1
|
Tataru D, De Leon M, Dutton S, Machado Perez F, Rendahl A, Ferris KG. Fluctuating selection in a monkeyflower hybrid zone. Evol Lett 2025; 9:77-88. [PMID: 39906586 PMCID: PMC11790225 DOI: 10.1093/evlett/qrae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 02/06/2025] Open
Abstract
While hybridization was viewed as a hindrance to adaptation and speciation by early evolutionary biologists, recent studies have demonstrated the importance of hybridization in facilitating evolutionary processes. However, it is still not well-known what role spatial and temporal variation in natural selection play in the maintenance of naturally occurring hybrid zones. To identify whether hybridization is adaptive between two closely related monkeyflower species, Mimulus guttatus and Mimulus laciniatus, we performed repeated reciprocal transplants between natural hybrid and pure species' populations. We planted parental genotypes along with multiple experimental hybrid generations in a dry (2021) and extremely wet (2023) year in the Sierra Nevada, CA. By taking fine-scale environmental measurements, we found that the environment of the hybrid zone is more similar to M. laciniatus's seasonally dry rocky outcrop habitat than M. guttatus's moist meadows. In our transplants hybridization does not appear to be maintained by a consistent fitness advantage of hybrids over parental species in hybrid zones, but rather a lack of strong selection against hybrids. We also found higher fitness of the drought-adapted species, M. laciniatus, than M. guttatus in both species' habitats, as well as phenotypic selection for M. laciniatus-like traits in the hybrid habitat in the dry year of our experiment. These findings suggest that in this system, hybridization might function to introduce drought-adapted traits and genes from M. laciniatus into M. guttatus, specifically in years with limited soil moisture. However, we also find evidence of genetic incompatibilities in second generation hybrids in the wetter year, which may balance a selective advantage of M. laciniatus introgression. Therefore, we find that hybridization in this system is both potentially adaptive and costly, and that the interaction of positive and negative selection likely determines patterns of gene flow between these Mimulus species.
Collapse
Affiliation(s)
- Diana Tataru
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Max De Leon
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Spencer Dutton
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Fidel Machado Perez
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, United States
| | - Alexander Rendahl
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Kathleen G Ferris
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
2
|
Duitsman AP, Bomar AM, Powell J, Dyer KA. Postmating prezygotic isolation occurs at two levels of divergence in Drosophila recens and D. subquinaria. J Evol Biol 2025; 38:202-213. [PMID: 39584442 DOI: 10.1093/jeb/voae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Identifying the presence and strength of reproductive isolating barriers is necessary to understand how species form and then remain distinct in the face of ongoing gene flow. Here, we study reproductive isolation at two stages of the speciation process in the closely related mushroom-feeding species Drosophila recens and Drosophila subquinaria. We assess 3 isolating barriers that occur after mating, including the number of eggs laid, the proportion of eggs laid that hatched, and the number of adult offspring from a single mating. First, all 3 reproductive barriers are present between D. recens females and D. subquinaria males, which are at the late stages of speciation but still produce fertile daughters through which gene flow can occur. There is no evidence for geographic variation in any of these traits, concurrent with patterns of behavioural isolation. Second, all 3 of these reproductive barriers are strong between geographically distant conspecific populations of D. subquinaria, which are in the early stages of speciation and show genetic differentiation and asymmetric behavioural discrimination. The reduction in the number of eggs laid is asymmetric, consistent with patterns in behavioural isolation, and suggests the evolution of postmating prezygotic isolation due to cascade reinforcement against mating with D. recens. In summary, not only may postmating prezygotic reproductive barriers help maintain isolation between D. recens and D. subquinaria, but they may also drive the earliest stages of isolation within D. subquinaria.
Collapse
Affiliation(s)
| | - Adam M Bomar
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Jerbrea Powell
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Sun PW, Chang JT, Luo MX, Chao CT, Du FK, Liao PC. In situ diversification and adaptive introgression in Taiwanese Scutellaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39844615 DOI: 10.1111/plb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Island habitats provide unique opportunities to study speciation. Recent work indicates that both ex situ origination and in situ speciation contribute to island species diversity. However, clear evidence of local adaptation of endemic plant species on islands requires in-depth studies, which are scarce. This study underscores the importance of local adaptation in maintaining species boundaries by examining how adaptive introgression, hybridization, and local adaptation contribute to genetic variation in island species. Multilocus genome scanning of 51 nuclear genes was used to investigate the evolutionary relationships of the Scutellaria species complex on Taiwan Island and assess the role of in situ diversification in generating high endemism and genetic diversity. Interspecies introgressions were detected by phylogenetic networks and ABBA-BABA-based analysis, suggesting ongoing or recent speciation processes. Coalescent-based simulation identified hybrid speciation in Scutellaria taiwanensis and Scutellaria hsiehii, with evidence of hybridization between more than two parental species. Genotype-environment association studies revealed that the influence of climate, particularly precipitation- and temperature-related factors, contributed to adaptive genetic divergence between species. Additionally, adaptive introgression related to environmental pressures that may have facilitated the colonization of new island habitats were identified. This research illustrates how hybridization, introgression, and adaptation shaped the evolutionary histories and divergence of this island-endemic plant species complex and sheds light on the multifaceted mechanisms of speciation on semi-isolated islands.
Collapse
Affiliation(s)
- P-W Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - J-T Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - M-X Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-T Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - F K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - P-C Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Mastrantonio V, Porretta D, Liberati F, Bisconti R, Castrignanò T, Canestrelli D. De novo transcriptome assembly of the Mediterranean sea-rock pool mosquitoes Aedes mariae and Aedes zammitii. Sci Data 2025; 12:115. [PMID: 39833234 PMCID: PMC11746941 DOI: 10.1038/s41597-025-04393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Understanding the genomic consequences of hybridization is an essential research focus in global change biology. Species adapted to rapidly changing environments can offer valuable, yet largely underexplored insights in this context. Here, we present the first de novo transcriptomes of the sea-rock pools mosquitoes Aedes mariae and Aedes zammitii, two species adapted to highly variable habitats. Using RNA-seq data obtained from larval stages, we assembled and annotated 95,059,578 reads for Ae. mariae and 101,050,236 reads for Ae. zammitii, detecting 49,352 transcripts with N50 of 2,615 for the former and 43,461 transcripts with N50 of 2,570 for the latter. Validation by BUSCO confirmed the high quality of our resources. Homology alignments of predicted ORFs showed that 21,842 sequences from Ae. mariae and 21,944 sequences from Ae. zammitii mapped to the Nr, SwissProt, and TrEMBL databases, while 19,208 and 19,393 predicted ORFs, respectively, were functionally annotated using the COG and KEGG databases. These high-quality transcriptomes will provide valuable resources to investigate the role of hybridization in species adaptation to changing environments.
Collapse
Affiliation(s)
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Franco Liberati
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Roberta Bisconti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy.
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| |
Collapse
|
5
|
Báčová A, Lucas Lledó JI, Eliášová K, Neradilová S, Stronen AV, Caniglia R, Galaverni M, Fabbri E, Mattucci F, Boyko A, Hulva P, Černá Bolfíková B. Genomic Rewilding of Domestic Animals: The Role of Hybridization and Selection in Wolfdog Breeds. Genes (Basel) 2025; 16:102. [PMID: 39858649 PMCID: PMC11764532 DOI: 10.3390/genes16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The domestication of the grey wolf (Canis lupus) and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). Methods: We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago. Results: Our findings highlight that hybridization can increase genetic variability and mitigate the effects of inbreeding, as evidenced by the observed heterozygosity levels in both wolfdog breeds. However, the SAW genome revealed a higher coefficient of inbreeding and longer runs of homozygosity compared to the CSW, reflecting significant inbreeding during its development. Discriminant Analysis of Principal Components and fixation index analyses demonstrate that the CSW exhibits closer genetic proximity to the GSH than the SAW, likely due to differences in the numbers of GSHs used during their creation. Maximum likelihood clustering further confirmed clear genetic differentiation between these hybrid breeds and their respective ancestors, while shared ancestral polymorphism was detectable in all populations. Conclusions: These results highlight the role of controlled hybridization with captive-bred wolves and peculiar breeding strategies in shaping the genetic structure of wolfdog breeds. To ensure the long-term genetic health of these breeds, it is recommended to promote adequate and sustainable breeding practices to maintain genetic diversity, minimize inbreeding, and incorporate the careful selection of unrelated individuals from diverse lineages, while avoiding additional, uncontrolled crossings with wild wolves.
Collapse
Affiliation(s)
- Alžběta Báčová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (A.B.)
| | - José Ignacio Lucas Lledó
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedràtic José Beltrán 2, 46980 Paterna, Spain;
| | - Kristýna Eliášová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (A.B.)
- Department of Zoology, Charles University, Viničná 7, 12843 Prague, Czech Republic;
| | - Silvie Neradilová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (A.B.)
| | - Astrid Vik Stronen
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell’Emilia, Italy (F.M.)
| | | | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell’Emilia, Italy (F.M.)
| | - Frederica Mattucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell’Emilia, Italy (F.M.)
| | - Adam Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Pavel Hulva
- Department of Zoology, Charles University, Viničná 7, 12843 Prague, Czech Republic;
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (A.B.)
| |
Collapse
|
6
|
Sasikumar J, Shaikh HA, Naik B, Laha S, Das SP. Emergence of fungal hybrids - Potential threat to humans. Microb Pathog 2025; 200:107278. [PMID: 39805347 DOI: 10.1016/j.micpath.2025.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer. Genetic mating barriers, changes in ploidy, chromosomal instability, and genomic diversity influence hybridization. These factors directly impact the fitness and adaptation of hybrid offspring. Epigenetic factors, including DNA methylation, histone modifications, non-coding RNAs, and chromatin remodelling, play a role in post-mating isolation in hybrids. In addition to all these mechanisms, successful hybridization in fungi is ensured by cellular mechanisms like mitochondrial inheritance, transposable elements, and other genome conversion mechanisms. These mechanisms support hybrid life and enhance the virulence and pathogenicity of fungal hybrids, which provoke diseases in host organisms. Recent advancements in sequencing have uncovered fungal hybrids in pathogens like Aspergillus, Candida, and Cryptococcus. Examples of these hybrids, such as Aspergillus latus, Candida metapsilosis, and Cryptococcus neoformans, induce severe human infections. Identifying fungal hybrids is challenging due to their altered genome traits. ITS sequencing has emerged as a promising method for diagnosing these hybrids. To prevent the emergence of novel hybrid fungal pathogens, it is crucial to develop effective diagnostic techniques and closely monitor pathogenic fungal populations for signs of hybridization. This comprehensive review delves into various facts about fungal hybridization, including its causes, genetic outcomes, barriers, diagnostic strategies, and examples of emerging fungal hybrids. The review emphasises the potential threat that fungal hybrids pose to human health and highlights their clinical significance.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Heena Azhar Shaikh
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
7
|
Gunn JC, Clements SJ, Adams G, Sterling EM, Moore MJ, Volkers TN, Eggert LS. Phenotypic homogenization and potential fitness constraints following non-native introgression in an endemic sportfish. J Evol Biol 2025; 38:94-110. [PMID: 39485793 DOI: 10.1093/jeb/voae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Introgressive hybridization may lead to contrasting evolutionary outcomes that are difficult to predict since they depend on the fitness effects of endogenous genomic interactions and environmental factors. Conservation of endemic biodiversity may be more effective with require direct measurement of introgressed ancestry and fitness in wild populations, especially for keystone taxa at risk of hybridization following species introductions. We assessed the relationship of non-native ancestry with growth and body condition in the basin-restricted Neosho Bass (Micropterus velox; NB), focussing on two streams in the NB native range that are admixed extensively with non-native Smallmouth Bass (M. dolomieu; SMB). We quantified the genetic composition of 116 fish from Big Sugar Creek (N = 46) and Elk River (N = 70) at 14 microsatellite loci. Using back-calculated total length-at-age estimated from sagittal otoliths, we assessed whether genetic ancestry explained variation in von Bertalanffy growth model parameters, accounting for sex and stream effects. We then assessed the relationship between ancestry and body condition. We found no differences in growth parameters by sex, stream, or ancestry, suggesting phenotypic homogenization which could be mediated by selection on body size. We found a negative correlation between SMB ancestry and condition, including lower condition in Big Sugar Creek, possibly reflecting a trade-off between maximum length and condition with respect to overall fitness. We show that ongoing non-native introgression, which may be augmented by anthropogenic SMB introductions, may attenuate evolutionary differentiation between species and directly influence fitness, possibly having critical implications for long-term persistence and management of adaptive potential in a popular and ecologically important endemic sportfish.
Collapse
Affiliation(s)
- Joe C Gunn
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sarah J Clements
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME 04469USA
| | - Grant Adams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195USA
- Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA 98115, USA
| | - Edward M Sterling
- Department of Fish and Aquatic Conservation, U.S. Fish and Wildlife Service, Columbia, MO 65203, USA
| | - Michael J Moore
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Taylor N Volkers
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lori S Eggert
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Kuciński M, Trzeciak P, Pirtań Z, Jóźwiak W, Ocalewicz K. The phenotype, sex ratio and gonadal development in triploid hybrids of rainbow trout (Oncorhynchus mykiss) ♀ and brook trout (Salvelinus fontinalis) ♂. Anim Reprod Sci 2025; 272:107659. [PMID: 39631249 DOI: 10.1016/j.anireprosci.2024.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The phenotype, genetic sex ratio and gonadal development characteristics were evaluated in randomly selected juvenile (15 months old), sub-adult (22 months old) and adult (30 months old) triploid hybrids of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). The examined fish originated from the family produced by application High Hydrostatic Pressure (HHP) shock (9500 psi for 5 minutes, applied 35 minutes post-fertilization at 10°C) to eggs stripped from five rainbow trout females and fertilized with sperm of two brook trout males. After hatching, all fish were reared under the same conditions for three years. The ploidy level and hybrid status of the fish were confirmed through cytogenetic analysis and DNA genotyping. Three distinct phenotypes; trout-like (Tr-l) phenotype, salmon-like (Sa-l) phenotype and intermediate (Tr/Sa-l) phenotype, with the following frequencies: f= 50.8 %, f= 31.7 % and f= 17.5 %, respectively, were observed among the sampled specimens. Genetic males exclusively detected among individuals with Tr-l phenotype developed macroscopically visible and histologically functional testes in their second year of life, representing the lowest value for the aquaculture production. A comparable proportion of males and females was recorded among individuals with Sa-l and Tr/Sa-l phenotypes. Males with these phenotypes developed macroscopically distinguishable and histologically functional testes in their third year of life. In the genetic males, underdeveloped intersex or completely reduced gonads were recorded. This study revealed that individuals with Sa-l phenotype represent the greatest value for commercial production because of their unique appearance and complete sterility (females) or delayed maturation observed only after reaching the market size (males).
Collapse
Affiliation(s)
- Marcin Kuciński
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, Gdynia 81-378, Poland.
| | - Paulina Trzeciak
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska street 1, Toruń 87-100, Poland
| | - Ziemowit Pirtań
- Fish Farm "PSTRĄG TARNOWO Ziemowit Pirtań", Tarnowo 16, Piła 64-930, Poland
| | - Wojciech Jóźwiak
- Fish Farm "PSTRĄG TARNOWO Ziemowit Pirtań", Tarnowo 16, Piła 64-930, Poland
| | - Konrad Ocalewicz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, Gdynia 81-378, Poland
| |
Collapse
|
9
|
Magalhães FDM, Oliveira EF, Garda AA, Burbrink FT, Gehara M. Genomic data support reticulate evolution in whiptail lizards from the Brazilian Caatinga. Mol Phylogenet Evol 2024; 204:108280. [PMID: 39725181 DOI: 10.1016/j.ympev.2024.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Species relationships have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference. In our study, we used ultraconserved elements (UCE) and mitogenomic data to investigate the evolutionary history of the Ameivula ocellifera complex, a group of South American whiptail lizards widely distributed in semiarid environments of the Caatinga Domain in Brazil. We examine mitonuclear discordances, assessing reticulate evolution, evaluating species limits, and testing for adaptive mitochondrial capture that could explain higher introgression in the mitochondrial genome compared to nuclear DNA. Our findings support the occurrence of an ancient reticulation event during the diversification of these lizards, driven by introgressive hybridization, leading to mitochondrial capture, and explaining mitonuclear discrepancies. Overall, we did not find clear evidence of positive selection across mitochondrial protein-coding genes suggesting adaptive mitochondrial capture of individuals with introgressed mtDNA. Thus, the genetic diversification and mitogenome evolution could be neutral, with selection against hybridization in the autosomal loci only, or even mediated by mitonuclear incompatibilities. Analyses of mtDNA genomes alongside network and species delimitation methods were crucial for identifying and validating individuals with introgressed mtDNA as a distinct species, demonstrating the potential of genome sampling, and using innovative analytical techniques for elucidating speciation processes in the presence of introgressive hybridization.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA; Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - Eliana F Oliveira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
10
|
Lessios HA. Introgression of the Gamete Recognition Molecule, Bindin, in the Sea Urchin Diadema. Integr Comp Biol 2024; 64:1578-1585. [PMID: 38872025 DOI: 10.1093/icb/icae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 05/30/2024] [Accepted: 03/03/2024] [Indexed: 06/15/2024] Open
Abstract
Hybridization is important in evolution, because it is a necessary (though not sufficient) step in the introgression of potentially adaptive variation between species. Bindin is a gamete recognition protein in echinoids and asteroids, capable of blocking cross-fertilization between species to varying degrees. Four species of the sea urchin genus Diadema are broadly sympatric in the Indo-Pacific: D. paucispinum, D. savignyi, D. clarki, and D. setosum. Data from three published studies, one of identification of hybrids through allozymes, one of the phylogeography of mitochondrial DNA, and one of the phylogeny of bindin, were combined to assess the degree of bindin introgression between these four species. I analyzed sequences of the ATPase 8 and ATPase 6 mitochondrial genes and of bindin, sampled throughout the species ranges, with an isolation-migration algorithm, IMa3. IMa3 uses a coalescent approach to produce Bayesian estimates of effective population sizes and gene flow between populations. The results showed that bindin alleles coalesce completely within the species bounds of D. clarki and of D. setosum. The sister species D. paucispinum and D. savignyi, however, were estimated as having exchanged a bindin allele at an average of every one to two-and-a-half generations since they speciated from each other. As the allozyme study detected nine hybrids between three of these species in Okinawa (most of them between D. setosum and D. savignyi) in a single sample, hybrids between these species are produced, but bindin does not introgress. Therefore, bindin must not be efficient in blocking heterospecific fertilizations. Complete, or almost complete, reproductive isolation between species of Diadema must result from low hybrid fitness.
Collapse
Affiliation(s)
- H A Lessios
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama
| |
Collapse
|
11
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
12
|
Chiocchio A, de Rysky E, Carere C, Nascetti G, Bisconti R, Canestrelli D. Behavioural underpinning of mito-nuclear discordances: insights from fire salamanders. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241571. [PMID: 39665091 PMCID: PMC11631422 DOI: 10.1098/rsos.241571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Mito-nuclear discordances across secondary contact zones have been described in a wide range of organisms. They consist of a spatial mismatch between nuclear and mitochondrial genomes in terms of location and extension of the contact zone between distinct evolutionary lineages. Despite the evolutionary and biogeographic causes of mito-nuclear discordances having been extensively investigated, we still lack a clear understanding of their phenotypic underpinnings. Here, we test the hypothesis that mtDNA variation could be associated with behavioural variation and that such association could contribute to asymmetric mitochondrial introgression across a secondary contact zone. We analysed behavioural variation across the mtDNA secondary contact zone of the fire salamander Salamandra salamandra in central Italy, which is displaced 600 km from the nuclear contact zone. We found distinct behavioural profiles in the two mitotypes co-occurring in the contact zone. The introgressed mitotype was associated with a 'slow-thorough' dispersal profile, characterized by a less active but more cautious and accurate exploration strategy. This pattern was consistent across life stages and contexts: aquatic larvae and terrestrial juveniles, spontaneous activity and response to novelty. These results support the intriguing hypothesis that personality traits associated with distinct mitotypes could contribute to differential mitochondrial introgression and the formation of biogeographic patterns of mito-nuclear discordance.
Collapse
Affiliation(s)
- Andrea Chiocchio
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Erica de Rysky
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Claudio Carere
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Giuseppe Nascetti
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Roberta Bisconti
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| | - Daniele Canestrelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Galià-Camps C, Schell T, Enguídanos A, Pegueroles C, Arnedo MA, Ballesteros M, Valdés Á, Greve C. Jumping through hoops: Structural rearrangements and accelerated mutation rates on Dendrodorididae (Mollusca: Nudibranchia) mitogenomes rumble their evolution. Mol Phylogenet Evol 2024; 201:108218. [PMID: 39424089 DOI: 10.1016/j.ympev.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The systematics of the family Dendrodorididae, with only three valid genera, is a challenge for integrative taxonomists. Its members lack hard structures for morphological comparisons and their mitochondrial and nuclear markers provide contradictory phylogenetic signals, making phylogenetic reconstructions difficult. This molecular discordance has been hypothesized to be the result of nuclear pseudogenes or exogenous contamination. However, these hypotheses have not been tested. Here, we assembled the first genome drafts of seven Dendrodorididae species to investigate the evolutionary processes of this family. Two of the mitogenomes displayed an identical structural rearrangement involving the translocation of three coding genes and five tRNAs, described for the first time in nudibranchs. In addition, we found particularly high dN and dN/dS values and multiple insertions and deletions on the mitochondrial genes of smooth Dendrodoris. In contrast, nuclear single-copy ortholog genes showed no such mutational differences. Models of protein structures from mitochondrial genes are conserved, suggesting conserved functionality. Phylogenies using mitogenomic and nuclear data showed that species with rearranged mitogenomes form a clade, although Dendrodorididae relationships remained unresolved. The present study provides novel evidence for accelerated mutation rates in the mitogenomes of Dendrodorididae, which presumably have implications on respiratory adaptation, and highlights the importance of using genomic data to unveil rare evolutionary processes, crucial for correctly inferring phylogenies.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 17300 Blanes, Girona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Alba Enguídanos
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Cinta Pegueroles
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Manuel Ballesteros
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Ferreira SCM, Jarquín-Díaz VH, Planillo A, Ďureje Ľ, Martincová I, Kramer-Schadt S, Forslund-Startceva SK, Heitlinger E. Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mouse subspecies and their hybrids. Proc Biol Sci 2024; 291:20241970. [PMID: 39689880 DOI: 10.1098/rspb.2024.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Closely related host species share similar symbionts, but the effects of host genetic admixture and environmental conditions on these communities remain largely unknown. We investigated the influence of host genetic admixture and environmental factors on the intestinal prokaryotic and eukaryotic communities (fungi, parasites) of two house mouse subspecies (Mus musculus domesticus and M. m. musculus) and their hybrids in two settings: (i) wild-caught mice from the European hybrid zone and (ii) wild-derived inbred mice in a controlled laboratory environment before and during a community perturbation (infection). In wild-caught mice, environmental factors strongly predicted the overall microbiome composition. Subspecies' genetic distance significantly influenced the overall microbiome composition, and each component (bacteria, parasites and fungi). While hybridization had a weak effect, it significantly impacted fungal composition. We observed similar patterns in wild-derived mice, where genetic distances and hybridization influenced microbiome composition, with fungi being more stable to infection-induced perturbations than other microbiome components. Subspecies' genetic distance has a stronger and consistent effect across microbiome components than differences in expected heterozygosity among hybrids, suggesting that host divergence and host filtering play a key role in microbiome divergence, influenced by environmental factors. Our findings offer new insights into the eco-evolutionary processes shaping host-microbiome interactions.
Collapse
Affiliation(s)
- Susana C M Ferreira
- Division of Computational Systems Biology, Center for Microbiology and Ecological Systems Science, University of Vienna, Djerassipl. 1, Vienna 1030, Austria
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU). Philippstr. 13 Haus 14, Berlin 10115, Germany
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna A-1160, Austria
| | - Víctor Hugo Jarquín-Díaz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, Berlin 13125, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC). Robert-Rössle-Str. 10, Berlin 13125, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aimara Planillo
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
- Institute of Ecology, Chair of Planning-related Animal Ecology, Technische Universität Berlin (TUB), Rothenburgstr. 12, Berlin 12165, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, Berlin 13125, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC). Robert-Rössle-Str. 10, Berlin 13125, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU). Philippstr. 13 Haus 14, Berlin 10115, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| |
Collapse
|
16
|
Wang H, Zhang W, Yu Y, Fang X, Zhang T, Xu L, Gong L, Xiao H. Biased Gene Introgression and Adaptation in the Face of Chloroplast Capture in Aquilegia amurensis. Syst Biol 2024; 73:886-900. [PMID: 39001664 DOI: 10.1093/sysbio/syae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024] Open
Abstract
-Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the 2 species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation, and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.
Collapse
Affiliation(s)
- Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luyuan Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
17
|
Jensen A, Horton ER, Amboko J, Parke SA, Hart JA, Tosi AJ, Guschanski K, Detwiler KM. Y chromosome introgression between deeply divergent primate species. Nat Commun 2024; 15:10398. [PMID: 39613758 DOI: 10.1038/s41467-024-54719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Hybridization and introgression are widespread in nature, with important implications for adaptation and speciation. Since heterogametic hybrids often have lower fitness than homogametic individuals, a phenomenon known as Haldane's rule, loci inherited strictly through the heterogametic sex rarely introgress. We focus on the Y-chromosomal history of guenons, African primates that hybridized extensively in the past. Although our inferences suggest that Haldane's rule generally applies, we uncover a Y chromosome introgression event between two species ca. six million years after their initial divergence. Using simulations, we show that selection likely drove the introgressing Y chromosome to fixation from a low initial frequency. We identify non-synonymous substitutions on the novel Y chromosome as candidate targets of selection, and explore meiotic drive as an alternative mechanism. Our results provide a rare example of Y chromosome introgression, showing that the ability to produce fertile heterogametic hybrids likely persisted for six million years in guenons.
Collapse
Affiliation(s)
- Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden.
| | - Emma R Horton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Junior Amboko
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Stacy-Anne Parke
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - John A Hart
- Lukuru Wildlife Research Foundation, Kinshasa, Democratic Republic of Congo
| | - Anthony J Tosi
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden.
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Kate M Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
18
|
Zając JA, Neubauer G, Korner-Nievergelt F, Zagalska-Neubauer M. Unravelling intermediate migration patterns in gull hybrids: insights from ring re-encounters. Sci Rep 2024; 14:27050. [PMID: 39511258 PMCID: PMC11543659 DOI: 10.1038/s41598-024-77476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Hybridization is a common phenomenon in birds, particularly between closely related species, when reproductive isolation mechanisms are insufficiently developed. Hybrids differ from the parental species in genetic, morphological, and behavioural traits. However, the migration patterns of hybrids have been scarcely studied. Examining hybrid migration behaviour is essential as it may reveal their role as a "gene bridge" between species and enhance our understanding of speciation mechanisms and the genetics of migration. Most research focuses on tracking the migration of long-distance migrants, but the effect of hybridization on migration is poorly understood also in short-distance migrants. The study aimed to verify whether the migratory movements of interspecific hybrids between the Herring (Larus argentatus) and the Caspian Gull (L. cachinnans) are intermediate, as predicted by the genetic basis of migration. Migration patterns, based on distance and direction, were determined from re-encounter data of individuals ringed in Poland, for over 20 years (2002-2023). These included both allopatric (parental species) and sympatric (both parental species and hybrids) populations. The results indicated that large gull hybrids exhibit an intermediate migration patterns, similarly to other hybridizing species. Unlike many cases where intermediacy may select against hybrids, the absence of significant environmental barriers along gulls' migration routes and their wide wintering range likely mitigates selective pressures. This finding underscores the need for further investigation into the ecological implications of hybrid migration patterns. By using bird re-encounter data, we demonstrated that it provides a sufficient basis for analysing migration patterns and detecting intermediacy, even in within-continental and short-distance migrants.
Collapse
Affiliation(s)
- Jakub A Zając
- Department of Behavioural Ecology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
- Laboratory of Forest Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
| | - Grzegorz Neubauer
- Laboratory of Forest Biology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680, Gdańsk, Poland
| | | | | |
Collapse
|
19
|
Zhang L, Nonaka E, Higgie M, Egan S. How Important Is Variation in Extrinsic Reproductive Isolation to the Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041430. [PMID: 38503503 PMCID: PMC11529849 DOI: 10.1101/cshperspect.a041430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The strength of reproductive isolation (RI) between two or more lineages during the process of speciation can vary by the ecological conditions. However, most speciation research has been limited to studying how ecologically dependent RI varies among a handful of broadly categorized environments. Very few studies consider the variability of RI and its effects on speciation at finer scales-that is, within each environment due to spatial or temporal environmental heterogeneity. Such variation in RI across time and/or space may inhibit speciation through leaky reproductive barriers or promote speciation by facilitating reinforcement. To investigate this overlooked aspect of speciation research, we conducted a literature review of existing studies of variation in RI in the field and then conducted individual-based simulations to examine how variation in hybrid fitness across time and space affects the degree of gene flow. Our simulations indicate that the presence of variation in hybrid fitness across space and time often leads to an increase in gene flow compared to scenarios where hybrid fitness remains static. This observation can be attributed to the convex relationship between the degree of gene flow and the strength of selection on hybrids. Our simulations also show that the effect of variation in RI on facilitating gene flow is most pronounced when RI, on average, is relatively low. This finding suggests that it could serve as an important mechanism to explain why the completion of speciation is often challenging. While direct empirical evidence documenting variation in extrinsic RI is limited, we contend that it is a prevalent yet underexplored phenomenon. We support this argument by proposing common scenarios in which RI is likely to exhibit variability and thus influence the process of speciation.
Collapse
Affiliation(s)
- Linyi Zhang
- Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Etsuko Nonaka
- Department of Agricultural Science, University of Helsinki 00170, Finland
- Station Linné, Förjestaden, Öland 00014, Sweden
| | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville City, Queensland 4814, Australia
| | - Scott Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
20
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
21
|
Pfeifer B, Kapan DD, Herzog SA. Detection and quantification of introgression using Bayesian inference based on conjugate priors. Bioinformatics 2024; 40:btae642. [PMID: 39460951 PMCID: PMC11549023 DOI: 10.1093/bioinformatics/btae642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024] Open
Abstract
SUMMARY Introgression (the flow of genes between species) is a major force structuring the evolution of genomes, potentially providing raw material for adaptation. Here, we present a versatile Bayesian model selection approach for detecting and quantifying introgression, df-BF, that builds upon the recently published distance-based df statistic. Unlike df, df-BF accounts for the number of variant sites within a genomic region. The underlying model parameter of our df-BF method, here denoted as dfθ, accurately quantifies introgression, and the corresponding Bayes Factors (df-BF) enables weighing the strength of evidence for introgression. To ensure fast computation, we use conjugate priors with no need for computationally demanding MCMC iterations. We compare our method with other approaches including df, fd, Dp, and Patterson's D using a wide range of coalescent simulations. Furthermore, we showcase the applicability of df-BF and dfθ using whole-genome mosquito data. Finally, we integrate the new method into the powerful genomics R-package PopGenome. AVAILABILITY AND IMPLEMENTATION The presented methods are implemented within the R-package PopGenome (https://github.com/pievos101/PopGenome) and the simulation as the application results can be reproduced from the source code available from a dedicated GitHub repository (https://github.com/pievos101/Introgression-Simulation).
Collapse
Affiliation(s)
- Bastian Pfeifer
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz 8010, Austria
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA 94118, United States
| | - Sereina A Herzog
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz 8010, Austria
| |
Collapse
|
22
|
Lerch BA, Bürger R, Servedio MR. Reconciling Santa Rosalia: Both Reproductive Isolation and Coexistence Constrain Diversification. Am Nat 2024; 204:E99-E114. [PMID: 39486036 DOI: 10.1086/732307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractUnderstanding patterns of diversification necessarily requires accounting for both the generation and the persistence of species. Formal models of speciation genetics, however, focus on the generation of new species without explicitly considering the maintenance of biodiversity (e.g., coexistence, the focus of ecological studies of diversity). Consequently, it remains unclear whether and how new species will coexist following a speciation event, a gap limiting our ability to understand the rate-limiting controls of diversification over macroevolutionary timescales. To connect coexistence and speciation theory and assess the relative importance of ecological versus genetic constraints in diversification events, we develop a deterministic, three-locus, population-genetic model that includes a skewed distribution of available resources (to generate variation in fitness differences), frequency-dependent competition, and assortative mating. Both ecology and genetics play vital and interacting roles in shaping initial speciation events and long-term eco-evolutionary outcomes. Ecological constraints are especially important when fitness differences are large and competition remains strong among dissimilar phenotypes. Ephemeral species can occur in our model and are typically lost because of competitive exclusion, a result demonstrating that species persistence may serve as the rate-limiting control of long-term diversification rates. More broadly, our model adds evidence that the unification of ecological and evolutionary (including genetic) perspectives on biodiversity is needed to predict large-scale patterns.
Collapse
|
23
|
Pauly R, Johnson L, Feltus FA, Casanova EL. Enrichment of a subset of Neanderthal polymorphisms in autistic probands and siblings. Mol Psychiatry 2024; 29:3452-3461. [PMID: 38760502 PMCID: PMC11541192 DOI: 10.1038/s41380-024-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Homo sapiens and Neanderthals underwent hybridization during the Middle/Upper Paleolithic age, culminating in retention of small amounts of Neanderthal-derived DNA in the modern human genome. In the current study, we address the potential roles Neanderthal single nucleotide polymorphisms (SNP) may be playing in autism susceptibility in samples of black non-Hispanic, white Hispanic, and white non-Hispanic people using data from the Simons Foundation Powering Autism Research (SPARK), Genotype-Tissue Expression (GTEx), and 1000 Genomes (1000G) databases. We have discovered that rare variants are significantly enriched in autistic probands compared to race-matched controls. In addition, we have identified 25 rare and common SNPs that are significantly enriched in autism on different ethnic backgrounds, some of which show significant clinical associations. We have also identified other SNPs that share more specific genotype-phenotype correlations but which are not necessarily enriched in autism and yet may nevertheless play roles in comorbid phenotype expression (e.g., intellectual disability, epilepsy, and language regression). These results strongly suggest Neanderthal-derived DNA is playing a significant role in autism susceptibility across major populations in the United States.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
| | - Layla Johnson
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA
| | - F Alex Feltus
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Clemson, SC, 29634, USA
| | - Emily L Casanova
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA.
| |
Collapse
|
24
|
Koppetsch T, Malinsky M, Matschiner M. Towards Reliable Detection of Introgression in the Presence of Among-Species Rate Variation. Syst Biol 2024; 73:769-788. [PMID: 38912803 PMCID: PMC11639170 DOI: 10.1093/sysbio/syae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
The role of interspecific hybridization has recently seen increasing attention, especially in the context of diversification dynamics. Genomic research has now made it abundantly clear that both hybridization and introgression-the exchange of genetic material through hybridization and backcrossing-are far more common than previously thought. Besides cases of ongoing or recent genetic exchange between taxa, an increasing number of studies report "ancient introgression"- referring to results of hybridization that took place in the distant past. However, it is not clear whether commonly used methods for the detection of introgression are applicable to such old systems, given that most of these methods were originally developed for analyses at the level of populations and recently diverged species, affected by recent or ongoing genetic exchange. In particular, the assumption of constant evolutionary rates, which is implicit in many commonly used approaches, is more likely to be violated as evolutionary divergence increases. To test the limitations of introgression detection methods when being applied to old systems, we simulated thousands of genomic datasets under a wide range of settings, with varying degrees of among-species rate variation and introgression. Using these simulated datasets, we showed that some commonly applied statistical methods, including the D-statistic and certain tests based on sets of local phylogenetic trees, can produce false-positive signals of introgression between divergent taxa that have different rates of evolution. These misleading signals are caused by the presence of homoplasies occurring at different rates in different lineages. To distinguish between the patterns caused by rate variation and genuine introgression, we developed a new test that is based on the expected clustering of introgressed sites along the genome and implemented this test in the program Dsuite.
Collapse
Affiliation(s)
- Thore Koppetsch
- Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Milan Malinsky
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | | |
Collapse
|
25
|
Matocq MD, Hunter EA, Murphy PJ, Adkins CL, Shoemaker KT. Asymmetric mate preference and reproductive interference mediate climate-induced changes in mate availability in a small mammal hybrid zone. Evolution 2024; 78:1818-1830. [PMID: 39110094 DOI: 10.1093/evolut/qpae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 10/30/2024]
Abstract
Range expansion and contraction are among the most common biotic responses to changing environmental conditions, yet much is to be learned about the mechanisms that underlie range-edge population dynamics, especially when those areas are points of secondary contact between closely related species. Here, we present field-measured parentage data that document the reproductive outcomes of changes in mate availability at a secondary contact zone between two species of woodrat in the genus Neotoma. Changes in mate availability resulted from drought-driven differential survival between the species and their hybrids. As the availability of conspecific mates declined, rates of hybridization increased, leading to the accumulation of admixed individuals in the zone of contact. Patterns of reproductive success in the wild appear to be the result of a combination of both pre-mating isolation and post-zygotic selection resulting from genomic incompatibilities between the parental lineages. Evidence of asymmetric mate preference between the parental lineages came from both skewed reproductive output in the field and laboratory preference trials. Moreover, partial genomic incompatibility was evident from the near-zero reproductive success of F1 males and because nearly all surviving hybrids had one pure parent. Nonetheless, the high reproductive success of F1 females and backcrossing in both parental directions allow for introgression between the parental species. These findings reveal how climate change may alter evolutionary outcomes for species at the edge of their ranges through an interplay of behavioral, demographic, and genetic mechanisms.
Collapse
Affiliation(s)
- Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States
| | - Elizabeth A Hunter
- U.S. Geological Survey Virginia Cooperative Fish and Wildlife Research Unit; Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Peter J Murphy
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States
| | - Casey L Adkins
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States
| | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States
| |
Collapse
|
26
|
Szczepański S, Łabiszak B, Lasek M, Wachowiak W. Hybridization has localized effect on genetic variation in closely related pine species. BMC PLANT BIOLOGY 2024; 24:1007. [PMID: 39455923 PMCID: PMC11520059 DOI: 10.1186/s12870-024-05732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hybridization is a known phenomenon in nature but its genetic impact on populations of parental species remains less understood. We investigated the evolutionary consequences of the interspecific gene flow in several contact zones of closely related pine species. Using a set of genetic markers from both nuclear and organellar genomes, we analyzed four hybrid zones (384 individuals) and a large panel of reference allopatric populations of parental taxa (2104 individuals from 96 stands). RESULTS We observed reduced genetic diversity in maternally transmitted mitochondrial genomes of pure pine species and hybrids from contact zones compared to reference allopatric populations. The distribution of mtDNA haplotypes followed geographic rather than species boundaries. Additionally, no new haplotypes emerged in the contact zones, instead these zones contained the most common local variants. However, species diverged significantly at nuclear genomes and populations in contact zones exhibited similar or higher genetic diversity compared to the reference stands. There were no signs of admixture in any allopatric population, while clear admixture was evident in the contact zones, indicating that hybridization has a geographically localized effect on the genetic variation of the analyzed pine species. CONCLUSIONS Our results suggest that hybrid zones act as sinks rather than melting pots of genetic diversity. Hybridization influences sympatric populations but is confined to contact zones. The spectrum of parental species ancestry in hybrids reflects the old evolutionary history of the sympatric populations. These findings also imply that introgression may play a crucial role in the adaptation of hybrids to specific environments.
Collapse
Affiliation(s)
- Sebastian Szczepański
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Bartosz Łabiszak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Martyna Lasek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Witold Wachowiak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
27
|
Seshadri L, Atickem A, Zinner D, Roos C, Zhang L. Whole Genome Analysis Reveals Evolutionary History and Introgression Events in Bale Monkeys. Genes (Basel) 2024; 15:1359. [PMID: 39596559 PMCID: PMC11593718 DOI: 10.3390/genes15111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: The Bale monkey (Chlorocebus djamdjamensis) is a threatened primate species endemic to Ethiopia and, in contrast to other members of the genus Chlorocebus, lives at high altitudes and feeds mainly on bamboo. Two populations of the species are present, one in continuous bamboo forest (CF) in the eastern part of the species' range, and the other in fragmented forest (FF) in the western part. Based on mitochondrial DNA and phenotypic characteristics, previous studies have suggested introgression by parapatric congeners into the FF population but not into the CF population. The objective of this study was to gain insights into the evolutionary history of Bale monkeys and their potential genetic adaptations to high altitudes and for bamboo consumption. Methods: We sequenced the whole genomes of individuals from both populations and compared their genomes with those of the other five Chlorocebus species. We applied phylogenetic methods and conducted population demographic simulations to elucidate their evolutionary history. A genome-wide analysis was conducted to assess gene flow and identify mutations potentially associated with adaptations to high altitudes and for bamboo metabolism. Results: Our analyses revealed Bale monkeys as the sister clade to Chlorocebus aethiops and showed that gene flow occurred between C. aethiops and FF but not between C. aethiops and CF. In addition, we detected non-synonymous mutations in genes potentially associated with the adaptation to high altitudes (EPAS1) in both populations and with the adaptation for bamboo metabolism (TAS2R16, MPST, and TST) mainly in the CF population. Conclusions: Our study provides insights into the evolutionary history of a threatened primate species and reveals the genetic basis for its adaptions to unique environments and for diet specialization.
Collapse
Affiliation(s)
- Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- International Max Planck Research School for Genome Science (IMPRS-GS), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa 999047, Ethiopia;
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| |
Collapse
|
28
|
Premoli AC, Mathiasen P, Acosta MC, McCulloch RD. Two sides of the same coin? Transient hybridization in refugia and rapid postglacial ecological divergence ensure the evolutionary persistence of sister Nothofagus. J Evol Biol 2024; 37:1181-1193. [PMID: 39167704 DOI: 10.1093/jeb/voae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Glacial periods have been considered as inhospitable environments that consist of treeless vegetation at higher latitudes. The fossil record suggests many species survived the Last Glacial Maximum within refugia, usually at lower latitudes. However, phylogeographic studies have given support to the existence of previously unknown high-latitude refugia that were not detected in the fossil record. Here, we test the hypothesis that cold-tolerant trees of Patagonia survived cold periods in microclimatically favourable locales where hybridization occurred between sister taxa. To study local presence through glacial periods in multiple refugia, we used pollen records and genetic information (isozymes, microsatellites, and combined nuclear and chloroplast DNA sequences) of population pairs of Nothofagus antarctica and N. pumilio that belong to the ancient subgenus Nothofagus which can potentially hybridize in nature, along their entire latitudinal range in Patagonia. Studied species share the N. dombeyi type pollen, which was abundant at >20% in the northernmost latitudinal bands (35-43°S), even during the Last Glacial Maximum. Mid- and southern latitudinal records (44-55°S) yielded lower abundances of ~10% that increased after c. 15.0 cal. ka BP. Therefore, fossil pollen evidence suggests a long-lasting local presence of Nothofagus throughout glacial-interglacial cycles but mostly as small populations between 44°S and 51°S. We found species-specific and shared genetic variants, the latter of which attained relatively high frequencies, thus providing evidence of ancestral polymorphisms. Populations of each species were similarly diverse, suggesting survival throughout the latitudinal range. Estimates of coalescent divergence times were broadly synchronous across latitudes, suggesting that regional climates similarly affected populations and species that hybridized through climate cycles, fostering local persistence.
Collapse
Affiliation(s)
- Andrea C Premoli
- Universidad Nacional del Comahue, Centro Regional Universitario Bariloche-INIBIOMA CONICET, Bariloche, Argentina
| | - Paula Mathiasen
- Universidad Nacional del Comahue, Centro Regional Universitario Bariloche-INIBIOMA CONICET, Bariloche, Argentina
| | - María C Acosta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | |
Collapse
|
29
|
Nevado B, Chapman MA, Brennan AC, Clark JW, Wong ELY, Batstone T, McCarthy SA, Tracey A, Torrance J, Sims Y, Abbott RJ, Filatov D, Hiscock SJ. Genomic changes and stabilization following homoploid hybrid speciation of the Oxford ragwort Senecio squalidus. Curr Biol 2024; 34:4412-4423.e5. [PMID: 39260362 DOI: 10.1016/j.cub.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; cE3c, Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Adrian C Brennan
- Biosciences Department, University of Durham, Durham DH1 3LE, UK
| | - James W Clark
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Edgar L Y Wong
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Tom Batstone
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Alan Tracey
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Dmitry Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; University of Oxford Botanic Garden and Arboretum, Rose Lane, Oxford OX1 4AZ, UK
| |
Collapse
|
30
|
Kong Q, Jiang Y, Sun M, Wang Y, Zhang L, Zeng X, Wang Z, Wang Z, Liu Y, Gan Y, Liu H, Gao X, Yang X, Song X, Liu H, Shi J. Biparental graph strategy to represent and analyze hybrid plant genomes. PLANT PHYSIOLOGY 2024; 196:1284-1297. [PMID: 38991561 PMCID: PMC11444280 DOI: 10.1093/plphys/kiae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
Collapse
Affiliation(s)
- Qianqian Kong
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mingfei Sun
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zhiheng Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanxian Gan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Gao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuerong Yang
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjun Liu
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Shi
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
31
|
Jeffries DL, Lawson-Handley L, Lamatsch DK, Olsén KH, Sayer CD, Hänfling B. Towards the conservation of the crucian carp in Europe: Prolific hybridization but no evidence for introgression between native and non-native taxa. Mol Ecol 2024; 33:e17515. [PMID: 39212263 DOI: 10.1111/mec.17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Hybridization plays a pivotal role in evolution, influencing local adaptation and speciation. However, it can also reduce biodiversity, which is especially damaging when native and non-native species meet. Hybridization can threaten native species via competition (with vigorous hybrids), reproductive resource wastage and gene introgression. The latter, in particular, could result in increased fitness in invasive species, decreased fitness of natives and compromise reintroduction or recovery conservation practices. In this study, we use a combination of RAD sequencing and microsatellites for a range-wide sample set of 1366 fish to evaluate the potential for hybridization and introgression between native crucian carp (Carassius carassius) and three non-native taxa (Carassius auratus auratus, Carassius auratus gibelio and Cyprinus carpio) in European water bodies. We found hybridization between native and non-native taxa in 82% of populations with non-natives present, highlighting the potential for substantial ecological impacts from hybrids on crucian carp populations. However, despite such high rates of hybridization, we could find no evidence of introgression between these taxa. The presence of triploid backcrosses in at least two populations suggests that the lack of introgression among these taxa is likely due to meiotic dysfunction in hybrids, leading to the production of polyploid offspring which are unable to reproduce sexually. This result is promising for crucian reintroduction programs, as it implies limited risk to the genetic integrity of source populations. Future research should investigate the reproductive potential of triploid hybrids and the ecological pressures hybrids impose on C. carassius.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lori Lawson-Handley
- Evolutionary Biology Group, School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
| | - Dunja K Lamatsch
- Universität Innsbruck, Research Department for Limnology, Mondsee, Austria
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södetörn University, Huddinge, Stockholm, Sweden
| | - Carl D Sayer
- Pond Restoration Research Group, Department of Geography, University College London, London, UK
| | - Bernd Hänfling
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
32
|
Konaka S, Hirota SK, Sato Y, Matsumoto N, Suyama Y, Tsumura Y. Secondary contact zone and genetic introgression in closely related haplodiploid social spider mites. Heredity (Edinb) 2024; 133:227-237. [PMID: 39090316 PMCID: PMC11437192 DOI: 10.1038/s41437-024-00708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
How frequently hybridisation and gene flow occur in the contact zones of diverging taxa is important for understanding the speciation process. Stigmaeopsis sabelisi and Stigmaeopsis miscanthi high-aggression form (hereafter, S. miscanthi HG) are haplodiploid, social spider mites that infest the Chinese silver grass, Miscanthus sinensis. These two species are closely related and parapatrically distributed in Japan. In mountainous areas, S. sabelisi and S. miscanthi HG are often found in the highlands and lowlands, respectively, suggesting that they are in contact at intermediate altitudes. It is estimated that they diverged from their common ancestors distributed in subtropical regions (south of Japan) during the last glacial period, expanded their distribution into the Japanese Archipelago, and came to have such a parapatric distribution (secondary contact). As their reproductive isolation is strong but incomplete, hybridisation and genetic introgression are expected at their distributional boundaries. In this study, we investigated their spatial distribution patterns along the elevation on Mt. Amagi using male morphological differences, and investigated their hybridisation status using single-nucleotide polymorphisms by MIG-seq. We found their contact zone at altitudes of 150-430 m, suggesting that their contact zone is prevalent in the parapatric area, which is in line with a previous study. Interspecific mating was predicted based on the sex ratio in the contact zone. No obvious hybrids were found, but genetic introgression was detected although it was extremely low.
Collapse
Affiliation(s)
- Shota Konaka
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
- Botanical Gardens, Osaka Metropolitan University 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan
| | - Yukie Sato
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Naoki Matsumoto
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
33
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, Dos Reis TF, Gumilang A, Almagro-Molto M, Alanio A, Garcia-Hermoso D, Delbaje E, Pontes L, Pinzan CF, Schreiber AZ, Canóvas D, Sanchez Luperini R, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun 2024; 15:8412. [PMID: 39333551 PMCID: PMC11436853 DOI: 10.1038/s41467-024-52639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptic fungal pathogens pose disease management challenges due to their morphological resemblance to known pathogens. Here, we investigated the genomes and phenotypes of 53 globally distributed isolates of Aspergillus section Nidulantes fungi and found 30 clinical isolates-including four isolated from COVID-19 patients-were A. latus, a cryptic pathogen that originated via allodiploid hybridization. Notably, all A. latus isolates were misidentified. A. latus hybrids likely originated via a single hybridization event during the Miocene and harbor substantial genetic diversity. Transcriptome profiling of a clinical isolate revealed that both parental subgenomes are actively expressed and respond to environmental stimuli. Characterizing infection-relevant traits-such as drug resistance and growth under oxidative stress-revealed distinct phenotypic profiles among A. latus hybrids compared to parental and closely related species. Moreover, we identified four features that could aid A. latus taxonomic identification. Together, these findings deepen our understanding of the origin of cryptic pathogens.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Rafael W Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Matthew E Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
- Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, USA
| | - Christopher D Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adiyantara Gumilang
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - María Almagro-Molto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Alexandre Alanio
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pontes
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Clinical Microbiology Unit. Synlab Laboratory at Viamed Sta. Ángela de la Cruz Hospital, Seville, Spain
| | - Rafael Sanchez Luperini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
- National Institute of Science and Technology in Human Pathogenic, Fungi, Brazil.
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA.
| |
Collapse
|
34
|
Wang A, Shen X, Liang N, Xie Z, Tian Z, Zhang L, Guo J, Wei F, Shi G, Wei X. Integrated cytological and transcriptomic analyses provide new insights into restoration of pollen viability in synthetic allotetraploid Brassica carinata. PLANT CELL REPORTS 2024; 43:234. [PMID: 39292285 DOI: 10.1007/s00299-024-03325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE Upregulation of genes involved in DNA damage repair and sperm cell differentiation leads to restoration of pollen viability in synthetic allotetraploid B. carinata after chromosome doubling. Apart from the well-known contribution of polyploidy to crop improvement, polyploids can also be induced for other purposes, such as to restore the viability of sterile hybrids. The mechanism related to viability transition between the sterile allodiploid and the fertile allotetraploid after chromosome doubling are not well understood. Here, we synthesised allodiploid B. carinata (2n = 2x = 17) and allotetraploid B. carinata (2n = 4x = 34) as models to investigate the cytological and transcriptomic differences during pollen development. The results showed that after chromosome doubling, the recovery of pollen viability in allotetraploid was mainly reflected in the stabilisation of microtubule spindle morphology, normal meiotic chromosome behaviour, and normal microspore development. Interestingly, the deposition and degradation of synthetic anther tapetum were not affected by polyploidy. Transcription analysis showed that the expression of genes related to DNA repair (DMC1, RAD51, RAD17, SPO11-2), cell cycle differentiation (CYCA1;2, CYCA2;3) and ubiquitination proteasome pathway (UBC4, PIRH2, CDC53) were positively up-regulated during pollen development of synthetic allotetraploid B. carinata. In summary, these results provide some refreshing updates about the ploidy-related restoration of pollen viability in newly synthesised allotetraploid B. carinata.
Collapse
Affiliation(s)
- Ao Wang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaohan Shen
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Niannian Liang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhaoran Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jialin Guo
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
35
|
Tims AR, Unmack PJ, Hammer MP, Brown C, Adams M, McGee MD. Museum Genomics Reveals the Hybrid Origin of an Extinct Crater Lake Endemic. Syst Biol 2024; 73:506-520. [PMID: 38597146 PMCID: PMC11377190 DOI: 10.1093/sysbio/syae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Crater lake fishes are common evolutionary model systems, with recent studies suggesting a key role for gene flow in promoting rapid adaptation and speciation. However, the study of these young lakes can be complicated by human-mediated extinctions. Museum genomics approaches integrating genetic data from recently extinct species are, therefore, critical to understanding the complex evolutionary histories of these fragile systems. Here, we examine the evolutionary history of an extinct Southern Hemisphere crater lake endemic, the rainbowfish Melanotaenia eachamensis. We undertook a comprehensive sampling of extant rainbowfish populations of the Atherton Tablelands of Australia alongside historical museum material to understand the evolutionary origins of the extinct crater lake population and the dynamics of gene flow across the ecoregion. The extinct crater lake species is genetically distinct from all other nearby populations due to historic introgression between 2 proximate riverine lineages, similar to other prominent crater lake speciation systems, but this historic gene flow has not been sufficient to induce a species flock. Our results suggest that museum genomics approaches can be successfully combined with extant sampling to unravel complex speciation dynamics involving recently extinct species.
Collapse
Affiliation(s)
- Amy R Tims
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Peter J Unmack
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory 0801, Australia
| | - Culum Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
36
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Long KM, Rivera-Colón AG, Bennett KFP, Catchen JM, Braun MJ, Brawn JD. Ongoing introgression of a secondary sexual plumage trait in a stable avian hybrid zone. Evolution 2024; 78:1539-1553. [PMID: 38753474 DOI: 10.1093/evolut/qpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Collapse
Affiliation(s)
- Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey D Brawn
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
38
|
Jackson TK, Rhode C. Comparative genomics of dusky kob (Argyrosomus japonicus, Sciaenidae) conspecifics: Evidence for speciation and the genetic mechanisms underlying traits. JOURNAL OF FISH BIOLOGY 2024; 105:841-857. [PMID: 38885946 DOI: 10.1111/jfb.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Dusky kob (Argyrosomus japonicus) is a commercially important finfish, indigenous to South Africa, Australia, and China. Previous studies highlighted differences in genetic composition, life history, and morphology of the species across geographic regions. A draft genome sequence of 0.742 Gb (N50 = 5.49 Mb; BUSCO completeness = 97.8%) and 22,438 predicted protein-coding genes was generated for the South African (SA) conspecific. A comparison with the Chinese (CN) conspecific revealed a core set of 32,068 orthologous protein clusters across both genomes. The SA genome exhibited 440 unique clusters compared to 1928 unique clusters in the CN genome. Transportation and immune response processes were overrepresented among the SA accessory genome, whereas the CN accessory genome was enriched for immune response, DNA transposition, and sensory detection (FDR-adjusted p < 0.01). These unique clusters may represent an adaptive component of the species' pangenome that could explain population divergence due to differential environmental specialisation. Furthermore, 700 single-copy orthologues (SCOs) displayed evidence of positive selection between the SA and CN genomes, and globally these genomes shared only 92% similarity, suggesting they might be distinct species. These genes primarily play roles in metabolism and digestion, illustrating the evolutionary pathways that differentiate the species. Understanding these genomic mechanisms underlying adaptation and evolution within and between species provides valuable insights into growth and maturation of kob, traits that are particularly relevant to commercial aquaculture.
Collapse
Affiliation(s)
- Tassin Kim Jackson
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
39
|
Pezzi PH, Wheeler LC, Freitas LB, Smith SD. Incomplete lineage sorting and hybridization underlie tree discordance in Petunia and related genera (Petunieae, Solanaceae). Mol Phylogenet Evol 2024; 198:108136. [PMID: 38909873 DOI: 10.1016/j.ympev.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.
Collapse
Affiliation(s)
- Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
40
|
Mendez-Reneau JI, Richards JL, Hobbie J, Bollich E, Kooyers NJ, Sigel EM. Lineage diversification and rampant hybridization among subspecies explain taxonomic confusion in the endemic Hawaiian fern Polypodium pellucidum. AMERICAN JOURNAL OF BOTANY 2024; 111:e16379. [PMID: 39081002 DOI: 10.1002/ajb2.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Polypodium pellucidum, a fern endemic to the Hawaiian Islands, encompasses five ecologically and morphologically variable subspecies, suggesting a complex history involving both rapid divergence and rampant hybridization. METHODS We employed a large target-capture data set to investigate the evolution of genetic, morphological, and ecological variation in P. pellucidum. With a broad sampling across five Hawaiian Islands, we deciphered the evolutionary history of P. pellucidum, identified nonhybrid lineages and intraspecific hybrids, and inferred the relative influence of geography and ecology on their distributions. RESULTS Polypodium pellucidum is monophyletic, dispersing to the Hawaiian archipelago 11.53-7.77 Ma and diversifying into extant clades between 5.66 and 4.73 Ma. We identified four nonhybrid clades with unique morphologies, ecological niches, and distributions. Additionally, we elucidated several intraspecific hybrid combinations and evidence for undiscovered or extinct "ghost" lineages contributing to extant hybrid populations. CONCLUSIONS We provide a foundation for revising the taxonomy of P. pellucidum to account for cryptic lineages and intraspecific hybrids. Geologic succession of the Hawaiian Islands through cycles of volcanism, vegetative succession, and erosion has determined the available habitats and distribution of ecologically specific, divergent clades within P. pellucidum. Intraspecific hybrids have likely arisen due to ecological and or geological transitions, often persisting after the local extinction of their progenitors. This research contributes to our understanding of the evolution of Hawai'i's diverse fern flora and illuminated cryptic taxa to allow better-informed conservation efforts.
Collapse
Affiliation(s)
- Jonas I Mendez-Reneau
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Joseph L Richards
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Julia Hobbie
- Department of Biology, Utah State University, BNR 117, 5305 Old Main Hill, Logan, 84322, UT, USA
| | - Emily Bollich
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Nicholas J Kooyers
- Department of Biology, University of Louisiana at Lafayette, 410 East St. Mary Boulevard, Billeaud Hall, Lafayette, 70504, LA, USA
| | - Erin M Sigel
- Department of Biological Sciences, University of New Hampshire, 105 Main St., Durham, 03824, NH, USA
| |
Collapse
|
41
|
Fan X, Yan X, Qian C, Awuku I, Zhao P, Liao Y, Li Z, Li X, Ma X. Phylogeographic analysis reveals multiple origins of the desert shrub Reaumuria songarica in northern Xinjiang, involving homoploid and tetraploid hybrids. Ecol Evol 2024; 14:e70199. [PMID: 39219573 PMCID: PMC11362504 DOI: 10.1002/ece3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hybrid speciation plays an important role in species diversification. The establishment of reproductive isolation is crucial for hybrid speciation, and the identification of diverse types of hybrids, particularly homoploid hybrid species, contributes to a comprehensive understanding of this process. Reaumuria songarica is a constructive shrub widespread in arid Central Asia. Previous studies have inferred that the R. songarica populations in the Gurbantunggut Desert (GuD) originated from homoploid hybridizations between its eastern and western lineages and may have evolved into an incipient species. To further elucidate the genetic composition of different hybrid populations and to determine the species boundary of this hybrid lineage, we investigated the overall phylogeographic structure of R. songarica based on variation patterns of five cpDNA and one nrITS sequences across 32 populations. Phylogenetic analyses demonstrated that within the GuD lineage, the Wuerhe population evolved directly from ancestral lineages, whereas the others originated from hybridizations between the eastern and western lineages. PCoA and genetic barrier analysis supported the subdivision of the GuD lineage into the southern (GuD-S) and northern (GuD-N) groups. Populations in the GuD-S group had a consistent genetic composition and the same ancestral female parent, indicating that they belonged to a homoploid hybrid lineage. However, the GuD-N group experienced genetic admixture of the eastern and western lineages on nrITS and cpDNA, with some populations inferred to be allopolyploid based on ploidy data. Based on cpDNA haplotypes, BEAST analyses showed that the GuD-S and GuD-N groups originated after 0.5 Ma. Our results suggest that multiple expansions and contractions of GuD, driven by Quaternary climatic oscillations and the Kunlun-Yellow River tectonic movement, are important causes of the complex origins of R. songarica populations in northern Xinjiang. This study highlights the complex origins of the Junggar Basin flora and the underappreciated role of hybridization in increasing its species diversity.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xia Yan
- Key Laboratory of Eco‐Hydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhijun Li
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinXinjiang Production and Construction CorpsAlarChina
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Shapotou Desert Research and Experiment StationNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xiao‐Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
42
|
Rakotoarivelo AR, Rambuda T, Taron UH, Stalder G, O'Donoghue P, Robovský J, Hartmann S, Hofreiter M, Moodley Y. Complex patterns of gene flow and convergence in the evolutionary history of the spiral-horned antelopes (Tragelaphini). Mol Phylogenet Evol 2024; 198:108131. [PMID: 38909875 DOI: 10.1016/j.ympev.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The Tragelaphini, also known as spiral-horned antelope, is a phenotypically diverse mammalian tribe comprising a single genus, Tragelaphus. The evolutionary history of this tribe has attracted the attention of taxonomists and molecular geneticists for decades because its diversity is characterised by conflicts between morphological and molecular data as well as between mitochondrial, nuclear and chromosomal DNA. These inconsistencies point to a complex history of ecological diversification, coupled by either phenotypic convergence or introgression. Therefore, to unravel the phylogenetic relationships among spiral-horned antelopes, and to further investigate the role of divergence and gene flow in trait evolution, we sequenced genomes for all nine accepted species of the genus Tragelaphus, including a genome each for the highly divergent bushbuck lineages (T. s. scriptus and T. s. sylvaticus). We successfully reconstructed the Tragelaphus species tree, providing genome-level support for the early Pliocene divergence and monophyly of the nyala (T. angasii) and lesser kudu (T. imberbis), the monophyly of the two eland species (T. oryx and T. derbianus) and, importantly, the monophyly of kéwel (T. s. scriptus) and imbabala (T. s. sylvaticus) bushbuck. We found strong evidence for gene flow in at least four of eight nodes on the species tree. Among the six phenotypic traits assessed here, only habitat type mapped onto the species tree without homoplasy, showing that trait evolution was the result of complex patterns of divergence, introgression and convergent evolution.
Collapse
Affiliation(s)
- Andrinajoro R Rakotoarivelo
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Zoology and Entomology, University of the Free State: QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866, Republic of South Africa
| | - Thabelo Rambuda
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Genetics, University of Pretoria, Private Bag X20, Hatfield 0028, Republic of South Africa
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, A-1160 Wien, Austria
| | | | - Jan Robovský
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa.
| |
Collapse
|
43
|
Lorioux-Chevalier U, Chouteau M, Roland AB. The importance of reproductive isolation in driving diversification and speciation within Peruvian mimetic poison frogs (Dendrobatidae). Sci Rep 2024; 14:19803. [PMID: 39191906 PMCID: PMC11349946 DOI: 10.1038/s41598-024-70744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
To explain how populations with distinct warning signals coexist in close parapatry, we experimentally assessed intrinsic mechanisms acting as reproductive barriers within three poison-frog species from the Peruvian Amazon belonging to a Müllerian mimetic ring (Ranitomeya variabilis, Ranitomeya imitator and Ranitomeya fantastica). We tested the role of prezygotic and postzygotic isolation barriers between phenotypically different ecotypes of each species, using no-choice mating experiments and offspring survival analysis. Our results show that prezygotic mating preference did not occur except for one specific ecotype of R. imitator, and that all three species were able to produce viable inter-population F1 hybrids. However, while R. variabilis and R. imitator hybrids were able to produce viable F2 generations, we found that for R. fantastica, every F1 hybrid males were sterile while females remained fertile. This unexpected result, echoing with Haldane's rule of speciation, validated phylogenetic studies which tentatively diagnose these populations of R. fantastica as two different species. Our work suggests that postzygotic genetic barriers likely participate in the extraordinary phenotypic diversity observed within Müllerian mimetic Ranitomeya populations, by maintaining species boundaries.
Collapse
Affiliation(s)
- Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France.
| | - Mathieu Chouteau
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France
| | - Alexandre-Benoit Roland
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens, UAR 3456, CNRS, IFREMER, Université de Guyane, Cayenne, France.
| |
Collapse
|
44
|
Dedukh D, Lisachov A, Panthum T, Singchat W, Matsuda Y, Imai Y, Janko K, Srikulnath K. Meiotic deviations and endoreplication lead to diploid oocytes in female hybrids between bighead catfish ( Clarias macrocephalus) and North African catfish ( Clarias gariepinus). Front Cell Dev Biol 2024; 12:1465335. [PMID: 39247622 PMCID: PMC11377317 DOI: 10.3389/fcell.2024.1465335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Reproductive isolation and hybrid sterility are mechanisms that maintain the genetic integrity of species and prevent the introgression of heterospecific genes. However, crosses of closely related species can lead to complex evolution, such as the formation of all-female lineages that reproduce clonally. Bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) diverged 40 million years ago. They are cultivated and hybridized in Thailand for human consumption. Male hybrids are sterile due to genome-wide chromosome asynapsis during meiosis. Although female hybrids are sometimes fertile, their chromosome configuration during meiosis has not yet been studied. Methods We analyzed meiosis in the hybrid female catfish at pachytene (synaptonemal complexes) and diplotene (lampbrush chromosomes), using immunostaining to detect chromosome pairing and double-stranded break formation, and FISH with species-specific satellite DNAs to distinguish the parental chromosomes. Results More than 95% of oocytes exhibited chromosome asynapsis in female hybrid catfish; however, they were able to progress to the diplotene stage and form mature eggs. The remaining oocytes underwent premeiotic endoreplication, followed by synapsis and crossing over between sister chromosomes, similar to known clonal lineages in fish and reptiles. Discussion The occurrence of clonal reproduction in female hybrid catfish suggests a unique model for studying gametogenic alterations caused by hybridization and their potential for asexual reproduction. Our results further support the view that clonal reproduction in certain hybrid animals relies on intrinsic mechanisms of sexually reproducing parental species, given their multiple independent origins with the same mechanism.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czechia
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, Thailand
| |
Collapse
|
45
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Bringloe TT, Bourret A, Cote D, Marie-Julie R, Herbig J, Robert D, Geoffroy M, Parent GJ. Genomic architecture and population structure of Boreogadus saida from Canadian waters. Sci Rep 2024; 14:19331. [PMID: 39164428 PMCID: PMC11336163 DOI: 10.1038/s41598-024-69782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
The polar cod, Boreogadus saida, is an abundant and ubiquitous forage fish and a crucial link in Arctic marine trophic dynamics. Our objective was to unravel layers of genomic structure in B. saida from Canadian waters, specifically screening for potential hybridization with the Arctic cod, Arctogadus glacialis, large chromosomal inversions, and sex-linked regions, prior to interpreting population structure. Our analysis of 53,384 SNPs in 522 individuals revealed hybridization and introgression between A. glacialis and B. saida. Subsequent population level analyses of B. saida using 12,305 SNPs in 511 individuals revealed three large (ca. 7.4-16.1 Mbp) chromosomal inversions, and a 2 Mbp region featuring sex-linked loci. We showcase population structuring across the Western and Eastern North American Arctic, and subarctic regions ranging from the Hudson Bay to the Canadian Atlantic maritime provinces. Genomic signal for the inferred population structure was highly aggregated into a handful of SNPs (13.8%), pointing to potentially important adaptive evolution across the Canadian range. Our study provides a high-resolution perspective on the genomic structure of B. saida, providing a foundation for work that could be expanded to the entire circumpolar range for the species.
Collapse
Affiliation(s)
- Trevor T Bringloe
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| | - Audrey Bourret
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - David Cote
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, A0G 2M0, Canada
| | - Roux Marie-Julie
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - Jennifer Herbig
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
| | - Dominique Robert
- Institut Des Sciences de La Mer, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9036, Tromsø, Norway
| | - Geneviève J Parent
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| |
Collapse
|
47
|
Karbstein K, Kösters L, Hodač L, Hofmann M, Hörandl E, Tomasello S, Wagner ND, Emerson BC, Albach DC, Scheu S, Bradler S, de Vries J, Irisarri I, Li H, Soltis P, Mäder P, Wäldchen J. Species delimitation 4.0: integrative taxonomy meets artificial intelligence. Trends Ecol Evol 2024; 39:771-784. [PMID: 38849221 DOI: 10.1016/j.tree.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 06/09/2024]
Abstract
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.
Collapse
Affiliation(s)
- Kevin Karbstein
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany.
| | - Lara Kösters
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Ladislav Hodač
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Martin Hofmann
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany
| | - Elvira Hörandl
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Salvatore Tomasello
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Natascha D Wagner
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Brent C Emerson
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Island Ecology and Evolution Research Group, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Dirk C Albach
- Carl von Ossietzky-Universität Oldenburg, Institute of Biology and Environmental Science, 26129 Oldenburg, Germany
| | - Stefan Scheu
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany; University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany
| | - Sven Bradler
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, 37077 Göttingen, Germany; University of Göttingen, Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, 37077 Göttingen, Germany
| | - Iker Irisarri
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Phylogenomics Section, Museum of Nature, 20146 Hamburg, Germany
| | - He Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Chenshan Botanical Garden, 201602 Shanghai, China
| | - Pamela Soltis
- University of Florida, Florida Museum of Natural History, 32611 Gainesville, USA
| | - Patrick Mäder
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Ecology and Evolution, Philosophenweg 16, 07743 Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
48
|
Tseng YH, Kuo LY, Borokini I, Fawcett S. The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16388. [PMID: 39135339 DOI: 10.1002/ajb2.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, no. 145 Xingda Rd., South District, 40227, Taichung, Taiwan
| | - Li-Yaung Kuo
- College of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu, 30044, Taiwan
| | - Israel Borokini
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, 59717, MT, USA
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
- National Tropical Botanical Garden, 3530 Papālina Road, Kalāheo, 96741, HI, USA
| |
Collapse
|
49
|
Sharma MK, Adhikari R, Khanal SP, Acharya D, van Teijlingen E. Do school Water, Sanitation, and Hygiene facilities affect students' health status, attendance, and educational achievements? A qualitative study in Nepal. Health Sci Rep 2024; 7:e2293. [PMID: 39131595 PMCID: PMC11310280 DOI: 10.1002/hsr2.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims Access to safe and sufficient drinking Water, Sanitation, and good Hygiene (WASH) facilities in schools play a crucial role in preventing students from numerous Neglected Tropical Diseases, improving the learning environment in schools, and creating resilient communities living in a healthy environment. This study aims to explore the impact of combining WASH facilities on students' health status, school attendance, and educational achievements. Methods Four schools, two with improved and two without improved WASH facilities, were selected purposively from Dhanusha and Chitwan districts of Nepal. A total of 24 participants, 16 students, and eight teachers were also purposively selected based on the Theory of Data Saturation. The participants were interviewed face-to-face using study guidelines; Key Informants Interview for teachers and In-depth Interview for students. The data were audio recorded and analyzed thematically using Dedoose 9.0.17 qualitative data management and analysis software. Results School WASH facilities have a significant impact on students' health and well-being. Poor school-WASH facilities hindered students' school attendance, particularly for menstruating girls. School without separate toilets for girls, including menstruation hygiene facilities, lack of water and soap, sanitary pad, and secure toilet's door often have higher rates of absenteeism among girls. Poor teacher and students' relationships, students' low interest in education, household chores, and participation in social customs also contribute to students' absence from school and low educational performance. It is important to note that inadequate WASH facilities affect not only students, but also teachers in the same school. Conclusion The lack of safe and sufficient drinking water, unimproved sanitation, and poor hygiene facilities were seen by students and teachers as reducing their health and well-being, school attendance, and academic performance. Thus, schools need prioritize and promote the provision of improved WASH facilities for the betterment of students' health, attendance, and educational proficiency.
Collapse
Affiliation(s)
| | | | | | - Devaraj Acharya
- Research Centre for Educational Innovation and Development [CERID]Tribhuvan UniversityKathmanduNepal
| | | |
Collapse
|
50
|
Cheng XJ, Fritsch PW, Lin YJ, Li GH, Chen YQ, Zhang MY, Lu L. The role of Pleistocene dispersal in shaping species richness of sky island wintergreens from the Himalaya-Hengduan Mountains. Mol Phylogenet Evol 2024; 197:108082. [PMID: 38705251 DOI: 10.1016/j.ympev.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
In addition to topography and climate, biogeographic dispersal has been considered to influence plant diversity in the Himalaya-Hengduan Mountains (HHM), yet, the mode and tempo of sky island dispersal and its influence on species richness has been little explored. Through phylogenetic analysis of Gaultheria ser. Trichophyllae, a sky island alpine clade within the HHM, we test the hypothesis that dispersal has affected current local species richness. We inferred the dynamics of biogeographic dispersal with correlation tests on direction, distance, occurrence time, and regional species richness. We found that G. ser. Trichophyllae originated at the end of the Miocene and mostly dispersed toward higher longitudes (eastward). In particular, shorter intra-regional eastward dispersals and longer inter-regional westward dispersals were most frequently observed. We detected a prevalence of eastward intra-region dispersals in both glacial periods and interglacials. These dispersals may have been facilitated by the reorganization of paleo-drainages and monsoon intensification through time. We suggest that the timing of dispersal corresponding to glacial periods and the prevalence of intra-region dispersal, rather than dispersal frequency, most influenced the pattern of species richness of G. ser. Trichophyllae. This study facilitates a more comprehensive understanding of biodiversity in the sky islands within the HHM.
Collapse
Affiliation(s)
- Xiao-Juan Cheng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA
| | - Yan-Jun Lin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Guo-Hong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yan-Quan Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmacy, Sun Yat-sen University, Guangzhou 510000, China
| | - Ming-Ying Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Lu Lu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|