or highly ordered amyloid fibrils. These types of chaperones are therefore crucial in maintaining proteostasis under normal and stress (e.g., elevated temperature) conditions. Despite their lack of sequence similarity, they exhibit many common features, i.e., extensive structural disorder, dynamism, malleability, heterogeneity, oligomerization, and similar mechanisms of chaperone action. In this Account, we concentrate on the chaperone roles of α-crystallins and caseins, the predominant proteins in the eye lens and milk, respectively. Intracellularly, the principal ATP-independent chaperones are the small heat-shock proteins (sHsps). In vivo, sHsps are the first line of defense in preventing intracellular protein aggregation. The lens proteins αA- and αB-crystallin are sHsps. They play a crucial role in maintaining solubility of the crystallins (including themselves) with age and hence in lens proteostasis and, ultimately, lens transparency. As there is little metabolic activity and no protein turnover in the lens, crystallins are very long lived proteins. Lens proteostasis is therefore very different to that in normal, metabolically active cells. Crystallins undergo extensive post-translational modification (PTM), including deamidation, racemization, phosphorylation, and truncation, which can alter their stability. Despite this, the lens remains transparent for tens of years, implying that lens proteostasis is intimately integrated with crystallin PTMs. Many PTMs do not significantly alter crystallin stability, solubility, and functionality, which thereby facilitates lens transparency. In the long term, however, extensive accumulation of crystallin PTMs leads to large-scale crystallin aggregation, lens opacification, and cataract formation. Extracellularly, various ATP-independent molecular chaperones exist that exhibit sHsp-like structural and functional features. For example, caseins, the major milk proteins, exhibit chaperone ability by inhibiting the amorphous and amyloid fibrillar aggregation of a diversity of destabilized proteins. Caseins maintain proteostasis within milk by preventing deleterious casein amyloid fibril formation via incorporation of thousands of individual caseins into an amorphous structure known as the casein micelle. Hundreds of nanoclusters of calcium phosphate are sequestered within each casein micelle through interactions with short, highly phosphorylated casein sequences. This results in a stable biofluid that contains a high concentration of potentially amyloidogenic caseins and concentrations of calcium and phosphate that can be far in excess of the solubility of calcium phosphate. Casein micelle formation therefore performs vital roles in neonatal nutrition and calcium homeostasis in the mammary gland.
Collapse
Affiliation(s)
- John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - David C. Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
23
|
Power ML, Watts SM, Murtough KL, Knight FM. Macronutrient composition of milk of captive nine-banded armadillos (Dasypus novemcinctus). J Mammal 2018. [DOI: 10.1093/jmammal/gyy011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael L Power
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - S Michelle Watts
- Division of Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA
| | - Katie L Murtough
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
- University of Maryland College Park, College Park, MD, USA
| | - Frank M Knight
- Division of Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA
| |
Collapse
|
24
|
Integration of GWAS, pathway and network analyses reveals novel mechanistic insights into the synthesis of milk proteins in dairy cows. Sci Rep 2018; 8:566. [PMID: 29330500 PMCID: PMC5766549 DOI: 10.1038/s41598-017-18916-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
The quantities and proportions of protein fractions have notable effects on the nutritional and technological value of milk. Although much is known about the effects of genetic variants on milk proteins, the complex relationships among the set of genes and pathways regulating the different protein fractions synthesis and secretion into milk in dairy cows are still not completely understood. We conducted genome-wide association studies (GWAS) for milk nitrogen fractions in a cohort of 1,011 Brown Swiss cows, which uncovered 170 significant single nucleotide polymorphism (SNPs), mostly located on BTA6 and BTA11. Gene-set analysis and the network-based Associated Weight Matrix approach revealed that the milk proteins associated genes were involved in several biological functions, particularly ion and cation transmembrane transporter activity and neuronal and hormone signalling, according to the structure and function of casein micelles. Deeper analysis of the transcription factors and their predicted target genes within the network revealed that GFI1B, ZNF407 and NR5A1 might act as master regulators of milk protein synthesis and secretion. The information acquired provides novel insight into the regulatory mechanisms controlling milk protein synthesis and secretion in bovine mammary gland and may be useful in breeding programmes aimed at improving milk nutritional and/or technological properties.
Collapse
|
25
|
Lowe AD, Bawazeer S, Watson DG, McGill S, Burchmore RJS, Pomeroy PPP, Kennedy MW. Rapid changes in Atlantic grey seal milk from birth to weaning - immune factors and indicators of metabolic strain. Sci Rep 2017; 7:16093. [PMID: 29170469 PMCID: PMC5700954 DOI: 10.1038/s41598-017-16187-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.
Collapse
Affiliation(s)
- Amanda D Lowe
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Sami Bawazeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Suzanne McGill
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - P P Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
26
|
Day L, Raynes J, Leis A, Liu L, Williams R. Probing the internal and external micelle structures of differently sized casein micelles from individual cows milk by dynamic light and small-angle X-ray scattering. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lam E, Holt C, Edwards P, McKinnon I, Otter D, Li N, Hemar Y. The effect of transglutaminase treatment on the physico-chemical properties of skim milk with added ethylenediaminetetraacetic acid. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Carver JA, Grosas AB, Ecroyd H, Quinlan RA. The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress Chaperones 2017; 22:627-638. [PMID: 28391594 PMCID: PMC5465038 DOI: 10.1007/s12192-017-0789-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023] Open
Abstract
Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.
Collapse
Affiliation(s)
- John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Heath Ecroyd
- School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Roy A Quinlan
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
29
|
|
30
|
Liu J, Dehle FC, Liu Y, Bahraminejad E, Ecroyd H, Thorn DC, Carver JA. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1335-1343. [PMID: 26807595 DOI: 10.1021/acs.jafc.5b04977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When not incorporated into the casein micelle, κ-casein, a major milk protein, rapidly forms amyloid fibrils at physiological pH and temperature. In this study, the effects of milk components (calcium, lactose, lipids, and heparan sulfate) and crowding agents on reduced and carboxymethylated (RCM) κ-casein fibril formation was investigated using far-UV circular dichroism spectroscopy, thioflavin T binding assays, and transmission electron microscopy. Longer-chain phosphatidylcholine lipids, which form the lining of milk ducts and milk fat globules, enhanced RCM κ-casein fibril formation irrespective of whether the lipids were in a monomeric or micellar state, whereas shorter-chain phospholipids and triglycerides had little effect. Heparan sulfate, a component of the milk fat globule membrane and catalyst of amyloid deposition in extracellular tissue, had little effect on the kinetics of RCM κ-casein fibril formation. Major nutritional components such as calcium and lactose also had no significant effect. Macromolecular crowding enhances protein-protein interactions, but in contrast to other fibril-forming species, the extent of RCM κ-casein fibril formation was reduced by the presence of a variety of crowding agents. These data are consistent with a mechanism of κ-casein fibril formation in which the rate-determining step is dissociation from the oligomer to give the highly amyloidogenic monomer. We conclude that the interaction of κ-casein with membrane-associated phospholipids along its secretory pathway may contribute to the development of amyloid deposits in mammary tissue. However, the formation of spherical oligomers such as casein micelles is favored over amyloid fibrils in the crowded environment of milk, within which the occurrence of amyloid fibrils is low.
Collapse
Affiliation(s)
- Jihua Liu
- Pharmacy College, Jilin University , Changchun, Jilin Province 130021, China
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Francis C Dehle
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Yanqin Liu
- Department of Chemistry, School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Elmira Bahraminejad
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health & Medical Research Institute, University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University , Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
31
|
Zhang T, Zhang R, Zhang L, Zhang Z, Hou R, Wang H, Loeffler IK, Watson DG, Kennedy MW. Changes in the Milk Metabolome of the Giant Panda (Ailuropoda melanoleuca) with Time after Birth--Three Phases in Early Lactation and Progressive Individual Differences. PLoS One 2015; 10:e0143417. [PMID: 26630345 PMCID: PMC4668050 DOI: 10.1371/journal.pone.0143417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth.
Collapse
Affiliation(s)
- Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
| | - Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - Hairui Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - I. Kati Loeffler
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Northern Suburb, Chengdu, Sichuan Province, P.R. China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, Scotland, United Kingdom
| | - Malcolm W. Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Griffiths K, Hou R, Wang H, Zhang Z, Zhang L, Zhang T, Watson DG, Burchmore RJS, Loeffler IK, Kennedy MW. Prolonged transition time between colostrum and mature milk in a bear, the giant panda, Ailuropoda melanoleuca. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150395. [PMID: 26587250 PMCID: PMC4632522 DOI: 10.1098/rsos.150395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20-30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates.
Collapse
Affiliation(s)
- Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham err Building, Glasgow, G12 8QQ, UK
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, People’s Republic of China
| | - Hairui Wang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, People’s Republic of China
| | - Zhihe Zhang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, People’s Republic of China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, People’s Republic of China
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Richard J. S. Burchmore
- Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, UK
| | - I. Kati Loeffler
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, People’s Republic of China
| | - Malcolm W. Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham err Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
33
|
|
34
|
Day L, Williams RPW, Otter D, Augustin MA. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows. J Dairy Sci 2015; 98:3633-44. [PMID: 25828659 DOI: 10.3168/jds.2014-9285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor.
Collapse
Affiliation(s)
- L Day
- CSIRO Food and Nutrition Flagship, 671 Sneydes Road, Werribee, VIC 3030, Australia; AgResearch Ltd. Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | - R P W Williams
- CSIRO Food and Nutrition Flagship, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - D Otter
- AgResearch Ltd. Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand
| | - M A Augustin
- CSIRO Food and Nutrition Flagship, 671 Sneydes Road, Werribee, VIC 3030, Australia
| |
Collapse
|
35
|
Bijl E, van Valenberg HJF, Huppertz T, van Hooijdonk ACM, Bovenhuis H. Phosphorylation of αS1-casein is regulated by different genes. J Dairy Sci 2014; 97:7240-6. [PMID: 25200775 DOI: 10.3168/jds.2014-8061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022]
Abstract
Casein phosphorylation is a posttranslational modification catalyzed by kinase enzymes that attach phosphate groups to specific AA in the protein sequence. This modification is one of the key factors responsible for the stabilization of calcium phosphate nanoclusters in casein micelles and for the internal structure of the casein micelles. α(S1)-Casein (α(s1)-CN) is of special interest because it constitutes up to 40% of the total casein fraction in milk, and it has 2 common phosphorylation states, with 8 (α(S1)-CN-8P) and 9 (α(S1)-CN-9P) phosphorylated serine residues. Factors affecting this variation in the degree of phosphorylation are not currently known. The objective of this research was to determine the genetic background of α(S1)-CN-8P and α(S1)-CN-9P. The genetic and phenotypic correlation between α(S1)-CN-8P and α(S1)-CN-9P was low (0.18 and 0.19, respectively). This low genetic correlation suggests a different genetic background. These differences were further investigated by means of a genome-wide association study, which showed that both α(S1)-CN-8P and α(S1)-CN-9P were affected by a region on Bos taurus autosome (BTA) 6, but only α(S1)-CN-8P was affected by a region on BTA11 that contains the gene that encodes for β-lactoglobulin (β-LG), and only α(S1)-CN-9P was affected by a region on BTA14 that contains the diacylglycerol acyltransferase 1 (DGAT1) gene. Estimated effects of β-LG protein genotypes showed that only α(S1)-CN-8P was associated with the β-LG A/B polymorphism (g.1772G>A and g.3054C>T); the AA genotype of β-LG was associated with a lower concentration of α(S1)-CN-8P (-0.32% wt/wt) than the BB genotype (+0.41% wt/wt). Estimated effects of DGAT1 K232A genotypes showed that only α(S1)-CN-9P was associated with the DGAT1 gene polymorphism; DGAT1 AA genotype was associated with a higher α(S1)-CN-9P concentration (+0.53% wt/wt) than the DGAT1 KK genotype (-0.44% wt/wt). The results give insight in phosphorylation of α(S1)-CN-8P and α(S1)-CN-9P, which seem to be regulated by a different set of genes.
Collapse
Affiliation(s)
- E Bijl
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - H J F van Valenberg
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - T Huppertz
- NIZO Food Research, PO Box 20, 6710 BA, Ede, the Netherlands
| | - A C M van Hooijdonk
- Dairy Science and Technology Group, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - H Bovenhuis
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
36
|
De Kruif CG. The structure of casein micelles: a review of small-angle scattering data. J Appl Crystallogr 2014. [DOI: 10.1107/s1600576714014563] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Casein micelles are association colloids found in mammalian milk. Small-angle scattering data on casein micelles have been collected and are reviewed, including contrast variation. The scattering spectra are quite consistent at medium and high scattering wavevectors [Q= 4πnsin(θ/2)/λ, wherenis the refractive index, λ is the wavelength and θ is the scattering angle]. Differences are noted, especially at lowQ, which may be attributed to sample preparation, particularly the presence of residual fat globules. Scattering spectra are calculated using a generalized scattering function and a composite particle model, and it is possible to give a self-consistent calculation of the spectra using one set of parameters for all contrasts in both small-angle X-ray scattering and small-angle neutron scattering. The data and calculations show that a casein micelle is a homogeneous particle. The polydispersity in size is about 35% and therefore experimental data on particle size depend very much on the method used. A `reference set' of numbers is proposed for casein micelles from pooled cows' milk, which may be given as follows: β = 0.35,R10= 60 nm,Rg= 110 nm,Rhydr= 96 nm (at 90° scattering). Often, use is made of dynamic light scattering (DLS), which gives anRhydr= 〈R6〉/〈R5〉 of 80–100 nm at 90° scattering. Values will be considerably higher at low(er) angles, and lower at backscattering angles, which are currently used in many DLS setups. Larger values are probably due to clusters of casein micelles or residual fat. The structure of a casein micelle can best be described as a protein matrix in which calcium phosphate clusters (2 nm radius) are dispersed. The protein matrix has density variations on a similar length scale. The casein micelle–submicelle model and models with large voids and channels are highly improbable.
Collapse
|
37
|
|
38
|
Holt C, Lenton S, Nylander T, Sørensen ES, Teixeira SC. Mineralisation of soft and hard tissues and the stability of biofluids. J Struct Biol 2014; 185:383-96. [DOI: 10.1016/j.jsb.2013.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/29/2013] [Accepted: 11/30/2013] [Indexed: 02/04/2023]
|
39
|
Sun Y, Liang X, Zhao Y, Fan J. Aggregation-Induced Emission of 1,8-NaphthalimideCasein Micelle: Investigation by Synchronous Spectrographic Method. Chem Biodivers 2013; 10:1597-605. [DOI: 10.1002/cbdv.201200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Indexed: 01/03/2023]
|
40
|
Holt C, Carver JA, Ecroyd H, Thorn DC. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 2013; 96:6127-46. [PMID: 23958008 DOI: 10.3168/jds.2013-6831] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
Collapse
Affiliation(s)
- C Holt
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Holt C. Unfolded phosphopolypeptides enable soft and hard tissues to coexist in the same organism with relative ease. Curr Opin Struct Biol 2013; 23:420-5. [DOI: 10.1016/j.sbi.2013.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022]
|
42
|
Tas AC. X-ray-amorphous calcium phosphate (ACP) synthesis in a simple biomineralization medium. J Mater Chem B 2013; 1:4511-4520. [DOI: 10.1039/c3tb20854k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ossowski S, Jackson A, Obiols-Rabasa M, Holt C, Lenton S, Porcar L, Paulsson M, Nylander T. Aggregation behavior of bovine κ- and β-casein studied with small angle neutron scattering, light scattering, and cryogenic transmission electron microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13577-13589. [PMID: 22924693 DOI: 10.1021/la302416p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the native bovine casein micelle the calcium sensitive caseins (α(S1)-, α(S2)- and β-casein) sequester amorphous calcium phosphate in nanometer-sized clusters, whereas the calcium-insensitive κ-casein limits the growth of the micelle. In this paper, we further investigate the self-association of κ- and β-casein, which are two of the key proteins that control the substructure of the milk casein micelle, using neutron and light scattering techniques and cryogenic transmission electron microscopy. Results demonstrate that κ-casein can, apart from the known self-assembly, form amyloid-like fibrils already at temperatures of 25 °C when subject to agitation. This extended aggregation behavior of κ-casein is inhibited by β-casein, as reported by others. These findings have implications for the structure and stability of casein micelles. The neutron scattering data was used to gain information on the self-assembly structure of κ-casein. β-Casein shows similar self-association behavior as κ-casein, but unlike κ-casein, the self-association exhibits temperature dependence within the studied temperatures (6 and 25 °C). Here, we will discuss our extended study of the known self-assembly of casein in the context of the fibrillation of κ-casein.
Collapse
Affiliation(s)
- Sofie Ossowski
- Division of Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|