1
|
Fuse N, Morita S, Matsue Y. Age-related hair denaturation related to protein carbonyls. Int J Cosmet Sci 2024; 46:348-356. [PMID: 38083986 DOI: 10.1111/ics.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Hair ageing is accompanied by hair fibres becoming irregularly shaped causing them to stick out in irregular directions or have more curliness and being spread out. This is believed to be due to changes within the hair fibre structure which occur with ageing, and one of the causes of these changes could be an increase in the number of protein carbonyl groups present in the hair. The aim of this study is to investigate the internal denaturation of hair related to protein carbonyls in attempt to gain new insight into age-related changes that occur in hair. METHODS The degree of carbonylation of the hair structural protein as determined by fluorescent labelling and Western blotting analysis was used to investigate the primary structure of hair protein. The amount of helix, a common conformation in the secondary structure of proteins, in hair in groups of women with different ages was also analysed using infrared microscopy coupled with multivariate curve resolution (MCR). From the results of this, an image of the two-dimensional distribution of the α-helices was generated for the hair taken from each age group. Also, high-pressure differential scanning calorimetry (HPDSC) of the hair in water was performed on the hair taken from each age group to determine the peak temperature of endothermic effect and the enthalpy of denaturation. RESULTS We found that the amino group content in hair proteins decreased and Type II keratin, one of the subunits of intermediate filament, was more carbonylated with age. The results of the MCR indicated eight separate components, including components of the secondary structure of proteins, such as α helices and β sheets. Two-dimensional images of the hair cross-sections revealed that the presence of α helices decreased with age. In addition, data from the HPDSC showed that the enthalpy associated with the denaturing temperature also significantly decreased with age. CONCLUSION These results suggest that there is a negative correlation between age and structural integrity of the helix segment in intermediate filament. The results of this study also show that there is a positive correlation between age-related hair denaturation and protein carbonyls.
Collapse
Affiliation(s)
- Naoya Fuse
- Beauty Care Laboratory, Home Products Campany, Kracie, Ltd., Yokohama, Japan
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, Neyagawa, Japan
| | - Yukako Matsue
- Beauty Care Laboratory, Home Products Campany, Kracie, Ltd., Yokohama, Japan
| |
Collapse
|
2
|
Xiong J, Chen G, Liu Z, Wu X, Xu S, Xiong J, Ji S, Wu M. Construction of regulatory network for alopecia areata progression and identification of immune monitoring genes based on multiple machine-learning algorithms. PRECISION CLINICAL MEDICINE 2023; 6:pbad009. [PMID: 37333624 PMCID: PMC10268596 DOI: 10.1093/pcmedi/pbad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Alopecia areata (AA) is an autoimmune-related non-cicatricial alopecia, with complete alopecia (AT) or generalized alopecia (AU) as severe forms of AA. However, there are limitations in early identification of AA, and intervention of AA patients who may progress to severe AA will help to improve the incidence rate and prognosis of severe AA. Methods We obtained two AA-related datasets from the gene expression omnibus database, identified the differentially expressed genes (DEGs), and identified the module genes most related to severe AA through weighted gene co-expression network analysis. Functional enrichment analysis, construction of a protein-protein interaction network and competing endogenous RNA network, and immune cell infiltration analysis were performed to clarify the underlying biological mechanisms of severe AA. Subsequently, pivotal immune monitoring genes (IMGs) were screened through multiple machine-learning algorithms, and the diagnostic effectiveness of the pivotal IMGs was validated by receiver operating characteristic. Results A total of 150 severe AA-related DEGs were identified; the upregulated DEGs were mainly enriched in immune response, while the downregulated DEGs were mainly enriched in pathways related to hair cycle and skin development. Four IMGs (LGR5, SHISA2, HOXC13, and S100A3) with good diagnostic efficiency were obtained. As an important gene of hair follicle stem cells stemness, we verified in vivo that LGR5 downregulation may be an important link leading to severe AA. Conclusion Our findings provide a comprehensive understanding of the pathogenesis and underlying biological processes in patients with AA, and identification of four potential IMGs, which is helpful for the early diagnosis of severe AA.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sha Xu
- Institute of Translational Medicine, Naval Military Medical University, Shanghai 200433, China
| | - Jun Xiong
- Department of Histology and Embryology, Naval Military Medical University, Shanghai 200433, China
| | | | | |
Collapse
|
3
|
Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Trop Anim Health Prod 2022; 54:271. [PMID: 36040617 DOI: 10.1007/s11250-022-03244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/25/2022] [Indexed: 10/14/2022]
Abstract
In this research, the effect of mixed feather bioactive peptides (MFBPs) added in water, on intestinal health, meat quality, and plasma cholesterol level of broiler chickens, was evaluated. A total of 80 day-old male broiler chicks (Ross 308) were randomly divided into two treatments with four replication pens. The dietary treatments were the drinking water with no additives (control) and drinking water containing 50 mg/L of MFBPs. Live weight and feed intake were measured at the end of starter (1-10 days), grower (11-24 days), and finisher (25-36 days) periods by calculating the average daily gain and feed conversion ratio. The results indicate that body weight gain was greater (P < 0.05) in birds that received MFBPs in the final period. At 24 days of age, the villus height and muscle layer thickness in different parts of the intestine were higher in birds that received bioactive peptides but epithelial thickness was lower than that in control birds (P < 0.05). In addition, the administration of MFBPs decreased (P < 0.01) serum total cholesterol, triglyceride, and low-density lipoprotein in broilers. Supplementation with MFBPs significantly reduced (P < 0.01) the malondialdehyde (MDA) amount in the thigh muscle. In conclusion, using the MFBPs in the diet of broilers could improve meat quality, cholesterol concentration in serum, and gut health.
Collapse
|
4
|
Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021; 13:2029. [PMID: 34959311 PMCID: PMC8705570 DOI: 10.3390/pharmaceutics13122029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.
Collapse
Affiliation(s)
- Marek Konop
- Laboratory of Center for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.D.)
| | | | | |
Collapse
|
5
|
Genome-wide association study of trypanosome prevalence and morphometric traits in purebred and crossbred Baoulé cattle of Burkina Faso. PLoS One 2021; 16:e0255089. [PMID: 34351956 PMCID: PMC8341487 DOI: 10.1371/journal.pone.0255089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
In this study, single-SNP GWAS analyses were conducted to find regions affecting tolerance against trypanosomosis and morphometrics traits in purebred and crossbred Baoulé cattle of Burkina Faso. The trypanosomosis status (positive and negative) and a wide set of morphological traits were recorded for purebred Baoulé and crossbred Zebu x Baoulé cattle, and genotyped with the Illumina Bovine SNP50 BeadChip. After quality control, 36,203 SNPs and 619 animals including 343 purebred Baoulé and 279 crossbreds were used for the GWAS analyses. Several important genes were found that can influence morphological parameters. Although there were no genes identified with a reported strong connection to size traits, many of them were previously identified in various growth-related studies. A re-occurring theme for the genes residing in the regions identified by the most significant SNPs was pleiotropic effect on growth of the body and the cardiovascular system. Regarding trypanosomosis tolerance, two potentially important regions were identified in purebred Baoulé on chromosomes 16 and 24, containing the CFH, CRBN, TRNT1 and, IL5RA genes, and one additional genomic region in Baoulé, x Zebu crossbreds on chromosome 5, containing MGAT4C and NTS. Almost all of these regions and genes were previously related to the trait of interest, while the CRBN gene was to our knowledge presented in the context of trypanosomiasis tolerance for the first time.
Collapse
|
6
|
Alahyaribeik S, Sharifi SD, Tabandeh F, Honarbakhsh S, Ghazanfari S. Stability and cytotoxicity of DPPH inhibitory peptides derived from biodegradation of chicken feather. Protein Expr Purif 2020; 177:105748. [PMID: 32911063 DOI: 10.1016/j.pep.2020.105748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
Abstract
The antioxidant activity and cell viability of feather hydrolysates obtained with the Bacillus licheniformis were evaluated using an in-vitro model. The results indicate that feathers-derived peptides under 3 kDa have antioxidant activity with IC50 values of 5.03 ± 0.215 mg/mL by using DPPH antioxidant assay. Although the antioxidant activity of the peptides under 3 kDa preserved after applying diverse heating (from 20 to 100 °C), they lost their activity under strongly acidic or alkaline conditions. Antioxidant activity of the mixed feather bioactive peptides (MFBPs) obtained with partial purification of peptides under 3 kDa was with IC50 amount of 0.169 mg/mL ± 0.004 using DPPH radical scavenging assay. Also, MFBPs within an amount range of from 0.0048 to 5.0 mg/mL, illustrated no cytotoxicity to gingival fibroblast blood cell lines. In light of our results, the obtained value-added peptides could be useful in different food products as a future functional ingredient with antioxidant potency.
Collapse
Affiliation(s)
- Samira Alahyaribeik
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Fatemeh Tabandeh
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Shirin Honarbakhsh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Shokoufe Ghazanfari
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Alahyaribeik S, Ullah A. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. Int J Biol Macromol 2020; 148:449-456. [DOI: 10.1016/j.ijbiomac.2020.01.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
8
|
Diversity of Trichocyte Keratins and Keratin Associated Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1054:21-32. [PMID: 29797265 DOI: 10.1007/978-981-10-8195-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Wool and hair fibres are primarily composed of proteins of which the keratins and keratin associated proteins (KAPs) are the major component. Considerable diversity is known to exist within these two groups of proteins. In the case of the keratins two major families are known, of which there are 11 members in the acidic Type I family and 7 members in the neutral-basic Type II family. The KAPs are even more diverse than the keratins, with 35 families being known to exist when the KAPs found in monotremes, marsupials and other mammalian species are taken into consideration. Human hair and wool are known to have 88 and 73 KAPs respectively, though this number rises for wool when polymorphism within KAP families is included.
Collapse
|
9
|
Vineis C, Varesano A, Varchi G, Aluigi A. Extraction and Characterization of Keratin from Different Biomasses. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Hu MS, Borrelli MR, Hong WX, Malhotra S, Cheung ATM, Ransom RC, Rennert RC, Morrison SD, Lorenz HP, Longaker MT. Embryonic skin development and repair. Organogenesis 2018; 14:46-63. [PMID: 29420124 PMCID: PMC6150059 DOI: 10.1080/15476278.2017.1421882] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Alexander T. M. Cheung
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
11
|
Lu Z, Pan F, Wang D, Campana M, Xu H, Tucker I, Petkov JT, Webster J, Lu JR. Unusual surface and solution behaviour of keratin polypeptides. RSC Adv 2016. [DOI: 10.1039/c6ra15817j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermediate filament-like aggregation from keratin polypeptides upon increasing [NaCl] as revealed by SANS.
Collapse
Affiliation(s)
- Zhiming Lu
- Biological Physics Laboratory
- School of Physics and Astronomy
- University of Manchester
- Manchester
- UK
| | - Fang Pan
- Biological Physics Laboratory
- School of Physics and Astronomy
- University of Manchester
- Manchester
- UK
| | - Dong Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Mario Campana
- Biological Physics Laboratory
- School of Physics and Astronomy
- University of Manchester
- Manchester
- UK
| | - Hai Xu
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Ian M. Tucker
- Unilever Research and Development Laboratory
- Wirral CH63 2JW
- UK
| | - Jordan T. Petkov
- Unilever Research and Development Laboratory
- Wirral CH63 2JW
- UK
- Menara KLK 1
- 47810 Petaling Jaya
| | - John Webster
- ISIS Neutron Facility
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Harwell Science and Innovation, Campus
- Didcot OX11 0QX
| | - Jian R. Lu
- Biological Physics Laboratory
- School of Physics and Astronomy
- University of Manchester
- Manchester
- UK
| |
Collapse
|
12
|
Ma YM, Wu KJ, Dang Q, Shi Q, Gao Y, Guo P, Xu S, Wang XY, He DL, Gong YG. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling. Asian J Androl 2015; 16:817-23. [PMID: 24994782 PMCID: PMC4236322 DOI: 10.4103/1008-682x.129935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Da-Lin He
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an 710061, China
| | - Yong-Guang Gong
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 2015; 120:111-6. [DOI: 10.1016/j.jbiosc.2014.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
|
14
|
Wagner VP, Martins MD, Dillenburg CS, Meurer L, Castilho RM, Squarize CH. Histogenesis of keratoacanthoma: histochemical and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:310-7. [DOI: 10.1016/j.oooo.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
|
15
|
Miranda-Vilela AL, Botelho AJ, Muehlmann LA. An overview of chemical straightening of human hair: technical aspects, potential risks to hair fibre and health and legal issues. Int J Cosmet Sci 2013; 36:2-11. [DOI: 10.1111/ics.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- A. L. Miranda-Vilela
- Department of Genetics and Morphology; Institute of Biological Sciences; University of Brasilia; Brasilia DF Brazil
- Nanodynamics Consulting and Innovation Ltd; University of Brasilia; Brasilia DF Brazil
| | | | - L. A. Muehlmann
- Nanodynamics Consulting and Innovation Ltd; University of Brasilia; Brasilia DF Brazil
| |
Collapse
|
16
|
Kempson IM, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status. Chem Soc Rev 2011; 40:3915-40. [PMID: 21468435 DOI: 10.1039/c1cs15021a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hair analysis receives a large amount of academic and commercial interest for wide-ranging applications. However, in many instances, especially for elemental or 'mineral' analysis, the degree of success of analytical interpretation has been quite minimal with respect to the extent of such endeavors. In this critical review we address the questions surrounding hair analysis with specific intent of discovering what hair concentrations can actually relate to in a biogenic sense. This is done from a chemistry perspective to explain why and how elements are incorporated into hair and their meaning. This includes an overview of variables attributed to altering hair concentrations, such as age, gender, melanin content, and other less reported factors. Hair elemental concentrations are reviewed with regard to morbidity, with specific examples of disease related effects summarized. The application of hair analysis for epidemiology and etiology studies is enforced. A section is dedicated specifically to the area of population studies with regards to mercury, which highlights how endogenous and exogenous incorporation relies on species dependant metabolism and metabolic products. Many of the considerations are relevant to other areas of interest in hair analysis, such as for drug and isotopic analysis. Inclusion of a table of elemental concentrations in hair should act as a valuable reference (298 references).
Collapse
Affiliation(s)
- Ivan M Kempson
- Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | | |
Collapse
|
17
|
Lakshmi Priya MD, Geetha A. A biochemical study on the level of proteins and their percentage of nitration in the hair and nail of autistic children. Clin Chim Acta 2011; 412:1036-42. [PMID: 21338594 DOI: 10.1016/j.cca.2011.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/11/2011] [Accepted: 02/11/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Autism is a complex disorder which is heterogeneous in nature with varying degrees of severity for which no specific biological marker has been identified. Several studies are focused on the hair and nail protein pattern as a means to identify specific markers for the diagnosis of many childhood disorders like mental retardation, dyslexia, trichorrhexis nodosa, trichothiodystrophy, etc. The present study is one such approach in investigating the electrophoretic pattern of proteins in hard keratins and their percentage of nitration since nitric oxide production and nitration of tyrosine residues in proteins of autistic children are the emerging topic of research. METHODS We extracted and quantified the proteins from hair and nail samples of autistic children with different grades of severity, [low functioning autism (LFA), medium functioning autism (MFA), and high functioning autism (HFA)] and also from age- and sex-matched normal children. Protein pattern was evaluated by one-dimensional SDS-PAGE and the separated proteins were made to cross react with anti-nitro tyrosine antibody by Western blot analysis. Blood levels of TBARS, NO, GSH, vitamins A and C, SOD and GPx were also determined. RESULTS In the autistic groups, decreased concentration of protein in both hair and nail samples was observed. The SDS-PAGE analysis revealed that there was a significant decrease in both high and low sulfur proteins in the hair and nail extracts of autistic children and the Western blot analysis showed increased percentage of nitration of low sulfur proteins in autistic children when compared with normal children. Decreased levels of enzymatic and non-enzymatic antioxidants and increased concentration of TBARS and NO were also observed in the blood of autistic children. The LFA group showed more significant alteration (p<0.001) in the concentration of proteins (in hair and nail) and percentage of nitration when compared with HFA and controls. CONCLUSION Lower protein content and higher percentage of nitration in hair and nail of autistic children correlated with their degrees of severity.
Collapse
Affiliation(s)
- Malarveni Damodaran Lakshmi Priya
- Department of Biochemistry, Bharathi Women's College (Affiliated to University of Madras), North Chennai, 600 108, Tamil Nadu, India
| | | |
Collapse
|
18
|
Kurokawa I, Takahashi K, Moll I, Moll R. Expression of keratins in cutaneous epithelial tumors and related disorders - distribution and clinical significance. Exp Dermatol 2011; 20:217-28. [DOI: 10.1111/j.1600-0625.2009.01006.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Deleterious Mutations of a Claw Keratin in Multiple Taxa of Reptiles. J Mol Evol 2010; 72:265-73. [DOI: 10.1007/s00239-010-9427-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
20
|
Shin S, Lee A, Lee S, Lee K, Kwon J, Yoon MY, Hong J, Lee D, Lee GH, Kim J. Microwave-assisted extraction of human hair proteins. Anal Biochem 2010; 407:281-3. [DOI: 10.1016/j.ab.2010.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 11/24/2022]
|
21
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 419] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
22
|
Thibaut S, Cavusoglu N, de Becker E, Zerbib F, Bednarczyk A, Schaeffer C, van Dorsselaer A, Bernard BA. Transglutaminase-3 Enzyme: A Putative Actor in Human Hair Shaft Scaffolding? J Invest Dermatol 2009; 129:449-59. [DOI: 10.1038/jid.2008.231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Two-dimensional gel electrophoresis of wool intermediate filament proteins. J Proteomics 2008; 71:439-47. [DOI: 10.1016/j.jprot.2008.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/06/2008] [Accepted: 06/13/2008] [Indexed: 11/20/2022]
|
24
|
WESTGATE G, TIDMAN N, BERKER D, BLOUNT M, PHILPOTT M, LEIGH I. Characterization of LHTric-1, a new monospecific monoclonal antibody to the trichocyte keratin Ha1. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.1763184.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
FAYYAZI A, SORURI A, RADZUN H, PETERS J, BERGER H. Cell renewal, cell differentiation and programmed cell death (apoptosis) in pilomatrixoma. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.19412056.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Nanashima N, Akita M, Yamada T, Shimizu T, Nakano H, Fan Y, Tsuchida S. The Hairless Phenotype of the Hirosaki Hairless Rat Is Due to the Deletion of an 80-kb Genomic DNA Containing Five Basic Keratin Genes. J Biol Chem 2008; 283:16868-75. [DOI: 10.1074/jbc.m802539200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Fujii T, Murai S, Ohkawa K, Hirai T. Effects of human hair and nail proteins and their films on rat mast cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2335-2342. [PMID: 18157509 DOI: 10.1007/s10856-007-3341-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/27/2007] [Indexed: 05/25/2023]
Abstract
Human hair and nail are valuable materials for producing individual corresponding biocompatible materials. A rapid and convenient protein extraction method (Shindai method) and novel procedures for preparing their protein films from their extracts have been developed using human hair and nail. The effects of the human hair and nail proteins and their films on histamine release from rat peritoneal mast cells were investigated. Both protein solutions and their films, mainly consisting of keratins and matrix proteins, did not induce histamine release from the mast cells. Scanning electron microscopy (SEM) also showed that the mast cells were only slightly affected by adding the human hair and nail proteins or by incubating on their protein films. The IgE-dependent histamine release was inhibited by the hair and nail proteins and their films. Incubation of the mast cells with the hair and nail proteins prior to the addition of the IgE serum resulted in a high inhibition (50%) of the histamine release, while the inhibition was approximately 10% when the protein solutions were mixed with the mast cells after incubation with the IgE serum. These results suggest that the human hair and nail proteins and their films will be useful materials for antiallergic actions.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, 386-8567, Japan.
| | | | | | | |
Collapse
|
28
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
29
|
Nakaji-Hirabayashi T, Kato K, Iwata H. Self-Assembling Chimeric Protein for the Construction of Biodegradable Hydrogels Capable of Interaction with Integrins Expressed on Neural Stem/Progenitor Cells. Biomacromolecules 2008; 9:1411-6. [DOI: 10.1021/bm701423d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Kato
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
30
|
HUGHES B, MORRIS C, CUNLIFFE W, LEIGH I. Keratin expression in pilosebaceous epithelia in truncal skin of acne patients. Br J Dermatol 2008. [DOI: 10.1111/j.1365-2133.1996.tb07609.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Schweizer J, Langbein L, Rogers MA, Winter H. Hair follicle-specific keratins and their diseases. Exp Cell Res 2007; 313:2010-20. [PMID: 17428470 DOI: 10.1016/j.yexcr.2007.02.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
The human keratin family comprises 54 members, 28 type I and 26 type II. Out of the 28 type I keratins, 17 are epithelial and 11 are hair keratins. Similarly, the 26 type II members comprise 20 epithelial and 6 hair keratins. As, however, 9 out of the 37 epithelial keratins are specifically expressed in the hair follicle, the total number of hair follicle-specific keratins (26) almost equals that of those expressed in the various forms of epithelia (28). Up to now, more than half of the latter have been found to be involved in inherited diseases, with mutated type I and type II members being roughly equally causal. In contrast, out of the 26 hair follicle-specific keratins only 5 have, at present, been associated with inherited hair disorders, while one keratin merely acts as a risk factor. In addition, all hair follicle-specific keratins involved in pathologies are type II keratins. Here we provide a detailed description of the respective hair diseases which are either due to mutations in hair keratins (monilethrix, ectodermal dysplasia of hair and nail type) or hair follicle-specific epithelial keratins (two mouse models, RCO3 and Ca(Rin) as well as pseudofolliculitis barbae).
Collapse
Affiliation(s)
- Jürgen Schweizer
- Section of Normal and Neoplastic Epidermal, Differentiation (A145), German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DAD, Rogers MA, Wright MW. New consensus nomenclature for mammalian keratins. ACTA ACUST UNITED AC 2006; 174:169-74. [PMID: 16831889 PMCID: PMC2064177 DOI: 10.1083/jcb.200603161] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.
Collapse
Affiliation(s)
- Jürgen Schweizer
- Section of Normal and Neoplastic Epidermal Differentiation, Division of Cell Biology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bowden PE. The human type II keratin gene cluster on chromosome 12q13.13: final count or hidden secrets? J Invest Dermatol 2005; 124:xv-xvii. [PMID: 15737184 DOI: 10.1111/j.0022-202x.2005.23647.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul E Bowden
- Department of Dermatology, Wales College of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Abstract
Substantial progress has been made regarding the elucidation of differentiation processes of the human hair follicle. This review first describes the genomic organization of the human hair keratin gene family and the complex expression characteristics of hair keratins in the hair-forming compartment. Sections describe the role and fate of hair keratins in the diseased hair follicle, particularly hereditary disorders and hair follicle-derived tumors. Also included is a report on the actual state of knowledge concerning the regulation of hair keratin expression. In the second part of this review, essentially the same principles are applied to outline more recent and, thus, occasionally fewer data on specialized epithelial keratins expressed in various tissue constituents of the external sheaths and the companion layer of the follicle. A closing outlook highlights issues that need to be explored further to deepen our insight into the biology and genetics of the hair follicle.
Collapse
Affiliation(s)
- Lutz Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
35
|
Hair Keratins and Hair Follicle–Specific Epithelial Keratins. Methods Cell Biol 2004. [DOI: 10.1016/s0091-679x(04)78015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Kikkawa Y, Oyama A, Ishii R, Miura I, Amano T, Ishii Y, Yoshikawa Y, Masuya H, Wakana S, Shiroishi T, Taya C, Yonekawa H. A Small Deletion Hotspot in the Type II Keratin Gene mK6irs1/Krt2-6g on Mouse Chromosome 15, a Candidate for Causing the Wavy Hair of the Caracul (Ca) Mutation. Genetics 2003; 165:721-33. [PMID: 14573483 PMCID: PMC1462786 DOI: 10.1093/genetics/165.2.721] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A new mutation has arisen in a colony of mice transgenic for human α-galactosidase. The mutation is independent of the transgenic insertion, autosomal dominant, and morphologically very similar to the classical wavy coat mutation, caracul (Ca), on chromosome 15. Therefore, we designated this locus the caracul Rinshoken (CaRin). Applying a positional cloning approach, we identified the mK6irs1/Krt2-6g gene as a strong candidate for CaRin because among five Ca alleles examined mutations always occurred in the highly conserved positions of the α-helical rod domain (1A and 2B subdomain) of this putative gene product. The most striking finding is that four independently discovered alleles, the three preexistent alleles CaJ, Ca9J, Ca10J, and our allele CaRin, all share one identical amino acid deletion (N 140 del) and the fifth, CamedJ, has an amino acid substitution (A 431 D). These findings indicate that a mutation hotspot exists in the Ca locus. Additionally, we describe a Ca mutant allele induced by ENU mutagenesis, which also possesses an amino acid substitution (L 424 W) in the mK6irs1/Krt2-6g gene. The identification of the Ca candidate gene enables us to further define the nature of the genetic pathway required for hair formation and provides an important new candidate that may be implicated in human hair and skin diseases.
Collapse
Affiliation(s)
- Yoshiaki Kikkawa
- Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thibaut S, Collin C, Langbein L, Schweizer J, Gautier B, Bernard BA. Hair keratin pattern in human hair follicles grown in vitro. Exp Dermatol 2003; 12:160-4. [PMID: 12702144 DOI: 10.1034/j.1600-0625.2003.00046.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The keratin family includes epithelial (soft) keratins and hair (hard) keratins, and can be divided into acidic type I and basic to neutral type II subfamilies. Recently, nine type I and six type II hair keratin genes have been characterized through the screening of a human PAC library. The expression of these genes in the hair follicle was determined in vivo and a combined catalog of acidic and basic hair keratins was established. In this study, we investigated the expression and localization of most of the human hair keratin members of both types in human hair grown in vitro. We show that in vitro growth of hair follicles for 10 days in complete William's E culture medium did not alter the expression pattern of hair keratins. Similarly to the in vivo situation, each hair keratin was localized in precise and discrete compartments of the follicle, ranging from the matrix to the upper cortex and/or the hair cuticle. This study shows that the increase in length of in vitro grown follicles was accompanied by the proper hair shaft keratinization process. It also shows that hair follicle integrity was maintained in vitro, both in terms of gross morphology and molecular organization despite the complexity of the keratin expression pattern.
Collapse
|
38
|
Hofmann I, Winter H, Mücke N, Langowski J, Schweizer J. The in vitro assembly of hair follicle keratins: comparison of cortex and companion layer keratins. Biol Chem 2002; 383:1373-81. [PMID: 12437130 DOI: 10.1515/bc.2002.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hair follicle consists of a complex system of multiple tissue compartments that are clearly distinguishable by their morphology and type of differentiation. We have synthesized hair follicle-specific keratins from the companion layer (K6hf, K17) and the hair cortex (Ha1, Hb3, Hb6) in Escherichia coli. The assembly of purified keratins in mixtures of K6hf/K17 and in mixtures of hair cortex keratins was compared in urea solutions, low ionic strength and physiological strength buffers, by urea melting gels, electron microscopy and analytical ultracentrifugation. Both types of keratin mixtures, keratins from the companion layer and keratins from the hair cortex, formed heterotypic complexes at 5 M urea. In low ionic strength buffers, the keratins from the companion layer were assembled to bona fide intermediate filaments. In contrast, mixtures of hair cortex keratins stayed in an oligomeric state with a mean s value of 9 as determined in sedimentation velocity experiments. Hair cortex keratins were, however, assembled into intermediate filaments at physiological salt conditions. A point mutated hair cortex keratin [Hb6(Glu402Lys)] formed no long filaments when mixed with Ha1; instead, the assembled structures showed a length distribution of 50.8 +/- 13.4 nm, comparable to the size distribution of assembly intermediates called 'unit-length' filaments.
Collapse
Affiliation(s)
- Ilse Hofmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Nakamura A, Arimoto M, Takeuchi K, Fujii T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull 2002; 25:569-72. [PMID: 12033494 DOI: 10.1248/bpb.25.569] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a rapid and convenient extraction procedure of human hair proteins to examine their biochemical properties in detail. This procedure is based upon the fact that the combination of thiourea and urea in the presence of a reductant can effectively remove proteins from the cortex part of human hair. The extracted fraction mainly consisted of hard alpha-keratins with molecular masses of 40-60 kDa, matrix proteins with 12-18kDa, and minor components with 110-115kDa and 125-135kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein phosphorylation in human hair was investigated by immunoblotting with antibodies against phosphoserine, phosphothreonine and phosphotyrosine. We found serine phosphorylation in alpha-keratins and matrix proteins and threonine phosphorylation in alpha-keratins. The extraction was also found to be effective when wool, chicken feathers, rat hair and human nails were used as starting materials.
Collapse
Affiliation(s)
- Akira Nakamura
- Life Science Research Center, Lion Corporation, Odawara, Kanagawa, Japan
| | | | | | | |
Collapse
|
41
|
Langbein L, Rogers MA, Praetzel S, Aoki N, Winter H, Schweizer J. A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized huxley cells (Flügelzellen) of the human hair follicle. J Invest Dermatol 2002; 118:789-99. [PMID: 11982755 DOI: 10.1046/j.1523-1747.2002.01711.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we have characterized a novel human type II keratin, hK6irs1, which is specifically expressed in the inner root sheath of the hair follicle. This keratin represents the ortholog of the recently described mouse inner root sheath keratin mK6irs. The two keratins were highly related and migrated at the same height as keratin 6 in two-dimensional gel electrophoresis. Both RNA in situ hybridization and indirect immunofluorescence studies of human hair follicles demonstrated hK6irs1 expression in the Henle and Huxley layers as well as in the cuticle of the inner root sheath. In all three layers, the expression of hK6irs1 mRNA and protein began simultaneously in adjacent cells of the lowermost bulb above the germinative cell pool. Higher up in the follicle, the detection limits for both hK6irs1 mRNA and protein precisely coincided with the asynchronous onset of abrupt terminal differentiation of the Henle layer, inner root sheath cuticle, and Huxley layer. Mainly above the level of terminal Henle cell differentiation, both indirect immunofluorescence and immunoelectron microscopy revealed the occurrence of distinct Huxley cells that developed pseudopodal hK6irs1-positive extensions passing through the fully keratinized Henle layer. These outwardly protruding foot processes abutted upon cells of the companion layer, with which they were connected by numerous desmosomes. These specialized Huxley cells have previously been termed "Flügelzellen", which means "winged cells", with reference to their characteristic foot processes. We provide evidence that, together with Henle cells, Flügelzellen ensure the maintenance of a continuous desmosomal anchorage of the companion layer along the entire inner root sheath. This tightly connected companion layer/inner root sheath unit provides an optimal molding and guidance of the growing hair shaft.
Collapse
Affiliation(s)
- Lutz Langbein
- German Cancer Research Center, Department of Cell Biology and Tumor Cell Regulation, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Plowman JE, Bryson WG, Flanagan LM, Jordan TW. Problems associated with the identification of proteins in homologous families: the wool keratin family as a case study. Anal Biochem 2002; 300:221-9. [PMID: 11779114 DOI: 10.1006/abio.2001.5459] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The keratin proteins from wool can be divided into two classes: the intermediate filament proteins (IFPs) and the matrix proteins. Using peptide mass spectral fingerprinting it was possible to match spots to the known theoretical sequences of some IFPs in web-based databases, as enzyme digestion generated sufficient numbers of peptides from each spot to achieve this. In contrast, it was more difficult to obtain good matches for some of the lower molecular weight matrix proteins. Relatively few peaks were generated from tryptic digests of high-sulfur proteins because of their lower molecular weight and the absence of basic residues in the first two-thirds of the sequence. Their high sequence homology also means that generally only a few of these peptides could be considered to be unique identifiers for each protein. Nevertheless, it was still possible to uniquely identify some of these proteins, while the presence of two peptides in the matrix-assisted laser desorption/ionization time-of-flight mass spectrum allowed classification of other protein spots as being members of this family. Only one major peptide peak was generated by the high-glycine tyrosine proteins (HGTPs) and there were relatively few sequences available in web-based databases, limiting their identification to one HGTP family.
Collapse
Affiliation(s)
- Jeffrey E Plowman
- Wool Research Organization of New Zealand, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
43
|
Langbein L, Rogers MA, Winter H, Praetzel S, Schweizer J. The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J Biol Chem 2001; 276:35123-32. [PMID: 11445569 DOI: 10.1074/jbc.m103305200] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human type II hair keratin subfamily consists of six individual members and can be divided into two groups. The group A members hHb1, hHb3, and hHb6 are structurally related, whereas group C members hHb2, hHb4, and hHb5 are rather distinct. Specific antisera against the individual hair keratins were used to establish the two-dimensional catalog of human type II hair keratins. In this catalog, hHb5 showed up as a series of isoelectric variants, well separated from a lower, more acidic, and complex protein streak containing isoelectric variants of hair keratins hHb1, hHb2, hHb3, and hHb6. Both in situ hybridization and immunohistochemistry on anagen hair follicles showed that hHb5 and hHb2 defined early stages of hair differentiation in the matrix (hHb5) and cuticle (hHb5 and hHb2), respectively. Although cuticular differentiation proceeded without the expression of further type II hair keratins, cortex cells simultaneously expressed hHb1, hHb3, and hHb6 at an advanced stage of differentiation. In contrast, hHb4, which is undetectable in hair follicle extracts and sections, could be identified as the largest and most alkaline member of this subfamily in cytoskeletal extracts of dorsal tongue. This hair keratin was localized in the posterior compartment of the tongue filiform papillae. Comparative analysis of type II with the previously published type I hair keratin expression profiles suggested specific, but more likely, random keratin-pairing principles during trichocyte differentiation. Finally, by combining the previously published type I hair keratin catalog with the type II hair keratin catalog and integrating both into the existing catalog of human epithelial keratins, we present a two-dimensional compilation of the presently known human keratins.
Collapse
Affiliation(s)
- L Langbein
- Divisions of Cell Biology and Tumor Cell Regulation, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Aoki N, Sawada S, Rogers MA, Schweizer J, Shimomura Y, Tsujimoto T, Ito K, Ito M. A novel type II cytokeratin, mK6irs, is expressed in the Huxley and Henle layers of the mouse inner root sheath. J Invest Dermatol 2001; 116:359-65. [PMID: 11231308 DOI: 10.1046/j.1523-1747.2001.01226.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hair follicle differentiation involves the expression of both epithelial-type keratins or cytokeratins and hair keratins as well as hair keratin-associated proteins. In this study, a cDNA clone encoding a cytokeratin family member was isolated using RNA differential display techniques. The predicted amino acid sequence derived from this clone, revealed a homology with a number of cytokeratins, not only in the central alpha-helical regions but also in the conserved portions of the amino and carboxy terminal domains, indicating that this protein represents a new member of the mouse type II cytokeratin family. Northern blot analysis showed expression in mouse skin, but not in other tissues, including tongue, esophagus, and forestomach. One- and two-dimensional western blot analysis showed that this new cytokeratin was 57 kDa in size and ran slightly below the area of cytokeratin 5, which corresponded to that of the cytokeratin 6 family members. Both RNA in situ hybridization and immunohistochemical studies of mouse anagen hair follicles demonstrated expression of this cytokeratin in the inner root sheath hair cone during anagen III and in the Henle and Huxley layers of the inner root sheath during anagen VI. The expression of the new cytokeratin began in the hair bulb and progressed up to the height of the keratogenous zone. Taken together the sum of the data analyzed, we have termed this novel cytokeratin mK6irs (mouse gene nomenclature k2-6g) to indicate both its similar mobility with K6 in two-dimensional gels and its specific expression in the inner root sheath of the hair follicle.
Collapse
Affiliation(s)
- N Aoki
- Department of Dermatology, Niigata University School of Medicine, Asahimachi-dori, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Osamu YAMAMOTO
- Department of Dermatology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
46
|
Ferraris C, Chevalier G, Favier B, Jahoda CA, Dhouailly D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development 2000; 127:5487-95. [PMID: 11076768 DOI: 10.1242/dev.127.24.5487] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent work has shown remarkable plasticity between neural and hematopoeitic, as well as between hematopoeitic and muscle stem cells, depending on environmental stimuli (Fuchs, E. and Segre, J. A. (2000) Cell 100, 143–155). Stem cells give rise to a proliferative transient amplifying population (TA), which is generally considered to be irreversibly committed. Corneal epithelium provides a particularly useful system for studying the ability of TA cells to activate different genetic programs in response to a change in their fibroblast environment. Indeed, corneal stem and TA cells occupy different localities - stem cells at the periphery, and TA cells more central (Lehrer, M. S., Sun, T. T. and Lavker, R. M. (1998) J. Cell Sci. 111, 2867–2875) - and thus can be discretely dissected from each other. It is well known that pluristratified epithelia of cornea and skin display distinct programs of differentiation: corneal keratinocytes express keratin pair K3/K12 and epidermal keratinocytes keratin pair K1-2/K10; moreover, the epidermis forms cutaneous appendages, which express their own set of keratins. In our experiments, central adult rabbit corneal epithelium was thus associated either with a mouse embryonic dorsal, upper-lip or plantar dermis before grafting onto nude mice. Complementary experiments were performed using adult mouse corneal epithelium from the Rosa 26 strain. The origin of the differentiated structures were identified in the first case by Hoechst staining and in the second by the detection of beta-galactosidase activity. The results show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. They give rise first to a new basal stratum, which does not express anymore corneal-type keratins, then to pilosebaceous units, or sweat glands, depending of the dermis, and finally to upper layers expressing epidermal-type keratins. Our results provide the first evidence that a distinct TA cell population can be reprogrammed.
Collapse
Affiliation(s)
- C Ferraris
- Equipe Biologie de la Différenciation Epithéliale, UMR CNRS 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
47
|
McGowan KM, Coulombe PA. Keratin 17 expression in the hard epithelial context of the hair and nail, and its relevance for the pachyonychia congenita phenotype. J Invest Dermatol 2000; 114:1101-7. [PMID: 10844551 DOI: 10.1046/j.1523-1747.2000.00986.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hard-keratin-containing portion of the murine hair shaft displays a positive immunoreactivity with an antibody against the soft epithelial keratin, K17. The K17-expressing cell population is located in the medulla compartment of the hair. Consistent with this observation, K17-containing cells also occur in the presumptive medulla precursor cells located in the hair follicle matrix. Western blot analysis of hair extracts prepared from a number of mouse strains confirms this observation and suggests that K17 expression in the hair shaft is a general trait in this species. The expression of K17 in human hair extracts is restricted to eyebrow and facial hair samples. These are the major sites for the occurrence of the pili torti (twisted hair) phenotype in the type 2 (Jackson-Lawler) form of pachyonychia congenita, previously shown to arise from inherited K17 mutations. Given that all forms of pachyonychia congenita show an involvement of the nail, we compared the expression of the two other genes mutated in pachyonychia congenita diseases, K6 and K16, with that of K17 in human nail. All three keratins are abundantly expressed within the nail bed epithelium, whereas K17 protein is expressed in the nail matrix, which contains the epithelial cell precursors for the nail plate. Our data suggest a role for K17 in the formation and maintenance of various skin appendages and directly support the concept that pachyonychia congenita is a disease of the nail bed.
Collapse
Affiliation(s)
- K M McGowan
- Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
48
|
Rogers MA, Winter H, Langbein L, Wolf C, Schweizer J. Characterization of a 300 kbp region of human DNA containing the type II hair keratin gene domain. J Invest Dermatol 2000; 114:464-72. [PMID: 10692104 DOI: 10.1046/j.1523-1747.2000.00910.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Screening of an arrayed human genomic P1 artificial chromosome DNA library by means of the polymerase chain reaction with a specific primer pair from the human type II hair keratin hHb5 yielded two P1 artificial chromosome clones covering approximately 300 kb of genomic DNA. The contig contained six type II hair keratin genes, hHb1-hHb6, and four keratin pseudogenes psihHbA-psihHbD. This hair keratin gene domain was flanked by type II epithelial keratins K6b/K6hf and K7, respectively. The keratin genes/pseudogene are 5-14 kbp in size with intergenic distances of 5-19 kbp of DNA and do not exhibit a single direction of transcription. With one exception, type II hair keratin genes are organized into nine exons and eight introns, with strictly conserved exon-intron boundaries. The functional hair keratin genes are grouped into two distinct subclusters near the extremities of the hair keratin gene domain. One subcluster encodes the highly related hair keratins hHb1, hHb3, and hHb6; The second cluster encodes the structurally less related hair keratins hHb2, hHb4, and hHb5. Reverse transcription-polymerase chain reaction shows that all hair keratin genes are expressed in the hair follicle. Pseudogene psihHbD is also transcriptionally expressed, albeit with alterations in splicing and frameshift mutations, leading to premature stop codons in the splice forms analyzed. Evolutionary tree analysis revealed a divergence of the type II hair keratin genes from the epithelial keratins, followed by their segregation into the members of the two subclusters over time. We assume that the approximately 200 kbp DNA domain contains the entire complement of human type II hair keratin genes.
Collapse
Affiliation(s)
- M A Rogers
- German Cancer Research Center, Research Programs 1 and 2, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Langbein L, Rogers MA, Winter H, Praetzel S, Beckhaus U, Rackwitz HR, Schweizer J. The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. J Biol Chem 1999; 274:19874-84. [PMID: 10391933 DOI: 10.1074/jbc.274.28.19874] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human type I hair keratin subfamily comprises nine individual members, which can be subdivided into three groups. Group A (hHa1, hHa3-I, hHa3-II, hHa4) and B (hHa7, hHa8) each contains structurally related hair keratins, whereas group C members hHa2, hHa5, and hHa6 represent structurally rather unrelated hair keratins. Antibodies produced against these individual hair keratins, first analyzed for specificity by one- dimensional Western blots of total hair keratins, were used to establish the two-dimensional catalog of the human type I hair keratin subfamily. The catalog comprises two different series of type I hair keratins: a strongly expressed, Coomassie-stainable series containing hair keratins hHa1, hHa3-I/II, hHa4, and hHa5, and a weakly expressed, immunodetectable series harboring hHa2, hHa6 hHa7, and hHa8. In situ hybridization and immunohistochemical expression studies on scalp follicles show that two hair keratins, hHa2 and hHa5, define the early stage of hair differentiation, i.e. hHa5 expression in hair matrix and hHa5/hHa2 coexpression in the early hair cuticle cells. Whereas cuticular differentiation proceeds without the expression of further type I hair keratins, matrix cells embark on the cortical pathway by sequentially expressing hHa1, hHa3-I/II, and hHa4, which are supplemented by hHa6 at an advanced stage of cortical differentiation, and hHa8, which is expressed heterogeneously in cortex cells. Thus, six type I hair keratins are involved in the terminal differentiation of anagen hairs. The expression of hHa7 is conspicuously different from that of the other hair keratins in that it does not occur in the large anagen follicles of terminal scalp hairs but only in central cortex cells of the rare and small follicle type that gives rise to vellus hairs.
Collapse
Affiliation(s)
- L Langbein
- Division of Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Winter H, Langbein L, Praetzel S, Jacobs M, Rogers MA, Leigh IM, Tidman N, Schweizer J. A novel human type II cytokeratin, K6hf, specifically expressed in the companion layer of the hair follicle. J Invest Dermatol 1998; 111:955-62. [PMID: 9856802 DOI: 10.1046/j.1523-1747.1998.00456.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an attempt to identify new members of the human type II hair keratin family by means of 3'- and 5'-RACE methods and cDNA from anagen hair follicles, we detected a sequence that encoded a hitherto unknown type II cytokeratin. The novel cytokeratin comprises 251 amino acids and exhibits the highest sequence homology with K5. Comparative one- and two-dimensional western blots of keratins from anagen hair bulbs, containing or not containing the outer and inner root sheaths (ORS/IRS), and from footsole epidermis with an antibody against the new cytokeratin, revealed its comigration with K6 and its expression in the ORS/IRS complex. We have therefore named the new cytokeratin K6hf, to distinguish it from the various K6 isoforms and to indicate its expression in the hair follicle. Both in situ hybridization with a K6hf-specific cRNA probe and indirect immunofluorescence with the K6hf antibody showed that K6hf is exclusively expressed in the so-called "companion layer" of the hair follicle, a single layered band of flat and vertically oriented cells between the cuboidal ORS cells and the IRS that stretches from the lowermost bulb region to the isthmus of the follicle. Concomitant K17 and K16 expression studies showed that besides suprabasal ORS cells, these cytokeratins are sequentially expressed subsequent to K6hf in companion cells above the hair bulb. Our study confirms the view of a vertically oriented companion layer differentiation. The clearly delayed K17 and K16 expression relative to that of K6hf in companion cells most probably excludes these keratins as possible type I partners of K6hf and suggests the existence of a still unknown type I partner of its own. Thus, not only morphologically but also biochemically, the companion layer is different from the ORS and can therefore be regarded as an independent histologic compartment of the hair follicle.
Collapse
Affiliation(s)
- H Winter
- German Cancer Research Center, Department of Tumor Cell Regulation, Heidelberg
| | | | | | | | | | | | | | | |
Collapse
|