1
|
Kohler KT, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells. Breast Cancer Res 2024; 26:183. [PMID: 39695857 DOI: 10.1186/s13058-024-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Basal-like breast cancer originates in luminal progenitors, frequently with an altered PI3K pathway, and focally in close association with genetically altered myoepithelial cells at the site of tumor initiation. The exact trajectory behind this bi-lineage phenomenon remains poorly understood. METHODS AND RESULTS Here we used a breast cancer relevant transduction protocol including hTERT, shp16, shp53, and PIK3CAH1047R to immortalize FACS isolated luminal cells, and we identified a candidate multipotent progenitor. Specifically, we identified a keratin 23 (K23)+/ALDH1A3+/CALML5- ductal-like progenitor with the potential to differentiate into CALML5+ lobular-like cells. We found that the apparent luminal phenotype of these oncogene transduced progenitors was metastable giving rise to basal-like cells dependent on culture conditions. In 3D organoid culture and upon transplantation to mice the bipotent progenitor cell line organized into a bi-layered acinus-like structure reminiscent of that of the normal breast gland. CONCLUSIONS These findings provide proof of principle that progenitors within the human breast luminal epithelial compartment may serve as a source of correctly positioned myoepithelial cells. This may prove useful in assessing the role of myoepithelial cells in breast tumor progression.
Collapse
Affiliation(s)
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Shams A. Re-evaluation of the myoepithelial cells roles in the breast cancer progression. Cancer Cell Int 2022; 22:403. [PMID: 36510219 PMCID: PMC9746125 DOI: 10.1186/s12935-022-02829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, luminal epithelial cell lineage has gained considerable attraction as the functionally milk-secreting units and as the most fruitful acreage for breast cancer launching. Recognition of the effective involvement of the myoepithelial cells in mammary gland development and in hampering tumorigenesis has renewed the interest in investigating the biological roles of this second main mammary lineage. The human breast is made up of an extensively branching ductal system intervening by copious lobular units. The ductal system is coated by a chain of luminal epithelial cells (LECs) situated on a layer of myoepithelial cells (MECs) and encompassed by a distinguished basement membrane. Ductal contractility during lactation is a well-known function delivered by the MECs however this is not the only assignment mediated by these cellular populations. It has been well appreciated that the MECs exhibit a natural paracrine power in defeating cancer development and advancement. MECs were found to express numerous proteinase inhibitors, anti-angiogenic factors, and tumour suppressors proteins. Additionally, MECs contributed effectively to maintaining the right luminal cells' polarization and further separating them from the adjacent stroma by making an integrated fence. Indeed, disruption of the MECs layer was reported to facilitate the invasion of the cancer cells to the surrounding stroma. Nonetheless, MECs were also found to exhibit cancer-promoting effects and provoke tumour invasion and dissemination by displaying distinct cancer chemokines. Herein in this review, we aimed to address the roles delivered by MECs in breast cancer progression and decipher the molecular mechanisms regulating proper MECs' physiology, integrity, and terminal differentiation.
Collapse
Affiliation(s)
- Anwar Shams
- grid.412895.30000 0004 0419 5255Department of Pharmacology, College of Medicine, Taif University, P.O. BOX 11099, Taif, 21944 Saudi Arabia
| |
Collapse
|
3
|
Goldhammer N, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation. Commun Biol 2022; 5:219. [PMID: 35273332 PMCID: PMC8913783 DOI: 10.1038/s42003-022-03161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies. Breast myoepithelial cells are characterised using single cell sequencing, where they are distinguished by CD200 expression. Distinct properties of CD200-low and CD200-high are found, which suggest that CD200-low cells are multipotent, whereas CD200-high cells are bipotent.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Kim J, Villadsen R. The Expression Pattern of Epidermal Differentiation Marker Keratin 10 in the Normal Human Breast and Breast Cancer Cells. J Histochem Cytochem 2020; 68:561-570. [PMID: 32618487 DOI: 10.1369/0022155420940220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells of the human breast gland express an array of keratins, of which some are used for characterizing both normal and neoplastic breast tissue. However, the expression pattern of certain keratins has yet to be detailed. Here, the expression of a differentiation marker of epidermal epithelium, keratin 10 (K10), was investigated in the human breast gland. While in normal breast tissue generally less than 1% of luminal epithelial cells expressed K10, in women >30 years of age glandular structures with K10-positive (K10pos) cells were found at higher frequency than in younger women. K10pos cells belong to a mature luminal compartment as they were negative for cKIT, positive for Ks20.8, and mostly non-cycling. In breast cancer, around 16% of primary breast carcinomas tested were positive for K10 by immunohistochemistry. Interestingly, K10pos tumor cells generally exhibit features of differentiation similar to their normal counterparts. Although this suggests that K10 is a marker of tumor differentiation, data based on gene expression analysis imply that high levels of K10 dictate a worse outcome for breast cancer patients. These findings can form the basis of future studies that should unravel which role K10 may play as a marker of breast cancer.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
We have devised a culture system with conditions that allow primary breast myoepithelial cells (MEPs) to be passaged in a manner that sustains either nonmyodifferentiated or myodifferentiated cell populations without permitting contaminating luminal cells to grow. We show that progenitor activity and potency of MEPs to generate luminal cells in culture and in vivo rely on maintenance of myodifferentiation. Specific isolation and propagation of topographically distinct MEPs reveal the existence of multipotent progenitors in terminal duct lobular units. These findings have important implications for our understanding of the emergence of candidate luminal precursor cells to human breast cancer. The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.
Collapse
|
6
|
Hilmarsdottir B, Briem E, Halldorsson S, Kricker J, Ingthorsson S, Gustafsdottir S, Mælandsmo GM, Magnusson MK, Gudjonsson T. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis 2017; 8:e2769. [PMID: 28492548 PMCID: PMC5520702 DOI: 10.1038/cddis.2017.177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.
Collapse
Affiliation(s)
- Bylgja Hilmarsdottir
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital Nydalen, Oslo, Norway
| | - Eirikur Briem
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | | | - Jennifer Kricker
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Sævar Ingthorsson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Sigrun Gustafsdottir
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital Nydalen, Oslo, Norway
| | - Magnus K Magnusson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| |
Collapse
|
7
|
Association Study of Polymorphisms of Epidermal Growth Factor and Epidermal Growth Factor Receptor With Benign Prostatic Hyperplasia in a Korean Population. Int Neurourol J 2016; 20:363-370. [PMID: 28043105 PMCID: PMC5209572 DOI: 10.5213/inj.1632538.269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022] Open
Abstract
Purpose Recent studies have suggested that specific single-nucleotide polymorphisms (SNPs) contribute to the clinical features of benign prostatic hyperplasia (BPH). In this study, we investigated the relationships of genetic polymorphisms of the epidermal growth factor (EGF) gene and the epidermal growth factor receptor (EGFR) gene with BPH. Methods A total of 218 patients with BPH were enrolled in this study. We evaluated the relationship between eight SNPs in the EGF and EGFR genes and prostate volume, prostate-specific antigen (PSA), and International Prostate Symptom Score of BPH patients. Each SNP was genotyped by direct sequencing. Statistical analysis applying codominant, dominant, recessive, and log-additive models was performed via logistic regression. Results The rs11568943 and rs11569017 SNPs in the EGF gene showed significant associations with prostate volume (rs11568943: P=0.038 in the log-additive model, P=0.024 in the allele distribution; rs11569017, P=0.031 in the dominant model, P=0.028 in the log-additive model, P=0.020 in the allele distribution). Additionally, the rs3756261, rs11568943, and rs11569017 SNPs of the EGF gene and the rs2293347 SNP of the EGFR gene were associated with PSA levels (P<0.05 in each model, respectively). Conclusions These results suggest that the EGF gene may affect prostate volume. In addition, the EGF and EGFR genes may be associated with PSA levels in patients with BPH.
Collapse
|
8
|
Morsing M, Klitgaard MC, Jafari A, Villadsen R, Kassem M, Petersen OW, Rønnov-Jessen L. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. Breast Cancer Res 2016; 18:108. [PMID: 27809866 PMCID: PMC5093959 DOI: 10.1186/s13058-016-0769-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.
Collapse
Affiliation(s)
- Mikkel Morsing
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marie Christine Klitgaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, Rønnov-Jessen L. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun 2015; 6:8786. [PMID: 26564780 PMCID: PMC4660059 DOI: 10.1038/ncomms9786] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/04/2015] [Indexed: 02/07/2023] Open
Abstract
Investigating the susceptibility of oestrogen receptor-positive (ERpos) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ERpos cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ERpos HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ERpos HBECs are released from growth restraint by small molecule inhibitors of TGFβ signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ERpos cells in extended culture. These findings open a new avenue of experimentation with normal ERpos HBECs and provide a basis for understanding the evolution of human breast cancer. Culturing normal primary breast cells that express the oestrogen receptor is difficult. Here, the authors isolate oestrogen receptor positive normal breast cells using the cell surface markers CD166 and CD117, and show that the cultures can be repeatedly passaged and retain oestrogen receptor protein expression.
Collapse
Affiliation(s)
- Agla J Fridriksdottir
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marie Christine Klitgaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Branden M Hopkinson
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Sauder CAM, Koziel JE, Choi M, Fox MJ, Grimes BR, Badve S, Blosser RJ, Radovich M, Lam CC, Vaughan MB, Herbert BS, Clare SE. Phenotypic plasticity in normal breast derived epithelial cells. BMC Cell Biol 2014; 15:20. [PMID: 24915897 PMCID: PMC4066279 DOI: 10.1186/1471-2121-15-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. RESULTS All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. CONCLUSIONS The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools.
Collapse
Affiliation(s)
- Candice AM Sauder
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Jillian E Koziel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - MiRan Choi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Melanie J Fox
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Brenda R Grimes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Sunil Badve
- Department of Pathology, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, IN 46202, USA
| | - Rachel J Blosser
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Milan Radovich
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Christina C Lam
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Melville B Vaughan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Abstract
The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides insight into the enigmatic way in which human breast cancers are skewed toward the luminal epithelial lineage.
Collapse
Affiliation(s)
- Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, The Panum Building, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
12
|
Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW. Evidence for a stem cell hierarchy in the adult human breast. ACTA ACUST UNITED AC 2007; 177:87-101. [PMID: 17420292 PMCID: PMC2064114 DOI: 10.1083/jcb.200611114] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially quiescent, whereas the progenitor cells in the lobules were more likely to be actively dividing. Cells from ducts and lobules collected under the microscope were functionally characterized by colony formation on tissue culture plastic, mammosphere formation in suspension culture, and morphogenesis in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites in situ confirmed this pattern. The proposal that the four cell types are indeed constituents of an as of yet undescribed stem cell hierarchy was assessed in long-term cultures in which senescence was bypassed. These findings identify an adult human breast ductal stem cell activity and its earliest descendants.
Collapse
Affiliation(s)
- René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, and Zoophysiological Laboratory, University of Copenhagen, and Department of Pathology, State University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Huper G, Marks JR. Isogenic normal basal and luminal mammary epithelial isolated by a novel method show a differential response to ionizing radiation. Cancer Res 2007; 67:2990-3001. [PMID: 17409405 DOI: 10.1158/0008-5472.can-06-4065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial cells within the normal breast duct seem to be the primary target for neoplastic transformation events that eventually produce breast cancer. Normal epithelial cells are easily isolated and propagated using standard techniques. However, these techniques almost invariably result in populations of cells that are largely basal in character. Because only approximately 20% of human breast cancers exhibit a basal phenotype, our understanding of the disease may be skewed by using these cells as the primary comparator to cancer. Further, because germ line mutations in BRCA1 yield breast cancers that are most often of the basal type, a comparison of normal basal and luminal cells could yield insight into the tissue and cell type specificity of this hereditary cancer susceptibility gene. In this report, we describe a simplified and efficient method for isolating basal and luminal cells from normal human breast tissue. These isogenic cells can be independently propagated and maintain phenotypic markers consistent with their respective lineages. Using these cultured cells, we show that basal and luminal cells exhibit distinct responses to ionizing radiation. Basal cells undergo a rapid but labile cell cycle arrest, whereas luminal cells show a much more durable arrest, primarily at the G(2)-M boundary. Molecular markers, including p53 protein accumulation, p53-activated genes, and BRCA1 nuclear focus formation all correlate with the respective cell cycle responses. Further, we show that short-term cultures of human breast tissue fragments treated with ionizing radiation show a similar phenomenon as indicated by the biphasic accumulation of p53 protein in the basal versus luminal layer. Together, these results indicate that normal basal cells have a transitory cell cycle arrest after DNA damage that may underlie their increased susceptibility to transformation after the loss of functional BRCA1.
Collapse
Affiliation(s)
- Gudrun Huper
- Duke University Medical Center, Department of Surgery and Institute for Genome Sciences and Policy, Durham, North Carolina, USA
| | | |
Collapse
|
14
|
Sigurdsson V, Fridriksdottir AJR, Kjartansson J, Jonasson JG, Steinarsdottir M, Petersen OW, Ogmundsdottir HM, Gudjonsson T. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture. In Vitro Cell Dev Biol Anim 2007; 42:332-40. [PMID: 17316068 DOI: 10.1290/0602017.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 01/10/2023]
Abstract
Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tissue of origin. Microvasculature was localized in situ by immunohistochemistry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids. BRENCs were cultured from these organoids in endothelial specific medium and characterized by staining for endothelial markers. Microvessels were a prominent feature of intralobular tissue as evidenced by immunostaining against endothelial specific markers such as CD31, VE-cadherin, and von Willebrand factor (VWF). Double staining against VE-cadherin and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) showed that blood and lymphatic vessels could be distinguished. An antibody against CD31 was used to refine protocols for isolation of microvasculature from reduction mammoplasties. BRENCs retained critical traits even at high passage, including uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-alpha. The first signs of senescence in passage 14 were accompanied by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by beta-galactosidase staining. We demonstrate here that breast microvasculature may serve as a large-scale source for expansion of BRENCs with molecular and functional traits preserved. These cells will form the basis for studies on the role of endothelial cells in breast morphogenesis.
Collapse
|
15
|
Villadsen R. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution. APMIS 2005; 113:903-21. [PMID: 16480457 DOI: 10.1111/j.1600-0463.2005.apm_344.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By deliberate analogy with the well-established concept of hematopoiesis, the term "mammopoiesis" is occasionally used to describe the development of the different cellular lineages and functional units in the mammary gland. The use of this term signifies a strong bias towards the idea that tissue homeostasis during mammary development, pregnancy, lactation and involution is brought about by the action of somatic stem cells characterized by longevity and multipotency. The progenies hereof eventually differentiate into structurally and functionally well-defined ductal-lobular units. During the past two decades evidence of such a notion in the mouse has developed from being largely circumstantial based on non-clonal in vivo experiments to a quite elaborate characterization of individual candidate stem cells by a number of different properties. Within tumor biology this has led to a renaissance of the concept of tumors as caricatures of tissue renewal. Thus, recent molecular classification of breast cancer based on genome wide expression analysis operates with different subtypes with specific reference to the normal luminal epithelial and myoepithelial/basal lineages in the breast. Apparently some tumors are lineage restricted and others differentiate more broadly as if they have preserved some stem-like properties. This holds promise for the existence of a stem cell hierarchy, the understanding of which may prove to be instrumental in further dissecting the histogenesis of breast cancer evolution. Most attention has been devoted to the question of different cellular origins of cancer subtypes and different susceptibilities of possible stem cells to gain or loss of oncogenes and tumor suppressor genes, respectively. Invaluable progress has been made over the past two decades in culture technology not only in terms of population doubling and clonal growth, but also the availability of lineage specific markers, cell sorting, and three-dimensional functional assays for tissue specific morphogenesis. Transcriptional profiling of stem cell zones has unraveled a hitherto unknown preservation of signaling pathways for maintenance of stem cell properties across tissue boundaries and species. Somatic stem cells have therefore been narrowed down to specific anatomic locations not only in rapidly renewing tissues such as skin and skin derivatives, but also in tissues with slower turnover times, such as lung, kidney and prostate. It is therefore now possible to integrate this information in a search for similar cells within the breast. Even if cell turnover after birth is provided exclusively by dividing lineage-restricted cells, more information about the robustness of breast differentiation programs during tumor progression is still very much required. Complete knowledge of the primary cell of origin of breast cancer and the mechanisms that influence differentiation programs during tumor initiation, promotion and progression may be crucial for the development of novel non-toxic therapies that influence tumor cell behaviour. The scope of this review is to discuss reports that have begun to elucidate the topographic location, key cellular type and lineage fidelity in culture and xenograft models of candidate human breast stem cells and their differentiated progenies with particular emphasis on comparison with the differentiation programs of tumor subtypes.
Collapse
Affiliation(s)
- René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10:261-72. [PMID: 16807805 PMCID: PMC2798159 DOI: 10.1007/s10911-005-9586-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The human breast epithelium is a branching ductal system composed of an inner layer of polarized luminal epithelial cells and an outer layer of myoepithelial cells that terminate in distally located terminal duct lobular units (TDLUs). While the luminal epithelial cell has received the most attention as the functionally active milk-producing cell and as the most likely target cell for carcinogenesis, attention on myoepithelial cells has begun to evolve with the recognition that these cells play an active part in branching morphogenesis and tumor suppression. A major question that has been the subject of investigation pertains to how the luminal epithelial and myoepithelial lineages are related and precisely how they arise from a common putative stem cell population within the breast. Equally important is the question of how heterotypic signaling occurs between luminal epithelial and surrounding myoepithelial cells in normal breast morphogenesis and neoplasia. In this review we discuss data from our laboratories and from others regarding the cellular origin of human myoepithelial cells, their function in maintaining tissue polarity in the normal breast, and their role during neoplasia.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, Reykjavik, Iceland
| | - Melissa C. Adriance
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mark D. Sternlicht
- Department of Anatomy, University of California, San Francisco, California
| | - Ole W. Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
17
|
Fridriksdottir AJR, Villadsen R, Gudjonsson T, Petersen OW. Maintenance of cell type diversification in the human breast. J Mammary Gland Biol Neoplasia 2005; 10:61-74. [PMID: 15886887 DOI: 10.1007/s10911-005-2541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent genome-wide expression analysis of breast cancer has brought new life to the classical idea of tumors as caricatures of the process of tissue renewal as envisioned by Pierce and Speers (Cancer Res 1988;48:1996-2004) more than a decade ago. The search for a cancer founder cell or different cancer founder cells is only possible if a hierarchy of differentiation has been established for the particular tissue in question. In the human breast, the luminal epithelial and myoepithelial lineages have been characterized extensively in situ by increasingly elaborate panel of markers, and methods to isolate, culture, and clone different subpopulations have improved dramatically. Comparisons have been made with the mouse mammary gland in physiological three-dimensional culture assays of morphogenesis, and the plasticity of breast epithelial cells has been challenged by immortalization and transformation. As a result of these efforts, several candidate progenitor cells have been proposed independently of each other, and some of their features have been compared. This research has all been done to better understand breast tissue homeostasis, cell-type diversification in general and breast cancer evolution in particular. The present review discusses the current approaches to address these issues and the measures taken to unravel and maintain cell type diversification for further investigation.
Collapse
|
18
|
Stingl J, Raouf A, Emerman JT, Eaves CJ. Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 2005; 10:49-59. [PMID: 15886886 DOI: 10.1007/s10911-005-2540-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human mammary gland is organized developmentally as a hierarchy of progenitor cells that become progressively restricted in their proliferative abilities and lineage options. Three types of human mammary epithelial cell progenitors are now identified. The first is thought to be a luminal-restricted progenitor; in vitro under conditions that support both luminal and myoepithelial cell differentiation, this cell produces clones of differentiating daughter cells that are exclusively positive for markers characteristic of luminal cells produced in vivo (i.e., keratins 8/18 and 19, epithelial cell adhesion molecule [EpCAM] and MUC1). The second type is a bipotent progenitor. It is identified by its ability to produce "mixed" colonies in single cell assays. These colonies contain a central core of cells expressing luminal markers surrounded by cells with a morphology and markers (e.g., keratin 14(+)) characteristic of myoepithelial cells. Serial passage in vitro of an enriched population of bipotent progenitors promotes the expansion of a third type of progenitor that is thought to be myoepithelial-restricted because it only produces cells with myoepithelial features. Luminal-restricted and bipotent progenitors can prospectively be isolated as distinct subpopulations from freshly dissociated suspensions of normal human mammary cells. Both are distinguished from many other cell types in mammary tissue by their expression of EpCAM and CD49f (alpha6 integrin). They are distinguished from each other by their differential expression of MUC1, which is expressed at much higher levels on the luminal progenitors. To relate the role of these progenitors to the generation of the three-dimensional tubuloalveolar structure of the mammary tree produced in vivo, we propose a model in which the commitment to the luminal versus the myoepithelial lineage may play a determining role in the generation of alveoli and ducts.
Collapse
Affiliation(s)
- John Stingl
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
19
|
Petersen OW, Gudjonsson T, Villadsen R, Bissell MJ, Rønnov-Jessen L. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia. Cell Prolif 2003; 36 Suppl 1:33-44. [PMID: 14521514 PMCID: PMC2933221 DOI: 10.1046/j.1365-2184.36.s.1.4.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach for delineating the origin of the epithelial cell types. A major step forward was the purification of each cell type by the application of immunomagnetic cell sorting based on expression of lineage-specific surface antigens. We then developed chemically defined media that could support either the luminal epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell population. By combining the information on marker expression and in situ localization with immunomagnetic sorting and subsequent immortalization, we have identified and isolated a cytokeratin 19-positive suprabasal putative precursor cell in the luminal epithelial compartment and established representative cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor.
Collapse
Affiliation(s)
- Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Nielsen HL, Gudjonsson T, Villadsen R, Rønnov-Jessen L, Petersen OW. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression. In Vitro Cell Dev Biol Anim 2003; 39:297-303. [PMID: 12908855 DOI: 10.1290/1543-706x(2003)039<0297:cgcstr>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/25/2003] [Indexed: 11/11/2022]
Abstract
Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted. Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal-derived breast cell lines were plated on top of hydrated collagen lattices. Reduction in gel height was measured every hour for 6 h and after 22 h using an x-y-z automated position table. Significantly, the epithelial-derived cells, irrespective of a high alpha-sm actin expression, had a fivefold lower contractility (10.0% reduction in gel height) than their true mesenchymal counterparts (53.1% reduction in gel height). To test whether at all force generation could be induced in the nonmesenchymal cells by alpha-sm actin, transductions were performed to obtain a tetracycline-dependent expression. Expression under these conditions did not augment contractility. It is concluded that epithelial-derived mesenchymal-like cells are functionally defective within a connective tissue environment irrespective of an apparent contractile phenotype.
Collapse
Affiliation(s)
- Helga Lind Nielsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
21
|
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 2003; 30:247-55. [PMID: 12798139 PMCID: PMC2933212 DOI: 10.1016/s1046-2023(03)00031-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The normal human breast comprises an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells separated from the connective tissue stroma by an intact basement membrane. In breast cancer, tumor cells are in direct contact with the surrounding highly activated collagenous stroma, with little or no discernible myoepithelial fence from the original double-layered structure. To understand the evolution of these two scenarios, we took advantage of a three-dimensional hydrated collagen gel approach. The contribution of myoepithelial cells to normal morphogenesis was studied by ablation and rescue experiments, and genes regulated on tumor cell-fibroblast interaction were identified in a tumor environment assay. In normal breast morphogenesis, the ability to correctly polarize sialomucin to the luminal membrane of emerging acini was used as a criterion for apical polarity and functional differentiation. In the assay of breast neoplasia, the consequence of reciprocal tumor cell-fibroblast interaction was addressed morphologically as well as by a differential display approach. Normal breast epithelial cells were purified immunomagnetically and an established cell line, MCF-7, was used as a surrogate tumor cell. With regard to the importance of myoepithelial cells in normal breast epithelial morphogenesis, the collagen gel assay elucidated the following subtleties: In contrast to culturing in basement membrane gels, luminal epithelial cells when cultured alone made structures that were all inversely polarized. This aberrant polarity could be rescued by co-culture with myoepithelial cells. The molecular activity of myoepithelial cells responsible for correct morphogenesis was narrowed down to the laminin-1 component of the basement membrane. As for the consequence of interaction of tumor cells with connective tissue fibroblasts, the assay allowed us to identify a hitherto undescribed gene referred to as EPSTI1. The relevance of the assay-based identification of regulated genes was confirmed in a series of breast carcinomas in which EPSTI1 was highly upregulated compared with normal breast. Few if any of these observations would have been possible on two-dimensional tissue culture plastic.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, 105 Reykjavik, Iceland
| | - Lone Rønnov-Jessen
- Zoophysiological Laboratory, The August Krogh Institute, DK-2100 Copenhagen Ø, Denmark
| | - René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, LBNL, 83 Room 101, Berkeley, CA 94720, USA
| | - Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Saga K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 37:323-86. [PMID: 12365351 DOI: 10.1016/s0079-6336(02)80005-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.
Collapse
Affiliation(s)
- Kenji Saga
- Department of Dermatology, Sapporo Medical University School of Medicine, Minami 1 Nishi 16, Chyuo-ku, Sapporo 060-8543, Japan.
| |
Collapse
|
23
|
Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Rønnov-Jessen L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:391-402. [PMID: 12547698 PMCID: PMC1851146 DOI: 10.1016/s0002-9440(10)63834-5] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A breast carcinoma biopsy showed cytochemical evidence of epithelial mesenchymal transition and an alpha-smooth muscle actin-positive stromal reaction. To study the lineage, and the nature of the cells in the stromal reaction, we derived a novel cell line, HBFL-1, from the explanted biopsy. HBFL-1 cells are immortal and exhibit a shared non-random X-chromosome inactivation pattern with the epithelial tumor of origin. Yet they closely resemble normal, finite-life-span fibroblasts by morphology, lack of tumor formation in nude mice, marker expression profile, protein pattern using two-dimensional gel electrophoresis and the ability to undergo myofibroblast conversion. HBFL-1 interacts reciprocally with tumor cells in collagen gel to induce activation of MMP2, leading to tumor-like behavior of epithelial colonies. In vivo, HBFL-1 cells resembled normal-derived myofibroblasts and conferred a significant 3.5- to 7-fold increase in MCF-7 tumor size in nude mice. However, that they were indeed not normal fibroblasts was revealed by residual keratin expression and formation of epithelial microfoci in a reconstituted basement membrane and in nude mice. We conclude that breast cancer can generate its own nonmalignant stroma and that one function for this is that of a reciprocal interaction with epithelial tumor cells to facilitate tumor growth.
Collapse
Affiliation(s)
- Ole William Petersen
- Structural Cell Biology Unit, Department of Medical Anatomy, Section A, the Panum Institute, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gudjonsson T, Villadsen R, Nielsen HL, Rønnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 2002; 16:693-706. [PMID: 11914275 PMCID: PMC155359 DOI: 10.1101/gad.952602] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC(+)) and epithelial-specific antigen (ESA(+)) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC(-)/ESA(+)). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC(+)/ESA(+) epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC(-)/ESA(+) epithelial cell line was able to generate itself as well as MUC(+)/ESA(+) epithelial cells and Thy-1(+)/alpha-smooth muscle actin(+) (ASMA(+)) myoepithelial cells. The MUC(-)/ESA(+) epithelial cell line further differed from the MUC(+)/ESA(+) epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC(+)/ESA(+) epithelial cell line formed acinus-like spheres. In contrast, the MUC(-)/ESA(+) epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC(-)/ESA(+) epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 2002; 115:39-50. [PMID: 11801722 PMCID: PMC2933194 DOI: 10.1242/jcs.115.1.39] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and β4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal.Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce α-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumor-associated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be recapitulated in culture and that one reason for the ability of myoepithelial cells to induce polarity is because they are the only source of laminin-1 in the breast in vivo. A further conclusion is that a majority of tumor-derived/-associated myoepithelial cells are deficient in their ability to impart polarity because they have lost their ability to synthesize sufficient or functional laminin-1. These results have important implications for the role of myoepithelial cells in maintenance of polarity in normal breast and how they may function as structural tumor suppressors.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Zoophysiological Laboratory, The August Krogh Institute, DK-2100 Copenhagen Ø, Denmark
| | - René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | - Fritz Rank
- Department of Pathology, Rigshospitalet, DK-2100 Copenhagen Ø, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
- Author for correspondence ()
| |
Collapse
|
26
|
Jin HS, Umemura S, Iwasaka T, Osamura RY. Alterations of myoepithelial cells in the rat mammary gland during pregnancy, lactation and involution, and after estradiol treatment. Pathol Int 2000; 50:384-91. [PMID: 10849327 DOI: 10.1046/j.1440-1827.2000.01064.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hormone-induced alterations of myoepithelial cells in the mammary gland have not been fully investigated. The aim of the present study was to examine whether myoepithelial cells are altered in response to hormonal conditions. The immunohistochemical findings of smooth muscle actin for myoepithelial cells were studied during pregnancy, lactation and involution, and after estradiol dipropionate (ED) treatment (50, 500, 1000 microg/kg per week for 1-4 weeks) using a total of 71 Wistar female rats. Myoepithelial cells showed a stratified appearance around ducts during pregnancy, extended cytoplasmic processes with wider distance during lactation, and vacuolated cytoplasm after weaning. ED treatment (50-1000 microg/kg per week) for 1 week increased myoepithelial cells to a variable degree, achieving a level similar to that in pregnancy, but ED treatment for 4 weeks reduced them as the dose elevated. The present study showed that the myoepithelial cells became hyperplastic or hypertrophic by low-dose ED treatment within the physiological range, while weaning pups, and excess high-dose ED treatment beyond the physiological range or prolonged ED treatment induced reduction of the myoepithelial cells. Results indicate that myoepithelial cells themselves are also altered by hormonal conditions coordinating the mammary gland development.
Collapse
Affiliation(s)
- H S Jin
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | | | | | | |
Collapse
|
27
|
Schön M, Benwood J, O'Connell-Willstaedt T, Rheinwald JG. Human sweat gland myoepithelial cells express a unique set of cytokeratins and reveal the potential for alternative epithelial and mesenchymal differentiation states in culture. J Cell Sci 1999; 112 ( Pt 12):1925-36. [PMID: 10341211 DOI: 10.1242/jcs.112.12.1925] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized precisely the cytokeratin expression pattern of sweat gland myoepithelial cells and have identified conditions for propagating this cell type and modulating its differentiation in culture. Rare, unstratified epithelioid colonies were identified in cultures initiated from several specimens of full-thickness human skin. These cells divided rapidly in medium containing serum, epidermal growth factor (EGF), and hydrocortisone, and maintained a closely packed, epithelioid morphology when co-cultured with 3T3 feeder cells. Immunocytochemical and immunoblot analysis disclosed that the cells differed from keratinocytes in that they were E-cadherin-negative, vimentin-positive, and expressed an unusual set of cytokeratins, K5, K7, K14, and K17. When subcultured without feeder cells, they converted reversibly to a spindle morphology and ceased K5 and K14 expression. Under these conditions, EGF deprivation induced flattening, growth arrest, and expression of alpha-smooth muscle actin ((α)-sma). Coexpression of keratins and alpha-sma is a hallmark of myoepithelial cells, a constituent of secretory glands. Immunostaining of skin sections revealed that only sweat gland myoepithelial cells expressed the same pattern of keratins and alpha-sma and lack of E-cadherin as the cell type we had cultured. Interestingly, our immunocytochemical analysis of ndk, a skin-derived cell line of uncertain identity, suggests that this line is of myoepithelial origin. Earlier immunohistochemical studies by others had found myoepithelial cells to be K7-negative. We tested five K7-specific antibodies that can recognize this protein in western blots and in the assembled keratin filaments of mesothelial cells. Three of these antibodies did not recognize the K7 present in myoepithelial cell filaments or in HeLa cell filaments, indicating that some K7 epitopes are masked when K7 pairs with K17 instead of with its usual keratin filament partner, K19.
Collapse
Affiliation(s)
- M Schön
- Division of Dermatology/Department of Medicine, Brigham and Women's Hospital, and Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
28
|
Slade MJ, Coope RC, Gomm JJ, Coombes RC. The human mammary gland basement membrane is integral to the polarity of luminal epithelial cells. Exp Cell Res 1999; 247:267-78. [PMID: 10047469 DOI: 10.1006/excr.1998.4340] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show that myoepithelial cell basement membrane derived E3 and E8 domains of laminin-1 are capable of polarizing luminal epithelial cells with regard to epithelial membrane antigen localization. This event is dependent on the alpha6 integrin and results in aggregation and phosphorylation of the tyrosine residues of the focal adhesion kinase complex. We also demonstrate that uncultured normal luminal epithelial cells synthesize normal levels of beta and gamma laminin chains and reduced levels of alpha chains mRNA in common with malignant epithelial cells. In contrast normal myoepithelial cells synthesize all three constituent chains of laminin-1. Therefore in breast cancer the absence of myoepithelial cells could result in a lack of laminin alpha chains which may contribute to loss of polarity of malignant epithelial cells.
Collapse
Affiliation(s)
- M J Slade
- Department of Cancer Medicine, Imperial College School of Medicine, Charing Cross Campus, St. Dunstan's Road, London, W6 8RP, England.
| | | | | | | |
Collapse
|
29
|
Péchoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol 1999; 206:88-99. [PMID: 9918697 DOI: 10.1006/dbio.1998.9133] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and alpha-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.
Collapse
Affiliation(s)
- C Péchoux
- Department of Anatomy, Section A, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | | | | | | | | |
Collapse
|
30
|
Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 1998; 63:201-13. [PMID: 9745711 DOI: 10.1111/j.1432-0436.1998.00201.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The developmental relationships between the different mammary epithelial cell lineages in the human mammary gland are not well defined. To characterize human breast epithelial cells (HBEC) with progenitor activity, we used flow cytometry and single cell sorting to analyze the distribution of cellular phenotypes in primary cultures of reduction mammoplasties and their associated ability to generate colonies in 2-dimensional (D) and 3-D (collagen gel) culture systems. This approach allowed two distinct types of HBEC progenitor populations to be distinguished on the basis of their differential expression of the MUC-1 glycoprotein, CALLA/CD10 and epithelial-specific antigen (ESA). The first type of progenitor, which is enriched in the MUC-1+/CAL-LA-/ESA+ subpopulation, generated colonies of tightly arranged cells in 2-D cultures and small alveolar-like colonies with a central lumen when cultured in a collagen matrix. The cells produced in the colonies and derived from these MUC-1+/CALLA-/ESA+ progenitors were found to express typical luminal epitopes (keratin 8/18, keratin 19, MUC-1, ESA) and showed low levels of expression of myoepithelial epitopes (keratin 14 and CD44v6). The second type of progenitor, which is present in the MUC-1-to +/-/CALLA +/- to +/ESA+ subpopulation, generated mixed colonies of both luminal and myoepithelial cells when seeded in 2-D and 3-D cultures. In 2-D cultures, the centrally located cells exhibited a luminal morphology and expressed ESA, but were heterogeneous in their expression of MUC-1. Radiating from the periphery of these ESA+ HBEC were highly refractile ESA- teardrop-shaped myoepithelial-like cells. When cultured in a collagen matrix, these bipotent progenitors generated large branched colonies composed of a heterogeneous population of cells, with some of the progeny cells expressing luminal epitopes (keratin 8/18, keratin 19 and MUC-1) and others expressing myoepithelial epitopes (keratin 14 and CD44v6). A third type of progenitor, which became apparent is passaged HBEC cultures and was enriched in the MUC-1-/CALLA+/ESA- subpopulation, was found to generate colonies of cells with an exclusively myoepithelial phenotype. These results provide definitive evidence for the existence of multilineage HBEC progenitors in normal adult human mammary tissue. The phenotypic profile of these cells suggest that these multilineage progenitors are a relatively undifferentiated cell since they express low levels of MUC-1 and that they have a luminal location within the mammary epithelium since they are ESA+. Furthermore, we suggest that the MUC-1+/CALLA-/ESA+ and the MUC-1- to +/-/CALLA +/- to +/ESA+ progenitors we have identified and characterized are candidate in vivo alveolar and ductal progenitors, respectively.
Collapse
Affiliation(s)
- J Stingl
- Department of Anatomy, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
31
|
Heffelfinger SC, Miller MA, Gear R, Devoe G. Staurosporine-induced versus spontaneous squamous metaplasia in pre- and postmenopausal breast tissue. J Cell Physiol 1998; 176:245-54. [PMID: 9648912 DOI: 10.1002/(sici)1097-4652(199808)176:2<245::aid-jcp3>3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Breast cancers from pre- vs. postmenopausal women display unique characteristics that may be related to differences in epithelial differentiation between these two populations. In addition to lobular development, lactational changes, and involution, breast epithelium can undergo metaplastic alterations, often in association with carcinoma. Because protein kinase C (PKC) regulates differentiation and proliferation in many cell types, we asked whether modulation of PKC activity could define biochemical differences in breast epithelium from pre- vs. postmenopausal women. Organ cultures of normal human breast were treated with PKC agonists and antagonists. Epithelial differentiation was evaluated based on morphologic criteria and the expression of cell-type specific proteins. Staurosporine, a nonspecific but extremely potent inhibitor of PKC, induced squamous metaplasia in eight of eight cases within 2 weeks of treatment. Other inhibitors of PKC, such as calphostin C and tamoxifen, had no effect on epithelial differentiation. Long-term treatment with phorbol esters also did not induce squamous metaplasia. However, stimulation of cAMP levels by forskolin and isobutyl-methyl-xanthene (IMX) rapidly induced squamous metaplasia, as has been previously reported. Surprisingly, squamous metaplasia occurred in 10 of 12 cultures derived from postmenopausal women in the absence of exogenous agents. Untreated cultures derived from premenopausal women never developed this type of epithelium (0 of 11). Therefore, breast epithelium from pre- and postmenopausal women responded differently to in vitro culture. Forskolin/IMX or staurosporine can reproduce these conditions, acting independent of menopausal status. Because staurosporine's action was unique among PKC inhibitors, staurosporine may induce squamous metaplasia of breast epithelium by a PKC-independent mechanism.
Collapse
Affiliation(s)
- S C Heffelfinger
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Ohio 45267-0529, USA.
| | | | | | | |
Collapse
|
32
|
Gomm JJ, Coope RC, Browne PJ, Coombes RC. Separated human breast epithelial and myoepithelial cells have different growth factor requirements in vitro but can reconstitute normal breast lobuloalveolar structure. J Cell Physiol 1997; 171:11-9. [PMID: 9119887 DOI: 10.1002/(sici)1097-4652(199704)171:1<11::aid-jcp2>3.0.co;2-k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to investigate the specific factors controlling the growth of normal breast cell types, purified populations of human breast epithelial and myoepithelial cells from reduction mammoplasties were grown in primary culture in three defined media and their response to foetal calf serum (FCS), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) measured using MTT growth assays. Epithelial and myoepithelial cells differed markedly in their growth requirements. Whereas epithelial cell survival was dependent on the presence of FCS, myoepithelial cell growth was dramatically inhibited by serum. EGF and FGF2 were mitogenic for epithelial cells but not myoepithelial cells, the addition of insulin being the only essential supplement required for myoepithelial cell growth. Heparin inhibited FGF2-stimulated epithelial cell growth but also basal myoepithelial cell proliferation and this inhibition could be overcome by the addition of EGF. Neutralizing antibodies to EGF also inhibited basal myoepithelial cell growth. This suggests the possibility of an autocrine role for a heparin-binding member of the EGF family in the growth of myoepithelial cells. Purified cells combined to form lobuloalveolar structures when incubated in a reconstituted basement membrane matrix (Matrigel) in the presence of EGF and FGF2.
Collapse
Affiliation(s)
- J J Gomm
- CRC Department of Medical Oncology, Charing Cross and Westminster Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
33
|
Kao CY, Oakley CS, Welsch CW, Chang CC. Growth requirements and neoplastic transformation of two types of normal human breast epithelial cells derived from reduction mammoplasty. In Vitro Cell Dev Biol Anim 1997; 33:282-8. [PMID: 9156344 DOI: 10.1007/s11626-997-0048-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A chemically defined culture medium was developed to support the growth of two distinctly different types of normal human breast epithelial cells (HBEC) derived from reduction mammoplasty. Type I cells expressed luminal epithelial cell markers and were deficient in gap junctional intercellular communication (GJIC), whereas Type II cells expressed basal epithelial cell markers and were efficient in GJIC. In this study, we examined and compared the growth factor and hormone requirements of these two types of cells and a series of cell lines that were obtained by sequential transfection with SV40 DNA (extended lifespan, nontumorigenic), treatment with 5-bromodeoxyuridine (BrdU)/black light (immortal and weakly tumorigenic), and infection of a virus carrying the neu oncogene (highly tumorigenic). Growth of Type I cells was inhibited by withdrawing epidermal growth factor (EGF), hydrocortisone (HC), or insulin (INS) from the culture media, but was enhanced by fetal bovine serum (FBS) supplementation. Growth of Type II cells was inhibited by withdrawal of EGF, HC, or INS from the media, and was inhibited by FBS supplementation. Withdrawal of human transferrin (HT) or 17 beta-estradiol (E2) from the media did not alter the growth of Type I or Type II cells. SV40 transfected Type I cell lines still required EGF, HC, or INS for optimal growth. However, the highly tumorigenic cell line did not show a growth dependence on EGF, HC, or INS but did appear to require HT and 3,3',5-triiodo-D.L. thyronine (T3) for optimal growth. In addition, FBS stimulated the growth of these cell lines. Thus, this study shows that Type I HBEC are distinctly different from Type II HBEC in growth response to FBS and that neoplastically transformed Type I cells could become growth factor and hormone independent.
Collapse
Affiliation(s)
- C Y Kao
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
34
|
Lundholt BK, Madsen MW, Lykkesfeldt AE, Petersen OW, Briand P. Characterization of a nontumorigenic human breast epithelial cell line stably transfected with the human estrogen receptor (ER) cDNA. Mol Cell Endocrinol 1996; 119:47-59. [PMID: 8793853 DOI: 10.1016/0303-7207(96)03793-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Estrogens play an important role in breast cancer and the effect of estrogen on growth of breast cancer cells has been extensively studied. However, only little information is available about the response of normal breast epithelial cells to estrogen, mainly due to the difficulties in establishing estrogen receptor (ER)-positive human breast epithelial cells in culture. We have stably transfected the human estrogen receptor (hER) wt cDNA into the ER-negative, spontaneously immortalized human breast epithelial cell line, HMT-3522S1, in order to develop a model for studying the effect of estrogen on nonmalignant human breast epithelial cells. Characterization of the transfected clone F9 confirmed incorporation of the estrogen receptor gene in the genome, expression of hER mRNA and hER protein. However, proliferation of F9 cells was inhibited by both estradiol (E2) and tamoxifen, whereas the pure antiestrogen ICI 182,780 had no effect on cell proliferation. This seems paradoxical since E2 stimulated the expression of the endogenous genes, TGF-alpha, cathepsin D, and alpha1-antitrypsin. In breast cancer cell lines, high expression of these genes is correlated to estrogen-stimulated cell proliferation. The spontaneously immortalized HMT-3522S1 cells transfected with wt ER cDNA behave similarly to cell lines from nonmalignant breast tissue immortalized by carcinogens and transfected with mutated ER cDNA as described by others. The discrepancy between growth inhibition and induction of positive growth factors by E2 indicates that either ER-positive nonmalignant breast epithelial cells are growth-inhibited by E2 in contrast to malignant cells or that introduction of the ER into ER-negative cells is not sufficient for restoring "normal' estrogen responsiveness.
Collapse
Affiliation(s)
- B K Lundholt
- Department of Tumor Endocrinology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
35
|
Jørgensen A, Röpke C, Nielsen M, Madsen H, Svejgaard A, Odum N. Human thymic epithelial cells express functional HLA-DP molecules. TISSUE ANTIGENS 1996; 47:300-6. [PMID: 8773319 DOI: 10.1111/j.1399-0039.1996.tb02557.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HLA-DP molecules function as restriction elements in the presentation of foreign antigens to T cells by antigen presenting cells and certain HLA-DP molecules confer susceptibility to autoimmune disease. Because HLA molecules play an essential role in thymic selection and elimination of autoreactive T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression of HLA-DQ but lower than that of HLA-DR. Upon IFN-gamma treatment, HLA-DP expression was strongly upregulated. Since HLA-DQ and DR expression was upregulated in parallel, the hierarchy between MHC class II isotypes remained unchanged following interferon treatment. TEC elicited significant proliferation of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels of functional HLA-DP molecules.
Collapse
Affiliation(s)
- A Jørgensen
- Institute of Medical Anatomy, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Zavizion B, van Duffelen M, Schaeffer W, Politis I. Establishment and characterization of a bovine mammary myoepithelial cell line. In Vitro Cell Dev Biol Anim 1996; 32:149-58. [PMID: 8925137 DOI: 10.1007/bf02723680] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The thermolabile large T-antigen, encoded by the simian virus 40 early region mutant tsA58, was used to establish clonal cell lines (BMM-UV) from primary bovine myoepithelial cells. The BMM-UV cells have undergone more than 300 population doublings without any signs of senescence, and they contain the intranuclear large T antigen. At low confluency, they grow in a spindlelike manner and develop very long projections that most likely allow for communication of cells at a distance from each other. Establishment results in a decrease in the number of cells that contract in response to oxytocin compared with the parental nontransfected cells (20% versus 45%). Oxytocin responsiveness of BMM-UV cells increases when the cells are cultured in a medium supplemented with staphylococcal proteases. Proliferation of BMM-UV cells increases when they are cultured in the presence of epidermal growth factor (10 ng/ml) or insulinlike growth factor I (50 ng/ml). The BMM-UV cells may become a useful model to study growth properties, cell-to-cell communication, and the function of bovine mammary myoepithelial cells.
Collapse
Affiliation(s)
- B Zavizion
- Department of Animal and Food Sciences, University of Vermont, Burlington 05405, USA
| | | | | | | |
Collapse
|
37
|
Zavizion B, Van Duffelen M, Schaeffer W, Politis I. Use of microinjection to generate an immortalized bovine mammary cell line with both epithelial and myoepithelial characteristics. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf00986233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Gorunova L, Johansson B, Dawiskiba S, Andrén-Sandberg A, Mandahl N, Heim S, Mitelman F. Cytogenetically detected clonal heterogeneity in a duodenal adenocarcinoma. CANCER GENETICS AND CYTOGENETICS 1995; 82:146-50. [PMID: 7664244 DOI: 10.1016/0165-4608(95)00032-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A primary duodenal adenocarcinoma, a tumor type for which no previous chromosome data existed, was cytogenetically analyzed after short-term culture. The main tumor mass was localized in the pancreatic head, but the histopathologic examination revealed its duodenal origin. A total of six abnormal, karyotypically unrelated, clones were identified. The largest exhibited clonal evolution and consisted of two subclones with massively rearranged karyotypes in the hypodiploid and hypotetraploid range. Chromosome imbalances brought about by these complex changes were gain of 1q, losses of chromosomes 6 and 9, and total or partial losses of 1p, 3p, 3q, 9p, 10p, 17p, 17q, 18q, 20p, and 20q. The remaining five smaller clones had 1-2 numerical or balanced structural chromosome aberrations. The present study thus revealed yet another epithelial tumor type characterized by karyotypically unrelated clones. For this as for other tumors, the pathogenetic significance of such cytogenetic polyclonality remains uncertain.
Collapse
Affiliation(s)
- L Gorunova
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Baley PA, Yoshida K, Qian W, Sehgal I, Thompson TC. Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J Steroid Biochem Mol Biol 1995; 52:403-13. [PMID: 7538321 DOI: 10.1016/0960-0760(95)00001-g] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have shown previously that the ras and myc oncogenes can induce poorly differentiated mouse prostate carcinomas in vivo with high frequency (greater than 90%) using inbred C57BL/6 mice in the mouse prostate reconstitution model system. To study the androgen sensitivity of these carcinomas, we have developed an in vitro model system which includes a cell line from normal urogenital sinus epithelium (CUGE) and cell lines from three ras + myc transformed mouse prostate carcinomas (RM-9, RM-1, and RM-2). CUGE cells, as well as all prostate carcinoma cell lines, were positive for cytokeratin 18 mRNA and immunoreactive to cytokeratin-specific antiserum. Two out of three of the early passage carcinoma cell lines were clonal with respect to Zipras/myc 9 retrovirus integration as determined by Southern blot analysis. Whereas significant mitogenic effects of testosterone (10 nM) were not seen in CUGE cells grown in serum-free medium, under similar conditions approx. 2-fold increases in cell number were seen in all low passage prostate carcinoma cell lines. Also, in the presence of growth inhibitory levels of suramin (50 micrograms/ml), testosterone was capable of significant growth stimulation in the carcinoma cell lines. With further propagation from low passage [20-25 population doublings (PD)] to high passage (75-100 PD), all carcinoma cell lines demonstrated increased and similar growth rate in the presence and absence of testosterone. These cell lines maintained stable androgen receptor numbers and binding kinetics during the transition from testosterone-responsive growth to reduced responsivity over multiple passages in culture (> 150 PD). Overall, our studies indicate that the capacity to bind testosterone is stably maintained through the transition of the androgen-sensitive to insensitive phenotype and raise the possibility that androgen sensitivity can persist throughout progression but is masked by the acquisition of autocrine pathways.
Collapse
Affiliation(s)
- P A Baley
- Baylor College of Medicine, Scott Department of Urology, Houston, TX, USA
| | | | | | | | | |
Collapse
|
40
|
Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95:859-73. [PMID: 7532191 PMCID: PMC295570 DOI: 10.1172/jci117736] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The origin of myofibroblasts in stromal reaction has been a subject of controversy. To address this question definitively, we developed techniques for purification and characterization of major stromal cell types. We defined a panel of markers that could, in combination, unequivocally distinguish these cell types by immunocytochemistry, iso-electric focusing, immunoblotting, and two-dimensional gel electrophoresis. We then devised an assay to recapitulate in culture, within two weeks of incubation, critical aspects of the microenvironment in vivo including the typical tissue histology and stromal reaction. When confronted with tumor cells in this assay, fibroblasts readily converted into a graded pattern of myogenic differentiation, strongest in the immediate vicinity of tumor cells. Vascular smooth muscle cells (VSMC), in contrast, did not change appreciably and remained coordinately smooth muscle differentiated. Midcapillary pericytes showed only a slight propensity for myogenic differentiation. Analysis of ten primary tumors implicated converted fibroblasts (10/10), vascular smooth muscle cells (4/10), and pericytes (1/10) in the stromal reaction. Tumor cells were shown to specifically denude the venules both in culture and in vivo, explaining the VSMC phenotype in the stroma. The establishment of this assay and clarification of the origin of these cells pave the way for further analysis of the mechanisms of conversion, and of the consequence of such heterogeneity for diagnosis and treatment.
Collapse
Affiliation(s)
- L Rønnov-Jessen
- Structural Cell Biology Unit, Panum Institute, Copenhagen, Denmark
| | | | | | | |
Collapse
|
41
|
Petersen OW, Rønnov-Jessen L, Bissell MJ. The Microenvironment of the Breast: Three-Dimensional Models to Study the Roles of the Stroma and the Extracellular Matrix in Function and Dysfunction. Breast J 1995. [DOI: 10.1111/j.1524-4741.1995.tb00215.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Jacquot J, Spilmont C, Burlet H, Fuchey C, Buisson AC, Tournier JM, Gaillard D, Puchelle E. Glandular-like morphogenesis and secretory activity of human tracheal gland cells in a three-dimensional collagen gel matrix. J Cell Physiol 1994; 161:407-18. [PMID: 7962124 DOI: 10.1002/jcp.1041610303] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The extracellular matrix has been demonstrated to affect the differentiation of epithelial cells. We present evidence that in a three-dimensional (3-D) type I collagen gel matrix, isolated human adult tracheal gland (HTG) cells are capable of reconstructing new functional gland-like tubules in vitro. During the first two weeks in culture, HTG cells developed globular epithelial cell aggregates in which lumina is absent. By the third week in culture, the tubulogenesis and the formation of branching structures became evident with a polarized morphology, which in many aspects resembles the in vivo morphology. A central lumen was lined by polarized secretory epithelial cells exhibiting well-developed microvilli and apical secretory granules. Furthermore, we showed that the capacity of in vitro tracheal gland differentiation was associated with the basal deposition of laminin and type IV collagen around the gland-like tubules. A cell-associated 72 kDa type IV collagenase was expressed in developing tubule cells, as shown by immunocytochemistry. The secretion of the antileucoprotease (ALP), a protein marker of tracheal gland serous cells, was bidirectional in gland-like tubules, since up to 65% of released ALP was in the basolateral direction. Taken together, these observations indicate that isolated HTG cells in a 3-D collagen matrix form functional tracheal gland-like tubules and suggest that similar new tracheobronchial gland formations may occur during the human normal gland development and remodeling.
Collapse
Affiliation(s)
- J Jacquot
- INSERM U 314, Université de Reims, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Gorunova L, Mertens F, Mandahl N, Jonsson N, Persson B, Heim S, Mitelman F. Cytogenetic heterogeneity in a clear cell hidradenoma of the skin. CANCER GENETICS AND CYTOGENETICS 1994; 77:26-32. [PMID: 7923079 DOI: 10.1016/0165-4608(94)90144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Short-term cultures from a clear cell hidradenoma, a benign skin tumor for which no chromosome data exist, were cytogenetically analyzed. A total of eight unrelated aberrant clones were identified. The karyotypic profiles of two separately processed parts of the sample--a tumor nodule and seemingly normal adjacent dermal tissue--were different. Characteristic for the tumor nodule was a single abnormal clonal population consisting of three subclones: 46,XY,der(2)inv(2)(p13q23)t(2;9)(p13;q22), der(9)t(2;9)(q23;q22),t(11;19)(q21;p13),t(12;19)(q24;p13)/46,idem, inv(1)(p32q44)/92,idemx2. The adjacent tissue contained, in addition to the clone found in the tumor nodule, a spectrum of unrelated clones, the largest of which also showed clonal evolution: 45-47,XY,t(3;6)(p25;p25),t(12;17)(q15;q12),-17,+r(17)x2 [cp]/45-47,idem,inv(5)(p15q22)/90-94,idemx2. The remaining six clones found in this part were small and had simpler numerical or structural aberrations. The multiclonal pattern observed in this hidradenoma seems to reflect both cytogenetic convergence and divergence during neoplastic progression. The presence of unrelated clones may be an indication that the tumor was of multicellular origin.
Collapse
Affiliation(s)
- L Gorunova
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Blaschke RJ, Howlett AR, Desprez PY, Petersen OW, Bissell MJ. Cell differentiation by extracellular matrix components. Methods Enzymol 1994; 245:535-56. [PMID: 7760750 DOI: 10.1016/0076-6879(94)45027-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R J Blaschke
- Life Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
46
|
Ogmundsdóttir HM, Pétursdóttir I, Gudmundsdóttir I, Amundadóttir L, Rønnov-Jessen L, Petersen OW. Effects of lymphocytes and fibroblasts on the growth of human mammary carcinoma cells studied in short-term primary cultures. In Vitro Cell Dev Biol Anim 1993; 29A:936-42. [PMID: 8167917 DOI: 10.1007/bf02634232] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Breast carcinomas commonly contain varying amounts of fibrous stroma and infiltrates of lymphoid cells. Dickson and Lippman (Endocrine Rev., 8,29, 1987) have proposed a model of growth regulation in breast cancer involving interactions between stroma and carcinoma cells. This model is based on results obtained with established cell lines. In an effort to bring experimentation closer to the clinical situation we have used short-term primary cultures from human breast cancer in co-cultures with lymphocytes and fibroblasts. Cultures were established in a chemically defined serum-free medium (CDM3). Cell types were characterized on the basis of live morphology and expression of vimentin and keratin 18. A semi-quantitative system was developed for measuring growth of epithelial cells, thus defining two indices: maximal growth index (GI-max) and growth rate (GR). Moderate-to-good growth was obtained from 34 out of 46 carcinoma samples (74%) and 30 out of 38 parallel samples of non-cancerous tissue (79%). Success in culture was negatively correlated with the amount of hard stroma but unrelated to age of patient or clinical status. Malignant epithelium was clearly identified in 12 out of 34 (35%) carcinoma samples. For the evaluation of responses of epithelial cells in co-cultures, the cultures from each sample were ranked according to GI-max.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H M Ogmundsdóttir
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, Reykjavík
| | | | | | | | | | | |
Collapse
|
47
|
Okura M, Shirasuna K, Hiranuma T, Yoshioka H, Nakahara H, Aikawa T, Matsuya T. Characterization of growth and differentiation of normal human submandibular gland epithelial cells in a serum-free medium. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01597.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Okura M, Shirasuna K, Hiranuma T, Yoshioka H, Nakahara H, Aikawa T, Matsuya T. Characterization of growth and differentiation of normal human submandibular gland epithelial cells in a serum-free medium. Differentiation 1993; 54:143-53. [PMID: 8243891 DOI: 10.1111/j.1432-0436.1993.tb00717.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Parenchymal tissue of human submandibular glands was cultured in a serum-free medium consisting of a 1:9 mixture of Dulbecco's modified Eagle's medium and MCDB 153 supplemented with 10 ng/ml epidermal growth factor, 10 microM dexamethasone and 1 microgram/ml insulin. Cultivation of the tissue in this medium resulted in propagation of loosely arranged epithelioid cells on plastic, without the necessity of a matrix. Epidermal growth factor significantly enhanced mitogenesis of cultured cells, which expressed specific high- and low-affinity receptors for epidermal growth factor. The epithelioid cells were found to represent the undifferentiated ultrastructure of ductal cells. Immunocytochemically, cultured epithelioid cells expressed antigens specific to basal cells of the intra- and interlobular ducts in situ, including cytokeratins 3 and 6 and cytokeratins 13 and 16, vimentin, and alpha-smooth muscle actin. Moreover, cytoplasm of the cells was immunostained using antibody against the basement membrane component, type IV collagen. These results suggested that cultured epithelioid cells are undifferentiated ductal cells, which have the characteristics of basal cells of the intra- and/or interlobular ducts. Cultured epithelioid cells maintained the characteristics for serial passage until the time that the cultures were confluent. On the other hand, several stratified foci developed on the confluent monolayer. The stratified cells were strongly positive for cytokeratins 3 and 6, but negative for vimentin, alpha-smooth muscle actin and type IV collagen. Moreover, the stratified cells were strongly stained with the antibody against epithelial membrane antigen. This antibody stained the luminal membrane domain of salivary epithelial cells. Electron micrograph of the vertical section through the foci revealed stratified cell layers with a gradual transition from basal cells to squamous epidermoid cells. This result suggests that cultured epithelioid cells, which have the characteristics of basal cells of the intra- and/or interlobular duct, have the potential to differentiate into luminal duct cells.
Collapse
Affiliation(s)
- M Okura
- First Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Ropke C, Tscherning T, Claesson MH. Regulatory effects in vitro by thymic medullary epithelial cells on TCR transgenic T cells specific for male H-Y antigens. Immunol Lett 1993; 37:167-74. [PMID: 7903079 DOI: 10.1016/0165-2478(93)90027-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To evaluate the ability of thymic epithelial cells (TEC) to influence growth and differentiation of antigen specific T cells, we have used female transgenic (TG) mice expressing a receptor on the majority of their T cells for the male (H-Y) antigen in the context of H-2Db antigens. Male or female TEC expanded in serum-free medium were co-cultured with female TG thymocytes. FAC-Scan analysis after 3 days of co-culture did not indicate any selective deletion of subpopulations induced by male TEC. In contrast, the presence of TEC in TG thymocyte cultures led to increased proliferation, irrespective of the type of TEC and stimulus used. Limiting dilution (LD) proliferation analyses, using irradiated male spleen cells as stimulator cells, showed increased clonability of CD4-CD8+ cells, but reduced clonability of CD4-CD8- thymocytes, in the presence of both male and female TEC. Clones from the LD cultures were expanded for several weeks. Expanded clones all expressed the v beta 8.2+ TG TCR. One-half of the expanded TG CD8+ T cell clones obtained from LD cultures exhibited H-Y specific proliferation, and the majority of clones showed antigen-specific IL-3 secretion. Expanded clones did not develop into a cytotoxic machinery in the present culture system.
Collapse
Affiliation(s)
- C Ropke
- Laboratory of Cellular Immunology, University of Copenhagen, Panum Institute, Denmark
| | | | | |
Collapse
|
50
|
Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 1992; 89:9064-8. [PMID: 1384042 PMCID: PMC50065 DOI: 10.1073/pnas.89.19.9064] [Citation(s) in RCA: 808] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Normal human breast epithelial cells show a high degree of phenotypic plasticity in monolayer culture and express many traits that otherwise characterize tumor cells in vivo. Paradoxically, primary human breast carcinoma cells are difficult to establish in culture: most outgrowths arise from the normal tissue surrounding the tumor. These characteristics have posed major obstacles to the establishment of simple reliable criteria for mammary epithelial transformation in culture. In the present study, we show that a reconstituted basement membrane (BM) can be used to culture all normal human breast epithelial cells and a subset of human breast carcinoma cells. The two cell types can be readily distinguished by virtue of the ability of normal cells to reexpress a structurally and functionally differentiated phenotype within BM. Twelve specimens of normal breast tissue and 2 normal breast epithelial cell lines (total 14 samples) embedded in BM as single cells were able to form multicellular spherical colonies with a final size close to that of true acini in situ. Sections of mature spheres revealed a central lumen surrounded by polarized luminal epithelial cells expressing keratins 18 and 19 and sialomucin at the apical membrane. Significantly, two-thirds of normal spheres deposited a visible endogenous type IV collagen-containing BM even though they were in contact with exogenously provided BM. Growth was arrested completely within the same time period. In contrast, none of 6 carcinoma cell lines or 2 cultures of carcinoma from fresh samples (total 8 samples) responded to BM by growth regulation, lumen formation, correct polarity, or deposition of endogenous BM. These findings may provide the basis of a rapid assay for discriminating normal human breast epithelial cells from their malignant counterparts. Furthermore, we propose that the ability to sense BM appropriately and to form three-dimensional organotypic structures may be the function of a class of "suppressor" genes that are lost as cells become malignant.
Collapse
Affiliation(s)
- O W Petersen
- Department of Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|