1
|
Sato K, Yamauchi K, Ishihara A. Analysis of evolutionary and functional features of the bullfrog SULT1 family. Gen Comp Endocrinol 2023; 342:114349. [PMID: 37495023 DOI: 10.1016/j.ygcen.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
We identified the bullfrog Rana catesbeiana sulfotransferase 1 (SULT1) family from the BLAST search tool of the public databases based on the SULT1 families of Nanorana parkeri, Xenopus laevis, and Xenopus tropicalis as queries, revealing the characteristics of the anuran SULT1 family. The results showed that the anuran SULT1 family comprises six subfamilies, four of which were related to the mammalian SULT1 subfamily. Additionally, the bullfrog has two SULT1Cc subfamily members that are consistent with the characteristics of the expanded Xenopus SULT1C subfamily. Several members of the bullfrog SULT1 family were suggested to play important roles in sulfation during metamorphosis. Among these, cDNAs encoding SULT1Cc1 and SULT1Y1 were cloned, and the sulfation activity was analyzed using recombinant proteins. The affinity for 2-naphthol and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the enzymatic reaction rate were higher in SULT1Cc1 than in SULT1Y1. Both the enzymes showed inhibitory effect of many thyroid hormones (THs) analogs on the sulfation of 2-naphthol. The potency of sulfation activities of SULT1Cc1 and SULT1Y1 against T4 indicated their possible role in the intracellular T4 clearance during metamorphosis.
Collapse
Affiliation(s)
- Kosuke Sato
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
2
|
Anumukonda K, Francis M, Currie P, Tulenko F, Hsu E. Heavy chain-only antibody genes in fish evolved to generate unique CDR3 repertoire. Eur J Immunol 2021; 52:247-260. [PMID: 34708869 DOI: 10.1002/eji.202149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
In addition to conventional immunoglobulin, camelids and cartilaginous fish express a special class of antibody that consists only of heavy (H) chain (HCAbs). In the holocephalan elephantfish, there are two HCAb classes, one of which has evolved surprising features. The H-chain genes in cartilaginous fish are organized as 20-200 minigenes, or clusters, each consisting of VH, 1-3 DH, JH gene segments with one set of constant region exons. We report that HHC2 (holocephalan H-chain antibody 2) evolved from IgM H-chain clusters, but its DH gene segments have diverged considerably. The three DH in HHC2 clusters are A-rich, so that one to three potential reading frames for each DH encode lysine and arginine. All three are incorporated into the rearranged VDJ, ensuring that the ligand-binding site carries multiple basic residues, as cDNA sequences demonstrate. The electropositive character in HHC2 CDR3 is accompanied by a paucity of aromatic amino acids, the latter feature at variance to the established, interactive role of tyrosine not only in ligand-binding but generally at interfaces of protein complexes. The selection for these divergent HHC2 features challenges currently accepted ideas on what determines antibody reactivity and molecular recognition.
Collapse
Affiliation(s)
- Kamala Anumukonda
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Malcolm Francis
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| |
Collapse
|
3
|
Grozhik AV, Jaffrey SR. Distinguishing RNA modifications from noise in epitranscriptome maps. Nat Chem Biol 2019; 14:215-225. [PMID: 29443978 DOI: 10.1038/nchembio.2546] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
Messenger RNA (mRNA) and long noncoding RNA (lncRNA) can be subjected to a variety of post-transcriptional modifications that markedly influence their fate and function. This concept of 'epitranscriptomic' modifications and the understanding of their function has been driven by new technologies for transcriptome-wide mapping of modified nucleotides using next-generation sequencing. Mapping technologies have successfully documented the location and prevalence of several modified nucleotides in the transcriptome. However, some mapping methods have led to proposals of pervasive novel RNA modifications that have subsequently been shown to be exceptionally rare. These controversies have resulted in confusion about the identity of the modified nucleotides comprising the epitranscriptome in mRNA and lncRNA. Here we discuss the different transcriptome-wide technologies for mapping modified nucleotides. We describe why these methods can have poor accuracy and specificity. Finally, we describe emerging strategies that minimize false positives and other pitfalls associated with mapping and measuring epitranscriptomic modifications.
Collapse
Affiliation(s)
- Anya V Grozhik
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
4
|
Quang Le H, Suffredini E, Tien Pham D, Kim To A, De Medici D. Development of a method for direct extraction of viral RNA from bivalve molluscs. Lett Appl Microbiol 2018; 67:426-434. [DOI: 10.1111/lam.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
Affiliation(s)
- H. Quang Le
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - E. Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | - D. Tien Pham
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - A. Kim To
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - D. De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
5
|
Yang K, Shearman K, Asano H, Richardson BS. Effects of Hypoxemia on 11β-Hydroxysteroid Dehydrogenase Types 1 and 2 Gene Expression in Preterm Fetal Sheep. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/193371919700400310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- K. Yang
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - K. Shearman
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - H. Asano
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - B. S. Richardson
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Smid-Koopman E, Blok LJ, Kühne, LCM, Burger CW, Helmerhorst TJM, Brinkman AO, Huikeshoven FJ. Distinct Functional Differences of Human Progesterone Receptors A and B on Gene Expression and Growth Regulation in Two Endometrial Carcinoma Cell Lines. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760301000110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ellen Smid-Koopman
- Department of Obstetrics and Gynecology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | - Frans J. Huikeshoven
- Departments of Obstetrics and Gynaecology, and Reproduction and Development, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Bissonnette J, Chambers S, Collins P, Lockwood C, Mendelson C, Myatt L, Polan ML, Shen WH, Szal S. Strengthening Research in Departments of Obstetrics and Gynecology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769700400302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Sara Szal
- Departments of Obstetrics and Gynecology at Oregon Health Sciences University, Yale University, Case Western Reserve University, New York University, University of Texas-Southwestern, University of Cincinnati, Stanford University, and University of California, San Francisco
| |
Collapse
|
8
|
Köster N, Schmiermund A, Grubelnig S, Leber J, Ehlicke F, Czermak P, Salzig D. Single-Step RNA Extraction from Different Hydrogel-Embedded Mesenchymal Stem Cells for Quantitative Reverse Transcription-Polymerase Chain Reaction Analysis. Tissue Eng Part C Methods 2016; 22:552-60. [PMID: 27094052 DOI: 10.1089/ten.tec.2015.0362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many tissue engineering applications, cells such as human mesenchymal stem cells (hMSCs) must be embedded in hydrogels. The analysis of embedded hMSCs requires RNA extraction, but common extraction procedures often produce low yields and/or poor quality RNA. We systematically investigated four homogenization methods combined with eight RNA extraction protocols for hMSCs embedded in three common hydrogel types (alginate, agarose, and gelatin). We found for all three hydrogel types that using liquid nitrogen or a rotor-stator produced low RNA yields, whereas using a microhomogenizer or enzymatic/chemical hydrogel digestion achieved better yields regardless of which extraction protocol was subsequently applied. The hot phenol extraction protocol generally achieved the highest A260 values (representing up to 40.8 μg RNA per 10(6) cells), but the cetyltrimethylammonium bromide (CTAB) method produced RNA of better quality, with A260/A280 and A260/A230 ratios and UV spectra similar to the pure RNA control. The RNA produced by this method was also suitable as a template for endpoint and quantitative reverse transcription-PCR (qRT-PCR), achieving low Ct values of ∼20. The prudent choice of hydrogel homogenization and RNA extraction methods can ensure the preparation of high-quality RNA that generates reliable endpoint and quantitative RT-PCR data. We therefore propose a universal method that is suitable for the extraction of RNA from cells embedded in all three hydrogel types commonly used for tissue engineering.
Collapse
Affiliation(s)
- Natascha Köster
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Alexandra Schmiermund
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Stefan Grubelnig
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Jasmin Leber
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Franziska Ehlicke
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Peter Czermak
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany .,2 Department of Chemical Engineering, Kansas State University , Manhattan, Kansas.,3 Faculty of Chemistry and Biology, University of Giessen , Giessen, Germany .,4 Project Group Bioresources, Fraunhofer Institute for Molecular Biology an Applied Ecology IME , Giessen, Germany
| | - Denise Salzig
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| |
Collapse
|
9
|
Murenzi E, Toltin AC, Symington SB, Morgan MM, Clark JM. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels. Neurotoxicology 2016; 60:260-273. [PMID: 27063102 DOI: 10.1016/j.neuro.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1-Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.
Collapse
Affiliation(s)
- Edwin Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - Abigail C Toltin
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Steven B Symington
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Molly M Morgan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - John M Clark
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
10
|
Beier R, Labudde D. Numeric promoter description - A comparative view on concepts and general application. J Mol Graph Model 2015; 63:65-77. [PMID: 26655334 DOI: 10.1016/j.jmgm.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
Nucleic acid molecules play a key role in a variety of biological processes. Starting from storage and transfer tasks, this also comprises the triggering of biological processes, regulatory effects and the active influence gained by target binding. Based on the experimental output (in this case promoter sequences), further in silico analyses aid in gaining new insights into these processes and interactions. The numerical description of nucleic acids thereby constitutes a bridge between the concrete biological issues and the analytical methods. Hence, this study compares 26 descriptor sets obtained by applying well-known numerical description concepts to an established dataset of 38 DNA promoter sequences. The suitability of the description sets was evaluated by computing partial least squares regression models and assessing the model accuracy. We conclude that the major importance regarding the descriptive power is attached to positional information rather than to explicitly incorporated physico-chemical information, since a sufficient amount of implicit physico-chemical information is already encoded in the nucleobase classification. The regression models especially benefited from employing the information that is encoded in the sequential and structural neighborhood of the nucleobases. Thus, the analyses of n-grams (short fragments of length n) suggested that they are valuable descriptors for DNA target interactions. A mixed n-gram descriptor set thereby yielded the best description of the promoter sequences. The corresponding regression model was checked and found to be plausible as it was able to reproduce the characteristic binding motifs of promoter sequences in a reasonable degree. As most functional nucleic acids are based on the principle of molecular recognition, the findings are not restricted to promoter sequences, but can rather be transferred to other kinds of functional nucleic acids. Thus, the concepts presented in this study could provide advantages for future nucleic acid-based technologies, like biosensoring, therapeutics and molecular imaging.
Collapse
Affiliation(s)
- Rico Beier
- University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| | - Dirk Labudde
- University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
11
|
Nguyen QA, Luan S, Wi SG, Bae H, Lee DS, Bae HJ. Pronounced Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Sucrose Synthase May Reveal a Novel Sugar Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2015; 6:1216. [PMID: 26793204 PMCID: PMC4707253 DOI: 10.3389/fpls.2015.01216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/17/2015] [Indexed: 05/20/2023]
Abstract
Soluble sugars not only serve as nutrients, but also act as signals for plant growth and development, but how sugar signals are perceived and translated into physiological responses in plants remains unclear. We manipulated sugar levels in transgenic plants by overexpressing sucrose synthase (SuSy), which is a key enzyme believed to have reversible sucrose synthesis and sucrose degradation functions. The ectopically expressed SuSy protein exhibited sucrose-degrading activity, which may change the flux of sucrose demand from photosynthetic to non-photosynthetic cells, and trigger an unknown sucrose signaling pathway that lead to increased sucrose content in the transgenic plants. An experiment on the transition from heterotrophic to autotrophic growth demonstrated the existence of a novel sucrose signaling pathway, which stimulated photosynthesis, and enhanced photosynthetic synthesis of sucrose, which was the direct cause or the sucrose increase. In addition, a light/dark time treatment experiment, using different day length ranges for photosynthesis/respiration showed the carbohydrate pattern within a 24-h day and consolidated the role of sucrose signaling pathway as a way to maintain sucrose demand, and indicated the relationships between increased sucrose and upregulation of genes controlling development of the shoot apical meristem (SAM). As a result, transgenic plants featured a higher biomass and a shorter time required to switch to reproduction compared to those of control plants, indicating altered phylotaxis and more rapid advancement of developmental stages in the transgenic plants.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| | - Seung G. Wi
- Bio-Energy Research Center, Chonnam National UniversityGwangju, South Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National UniversityGwangju, South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
- Bio-Energy Research Center, Chonnam National UniversityGwangju, South Korea
- *Correspondence: Hyeun-Jong Bae
| |
Collapse
|
12
|
Curcumin, a natural antioxidant, acts as a noncompetitive inhibitor of human RNase L in presence of its cofactor 2-5A in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:817024. [PMID: 25254215 PMCID: PMC4165196 DOI: 10.1155/2014/817024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Ribonuclease L (RNase L) is an antiviral endoribonuclease of the innate immune system, which is induced and activated by viral infections, interferons, and double stranded RNA (dsRNA) in mammalian cells. Although, RNase L is generally protective against viral infections, abnormal RNase L expression and activity have been associated with a number of diseases. Here, we show that curcumin, a natural plant-derived anti-inflammatory active principle, inhibits RNase L activity; hence, it may be exploited for therapeutic interventions in case of pathological situations associated with excess activation of RNase L.
Collapse
|
13
|
Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ. Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5' amplification promoting sequence. PLANT MOLECULAR BIOLOGY 2013; 83:317-28. [PMID: 23771581 DOI: 10.1007/s11103-013-0088-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.
Collapse
Affiliation(s)
- Sera Jung
- Department of Forest Products and Technology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Appelbe OK, Bollman B, Attarwala A, Triebes LA, Muniz-Talavera H, Curry DJ, Schmidt JV. Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. Dev Biol 2013; 382:172-85. [PMID: 23906841 DOI: 10.1016/j.ydbio.2013.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/10/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
Congenital hydrocephalus, the accumulation of excess cerebrospinal fluid (CSF) in the ventricles of the brain, affects one of every 1000 children born today, making it one of the most common human developmental disorders. Genetic causes of hydrocephalus are poorly understood in humans, but animal models suggest a broad genetic program underlying the regulation of CSF balance. In this study, the random integration of a transgene into the mouse genome led to the development of an early onset and rapidly progressive hydrocephalus. Juvenile hydrocephalus transgenic mice (Jhy(lacZ)) inherit communicating hydrocephalus in an autosomal recessive fashion with dilation of the lateral ventricles observed as early as postnatal day 1.5. Ventricular dilation increases in severity over time, becoming fatal at 4-8 weeks of age. The ependymal cilia lining the lateral ventricles are morphologically abnormal and reduced in number in Jhy(lacZ/lacZ) brains, and ultrastructural analysis revealed disorganization of the expected 9+2 microtubule pattern. Rather, the majority of Jhy(lacZ/lacZ) cilia develop axonemes with 9+0 or 8+2 microtubule structures. Disruption of an unstudied gene, 4931429I11Rik (now named Jhy) appears to underlie the hydrocephalus of Jhy(lacZ/lacZ) mice, and the Jhy transcript and protein are decreased in Jhy(lacZ/lacZ) mice. Partial phenotypic rescue was achieved in Jhy(lacZ/lacZ) mice by the introduction of a bacterial artificial chromosome (BAC) carrying 60-70% of the JHY protein coding sequence. Jhy is evolutionarily conserved from humans to basal vertebrates, but the predicted JHY protein lacks identifiable functional domains. Ongoing studies are directed at uncovering the physiological function of JHY and its role in CSF homeostasis.
Collapse
Affiliation(s)
- Oliver K Appelbe
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Bumgarner R. Overview of DNA microarrays: types, applications, and their future. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2013; Chapter 22:Unit 22.1.. [PMID: 23288464 DOI: 10.1002/0471142727.mb2201s101] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This unit provides an overview of DNA microarrays. Microarrays are a technology in which thousands of nucleic acids are bound to a surface and are used to measure the relative concentration of nucleic acid sequences in a mixture via hybridization and subsequent detection of the hybridization events. This overview first discusses the history of microarrays and the antecedent technologies that led to their development. This is followed by discussion of the methods of manufacture of microarrays and the most common biological applications. The unit ends with a brief description of the limitations of microarrays and discusses how microarrays are being rapidly replaced by DNA sequencing technologies.
Collapse
Affiliation(s)
- Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
The genomic structure and the expression profile of the Xenopus laevis transthyretin gene. Gene 2012; 510:126-32. [DOI: 10.1016/j.gene.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/03/2012] [Accepted: 09/01/2012] [Indexed: 11/18/2022]
|
17
|
Cell-free synthesis of opiate binding sites. Neurochem Int 2012; 11:219-21. [PMID: 20501164 DOI: 10.1016/0197-0186(87)90012-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1987] [Accepted: 03/30/1987] [Indexed: 11/20/2022]
Abstract
A procedure is described for the detection of opiate binding sites synthesized during in vitro translation of various mRNA preparations. RNA were isolated from membrane bound polysomes which were prepared from NG 108-15 hybridoma, C6BU1 glioma cells, as well as from N18TG2, NB2aAg and NB41A3 neuroblastoma cells. Polyadenylated [poly(A)(+)] RNA were purified, translated in vitro in a rabbit reticulocyte lysate and the translation products assayed for their ability to bind [(3)H] bremazocine. Bound and free ligands were separated by column chromatography. After translation of poly(A)(+) RNA obtained from NG 108-15 cells we demonstrated a stereospecific, saturable binding of [(3)H]bremazocine (displaced by levorphanol and not by dextrorphan) with a K(d) of 2.4 +/- 1.0 nM. The total amount of opiate binding sites synthesized was 6.2 +/- 0.5 fmol per ?g of poly(A)(+) RNA. Opiate binding sites were undetectable at zero time and a plateau was reached after translation had proceeded for 20 min. Five time less opiate binding sites were synthesized when the poly(A)(+) RNA purified from N18TG2 neuroblastoma cells were used under the same experimental conditions. There was no detectable binding of opiate ligands with poly(A)(+) RNA obtained from C6BU1 glioma cells, NB2aAg or NB41A3 neuroblastoma cells.
Collapse
|
18
|
Gupta A, Rath PC. Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L. J Biosci 2012; 37:103-13. [PMID: 22357208 DOI: 10.1007/s12038-011-9180-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interferon (IFN)-inducible, 2',5'-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein-protein interactions.
Collapse
Affiliation(s)
- Ankush Gupta
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | |
Collapse
|
19
|
Vainio P, Wolf M, Edgren H, He T, Kohonen P, Mpindi JP, Smit F, Verhaegh G, Schalken J, Perälä M, Iljin K, Kallioniemi O. Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer. Prostate 2012; 72:789-802. [PMID: 21919029 DOI: 10.1002/pros.21487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) represents a therapeutic challenge for current medications. METHODS In order to explore the molecular mechanisms involved in CRPC progression and to identify new therapeutic targets, we analyzed a unique sample set of 11 CRPCs and 7 advanced tumors by array-CGH and gene expression microarrays. The genome-wide DNA and RNA data were integrated to identify genes whose overexpression was driven by their amplification. To assess the functional role of these genes, their expression was analyzed in a transcriptional data set of 329 clinical prostate cancers and the corresponding gene products were silenced using RNA interference in prostate cancer cells. RESULTS Six recurrent genetic targets were identified in the CRPCs; ATP1B1, AR, FAM110B, LAS1L, MYC, and YIPF6. In addition to AR and MYC, FAM110B emerged as a potential key gene involved in CRPC progression in a subset of the tumors. FAM110B was able to regulate AR signaling in prostate cancer cells and FAM110B itself was regulated by androgens. FAM110B siRNA inhibited the growth of prostate cancer cells in vitro, and this effect was substantially enhanced in androgen deficient conditions. Ectopic FAM110B expression in non-cancerous epithelial prostate cells induced aneuploidy and impaired antigen presentation. CONCLUSIONS The DNA/RNA gene outlier detection combined with siRNA cell proliferation assay identified FAM110B as a potential growth promoting key gene for CRPC. FAM110B appears to have a key role in the androgen signaling and progression of CRPC impacting multiple cancer hallmarks and therefore highlighting a potential therapeutic target.
Collapse
Affiliation(s)
- Paula Vainio
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rogers ED, Ramalie JR, McMurray EN, Schmidt JV. Localizing transcriptional regulatory elements at the mouse Dlk1 locus. PLoS One 2012; 7:e36483. [PMID: 22606264 PMCID: PMC3350532 DOI: 10.1371/journal.pone.0036483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/06/2012] [Indexed: 11/25/2022] Open
Abstract
Much effort has focused recently on determining the mechanisms that control the allele-specific expression of genes subject to genomic imprinting, yet imprinting regulation is only one aspect of configuring appropriate expression of these genes. Imprinting control mechanisms must interact with those regulating the tissue-specific expression pattern of each imprinted gene in a cluster. Proper expression of the imprinted Delta-like 1 (Dlk1)-Maternally expressed gene 3 (Meg3) gene pair is required for normal fetal development in mammals, yet the mechanisms that control tissue-specific expression of these genes are unknown. We have used a combination of in vivo and in vitro expression assays to localize cis-regulatory elements that may regulate Dlk1 expression in the mouse embryo. A bacterial artificial chromosome transgene encompassing the Dlk1 gene and 77 kb of flanking sequence conferred expression in most endogenous Dlk1-expressing tissues. In combination with previous transgenic data, these experiments localize the majority of Dlk1 cis-regulatory elements to a 41 kb region upstream of the gene. Cross-species sequence conservation was used to further define potential regulatory elements, several of which functioned as enhancers in a luciferase expression assay. Two of these elements were able to drive expression of a lacZ reporter transgene in Dlk1-expressing tissues in the mouse embryo. The sequence proximal to Dlk1 therefore contains at least two discrete regions that may regulate tissue-specificity of Dlk1 expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Calcium-Binding Proteins
- Chromosomes, Artificial, Bacterial/genetics
- Conserved Sequence
- DNA Primers/genetics
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genomic Imprinting
- Intercellular Signaling Peptides and Proteins/genetics
- Lac Operon
- Mice
- Mice, Transgenic
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- Regulatory Elements, Transcriptional
- Tissue Distribution
Collapse
Affiliation(s)
- Eric D. Rogers
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jenniffer R. Ramalie
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Erin N. McMurray
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jennifer V. Schmidt
- The Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Le Goff C, Laurent V, Le Bon K, Tanguy G, Couturier A, Le Goff X, Le Guellec R. pEg6, a Spire family member, is a maternal gene encoding a vegetally localized mRNA in Xenopus embryos. Biol Cell 2012; 98:697-708. [PMID: 16789907 DOI: 10.1042/bc20050095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In Xenopus, during oocyte maturation and the segmentation period, cell cycle progression is independent of new transcription, but requires de novo translation. This suggests that the completion of oocyte maturation and then the rapid cell division period is controlled exclusively at a post-transcriptional level by specific gene products. To isolate these maternal genes, a differential screening of a Xenopus egg cDNA library was performed. Several cDNAs were isolated which correspond to mRNA polyadenylated in eggs and deadenylated in embryos, and these constitute the founders members of the Eg family of mRNAs. RESULTS We report here the characterization of Eg6 mRNA as a novel maternal gene expressed in Xenopus egg until gastrula stage. The Eg6 transcript is initially concentrated in the vegetal cytoplasm of the egg, and later the distribution of the transcript marks the posterior vegetal end of developing embryos. pEg6 is a multidomain protein with a kinase non-catalytic C-lobe domain of unknown function, a cluster of four WH2 (Wiskott-Aldrich syndrome protein homology 2) domains and a modified FYVE zinc-finger motif. The amino acid sequence of pEg6 is related to PEM-5 (posterior end mark-5), from an ascidian maternal mRNA, and spire, a Drosophila protein required to establish dorsal-ventral and anterior-posterior axes of polarity and recently described as an actin nucleation factor. In Xenopus and Schizosaccharomyces pombe cells pEg6 expression induces filamentous actin clusters and is associated with vesicular structure. CONCLUSION These data suggest that pEg6 acts as a vegetally localized factor contributing to the actin nucleation process during Xenopus early development.
Collapse
Affiliation(s)
- Catherine Le Goff
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, Groupe Développement Précoce, IFR140 GFAS, Faculté de Médecine, 2 avenue du Pr Léon Bernard, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Monroy-Contreras R, Vaca L. Molecular beacons: powerful tools for imaging RNA in living cells. J Nucleic Acids 2011; 2011:741723. [PMID: 21876785 PMCID: PMC3163130 DOI: 10.4061/2011/741723] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 12/25/2022] Open
Abstract
Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area.
Collapse
Affiliation(s)
- Ricardo Monroy-Contreras
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico, DF, Mexico
| | | |
Collapse
|
23
|
Mahadevan SA, Wi SG, Kim YO, Lee KH, Bae HJ. In planta differential targeting analysis of Thermotoga maritima Cel5A and CBM6-engineered Cel5A for autohydrolysis. Transgenic Res 2011; 20:877-86. [PMID: 21152978 DOI: 10.1007/s11248-010-9464-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
Abstract
The heterologous expression of glycosyl hydrolases in bioenergy crops can improve the lignocellulosic conversion process for ethanol production. We attempted to obtain high-level expression of an intact Thermotoga maritima endoglucanase, Cel5A, and CBM6-engineered Cel5A in transgenic tobacco plants for the mass production and autohydrolysis of endoglucanase. Cel5A expression was targeted to different subcellular compartments, namely, the cytosol, apoplast, and chloroplast, using the native form of the pathogenesis-related protein 1a (PR1a) and Rubisco activase (RA) transit peptides. Cel5A transgenic tobacco plants with the chloroplast transit peptide showed the highest average endoglucanase activity and protein accumulation up to 4.5% total soluble protein. Cel5A-CBM6 was targeted to the chloroplast and accumulated up to 5.2% total soluble protein. In terms of the direct conversion of plant tissue into free sugar, the Cel5A-CBM6 transgenic plant was 33% more efficient than the Cel5A transgenic plant. The protein stability of Cel5A and Cel5A-CBM6 in lyophilized leaf material is an additional advantage in the bioconversion process.
Collapse
Affiliation(s)
- Shobana Arumugam Mahadevan
- Department of Forest Products and Technology (BK21 Program), Chonnam National University, Gwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Pournajafi-Nazarloo H, Partoo L, Yee J, Stevenson J, Sanzenbacher L, Kenkel W, Mohsenpour SR, Hashimoto K, Carter CS. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles. Psychoneuroendocrinology 2011; 36:780-9. [PMID: 21095063 PMCID: PMC3104077 DOI: 10.1016/j.psyneuen.2010.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that various type of stressors modulate messenger ribonucleic acid (mRNA) for type 1 corticotropin-releasing hormone (CRH) receptor (CRH-R1 mRNA) and type 2 CRH receptor (CRH-R2 mRNA). The purpose of this study was to explore the effect of social isolation stress of varying durations on the CRH, CRH-R1 and CRH-R2 mRNAs expression in the hypothalamus, hippocampus and pituitary of socially monogamous female and male prairie voles (Microtus ochrogaster). Isolation for 1h (single isolation) or 1h of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma corticosterone levels. Single or repeated isolation increased hypothalamic CRH mRNA expression, but no changes in CRH-R1 mRNA in the hypothalamus were observed. Continuous isolation for 4 weeks (chronic isolation) showed no effect on hypothalamic CRH or CRH-R1 mRNAs in female or male animals. However, hypothalamic CRH-R2 mRNA was significantly reduced in voles exposed to chronic isolation. Single or repeated isolation, but not chronic isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. Despite elevated CRH mRNA expression, CRH-R1 and CRH-R2 mRNAs were not modulated in the hippocampus following single or repeated isolation. Although, chronic isolation did not affect hippocampal CRH or CRH-R1 mRNAs, it did increase CRH-R2 mRNA expression in females and males. The results of the present study in prairie voles suggest that social isolation has receptor subtype and species-specific consequences for the modulation of gene expression for CRH and its receptors in brain and pituitary. Previous studies have revealed a female-biased increase in oxytocin in response to chronic isolation; however, we did not find a sex difference in CRH or its receptors following single, repeated or chronic social isolation, suggesting that sexually dimorphic processes beyond the CRH system, possibly involving vasopressin, might explain this difference.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evidence for an RNA polymerization activity in axolotl and Xenopus egg extracts. PLoS One 2010; 5:e14411. [PMID: 21203452 PMCID: PMC3009717 DOI: 10.1371/journal.pone.0014411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/24/2010] [Indexed: 01/09/2023] Open
Abstract
We have previously reported a post-transcriptional RNA amplification observed in vivo following injection of in vitro synthesized transcripts into axolotl oocytes, unfertilized (UFE) or fertilized eggs. To further characterize this phenomenon, low speed extracts (LSE) from axolotl and Xenopus UFE were prepared and tested in an RNA polymerization assay. The major conclusions are: i) the amphibian extracts catalyze the incorporation of radioactive ribonucleotide in RNase but not DNase sensitive products showing that these products correspond to RNA; ii) the phenomenon is resistant to α-amanitin, an inhibitor of RNA polymerases II and III and to cordycepin (3′dAMP), but sensitive to cordycepin 5′-triphosphate, an RNA elongation inhibitor, which supports the existence of an RNA polymerase activity different from polymerases II and III; the detection of radiolabelled RNA comigrating at the same length as the exogenous transcript added to the extracts allowed us to show that iii) the RNA polymerization is not a 3′ end labelling and that iv) the radiolabelled RNA is single rather than double stranded. In vitro cell-free systems derived from amphibian UFE therefore validate our previous in vivo results hypothesizing the existence of an evolutionary conserved enzymatic activity with the properties of an RNA dependent RNA polymerase (RdRp).
Collapse
|
26
|
Caulet S, Pelczar H, Andéol Y. Multiple sequences and factors are involved in stability/degradation of Awnt-1, Awnt-5A and Awnt-5B mRNAs during axolotl development. Dev Growth Differ 2010; 52:209-22. [PMID: 20151991 DOI: 10.1111/j.1440-169x.2009.01156.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Following fertilization in amphibian, early cleavage stages are maternally controlled at a post-transcriptional level before initiation of zygotic transcriptions at the mid blastula transition (MBT). We document the expression levels of the axolotl Awnt-1, Awnt-5A and Awnt-5B genes as well as the adenylation states of their corresponding mRNAs from the end of oogenesis until the tailbud stages. Awnt-1/-5A RNAs are stable until MBT then degraded before gastrulation. Awnt-5B RNAs are degraded at fertilization and zygotically expressed after MBT with high level expression from gastrulation. Estimation of the poly(A) tail lengths reveals no direct link between deadenylation and degradation periods for each Awnt transcript. To investigate the molecular mechanisms involved in Awnt-1/-5A/-5B RNAs stability, synthetic full-length or 3' untranslated region (UTR) Awnt RNAs progressively deleted from their 3' end were microinjected in axolotl oocytes, unfertilized and fertilized eggs. We identified degrading and stabilizing sequences in the 3'UTR whose activities depend on the cellular context and are also modulated by the 5'UTR and coding sequence within each RNA. Using axolotl nuclear extracts from stage VI oocytes, we further produced evidence of destabilizing factors targeting the Awnt-5B RNAs. Altogether, these results show that oocyte maturation and late cleavages following MBT are two important periods when axolotl Wnt RNAs are highly regulated.
Collapse
Affiliation(s)
- Stéphane Caulet
- Equipe Biochimie du développement précoce, Laboratoire de Biologie du Développement, UMR CNRS 7622, Université Pierre et Marie Curie, 75252 Paris, Cedex 05, France
| | | | | |
Collapse
|
27
|
Kennedy KAM, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SAL, Skerjanc IS. Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 2009; 7:67. [PMID: 19814781 PMCID: PMC2764571 DOI: 10.1186/1741-7007-7-67] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/08/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.
Collapse
Affiliation(s)
- Karen AM Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Tammy Porter
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott D Ryan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Feodor Price
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Karamboulas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Josée Savage
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas A Drysdale
- Department of Pediatrics and Physiology and Pharmacology, The University of Western Ontario, Children's Health Research Institute, London, Ontario, Canada
| | - Shun-Cheng Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Steffany AL Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Gignac SM, Buschle M, Roberts RM, Pettit GR, Hoffbrand AV, Drexler HG. Differential expression of TRAP Isoenzyme in B-CLL Cells Treated with Different Inducers. Leuk Lymphoma 2009; 3:19-29. [DOI: 10.3109/10428199009050971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Pournajafi-Nazarloo H, Partoo L, Sanzenbacher L, Esmaeilzadeh M, Paredes J, Hashimoto K, Azizi F, Carter CS. Social isolation modulates corticotropin-releasing factor type 2 receptor, urocortin 1 and urocortin 2 mRNAs expression in the cardiovascular system of prairie voles. Peptides 2009; 30:940-6. [PMID: 19452635 DOI: 10.1016/j.peptides.2009.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of the present study was to examine the effect of social isolation stress on the expression of messengers ribonucleic acid (mRNAs) for corticotropin-releasing factor receptor type 2 (CRF2 receptor), urocortin 1 (Ucn 1) and urocortin 2 (Ucn 2) in the cardiovascular system of female and male prairie voles (Microtus ochrogaster). Isolation for 1 h (single isolation) or 1 h of isolation every day for 4 weeks (repeated isolation) was followed by a marked increase in plasma corticosterone level. However, continuous isolation for 4 weeks (chronic isolation) did not significantly affect plasma corticosterone level in female or male animals. A single period of isolation did not influence the expression of the CRF2 receptor, however, both repeated and chronic isolation significantly decreased CRF2 receptor mRNA in the ventricle and aorta of both sexes. Neither single nor chronic isolation significantly affected Ucn 1 mRNAs expression; however, repeated isolation increased Ucn 1 mRNA expression in the ventricles of female and male animals. Although, a single isolation produced no effect on cardiac Ucn 2 mRNA expression, both repeated and chronic isolation were followed by increased heart Ucn 2 mRNA expression in both sexes. We speculate that during repeated isolation Ucn 1 along with Ucn 2 are increased, which in turn down-regulates CRF2 receptor mRNA expression, and that Ucn 2 also may be one of factors responsible for the down-regulation of CRF2 receptor mRNA expression in cardiovascular system that is associated with chronic isolation.
Collapse
|
30
|
Schulz P, Wolf D, Arbusow V, Bojar H, Klobeck HG, Fittler F. The synthetic androgen mibolerone induces transient suppression of the transformed phenotype in an androgen responsive human prostatic carcinoma cell line. Andrologia 2009; 22 Suppl 1:56-66. [PMID: 2151880 DOI: 10.1111/j.1439-0272.1990.tb02071.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The synthetic androgen mibolerone elicits a set of distinct changes in the behaviour of an androgen responsive human prostatic carcinoma cell line (LNCaP). Inhibition of cell proliferation, induction of morphological change and of a prostate specific mRNA, and inhibition of colony formation in soft agar are induced by very low concentrations of mibolerone. The natural androgen dihydrotestosterone is much less effective. The changes in growth characteristics and morphology are reverted by excess antiandrogen, i.e. cyproterone acetate or hydroxyflutamide. Cell lines lacking androgen receptors (PC-3, DU 145 and MRC-5) are completely unresponsive to mibolerone. Taken together, our results indicate androgen receptor mediated suppression of the transformed phenotype in LNCaP cells.
Collapse
Affiliation(s)
- P Schulz
- Institut für Physiologische Chemie der Universität München/FRG
| | | | | | | | | | | |
Collapse
|
31
|
Melanitou E, Tronik D, Rougeon F. Two isoforms of the kidney androgen-regulated protein are encoded by two alleles of a single gene in OFl mice. Genet Res (Camb) 2009; 59:117-24. [PMID: 1352760 DOI: 10.1017/s0016672300030329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryTwo cDNA clones coding for two forms of the mouse kidney androgen-regulated protein (KAP) distinguished by their electrophoretic mobilities on SDS gel electrophoresis have been isolated from libraries prepared from strains of mice having one (BALB/c) or two (OFl) forms of the KAP protein. The corresponding mRNAs have identical sizes, as well as identical sequences in their 5' non-translated regions. The size difference observed between the two proteins is due to two point mutations in the coding region of the KAP mRNA, leading to two amino-acid changes one of which resulted in the substitution of a glycine for a glutamic acid. As shown byin vitrotranscription/translation experiments, these two amino-acid differences are responsible for the shift in the apparent molecular weight of the protein on SDS gels. Both forms of the protein are more abundant in males than in females.In vitrotranslation of kidney RNAs isolated from six different strains and species of mice revealed the presence of other forms of the KAP protein, characterized by small variations of their molecular weights. Southern blot analysis data are consistent with the presence of only onekapgene in the mouse genome. A restriction fragment length polymorphism has been observed, which does not correlate with the protein polymorphism, indicating the presence of another allele in the OF1 mouse genome.
Collapse
Affiliation(s)
- E Melanitou
- Institut Pasteur, Unité de Génétique et Biochimie du Développement, Département d'Immunologie, Paris, France
| | | | | |
Collapse
|
32
|
Pournajafi-Nazarloo H, Partoo L, Sanzenbacher L, Paredes J, Hashimoto K, Azizi F, Sue Carter C. Stress differentially modulates mRNA expression for corticotrophin-releasing hormone receptors in hypothalamus, hippocampus and pituitary of prairie voles. Neuropeptides 2009; 43:113-23. [PMID: 19185916 DOI: 10.1016/j.npep.2008.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/18/2022]
Abstract
This study compares the effect of an acute stressor (restraint for 1h) versus a chronic stressor (social isolation for 4 weeks) on the expression of mRNAs for corticotropin-releasing hormone (CRH), CRH receptor type 1 (CRH-R1) and type 2 (CRH-R2) in the hypothalamus, hippocampus and pituitary of socially monogamous female prairie voles (Microtus ochrogaster). Animals were studied immediately following a stressor or as a function of repairing with a familiar sibling. Despite elevated expression of CRH mRNA, no alteration of CRH-R1 mRNA in the hypothalamus was observed following restraint stress or 4 weeks of social isolation. Hypothalamic CRH-R2 mRNA was significantly lower in voles exposed to restraint or isolation. CRH-R2 mRNA also remained down-regulated in isolated animals when these animals were re-paired with their sibling for one day following 28 days of isolation. Restraint, but not isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. However, these differences were no longer observed when these animals were re-paired with their sibling for one day. Despite elevated CRH mRNA expression, CRH-R1 mRNA did not increase in the hippocampus following restraint or social isolation. Social isolation, but not restraint stress, increased CRH-R2 mRNA in the hippocampus, when these animals were re-paired with their sibling for one day the modulation of CRH mRNA remained up-regulated. Plasma corticosterone was elevated only following restraint, and not in animals that were handled, isolated or re-paired. The results of the present study reveal that acute restraint as well as social isolation can have significant consequences for the modulation of gene expression for the CRH receptors in brain and pituitary of prairie voles.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Reiner T, Pozas ADL, Gomez LA, Perez-Stable C. Low dose combinations of 2-methoxyestradiol and docetaxel block prostate cancer cells in mitosis and increase apoptosis. Cancer Lett 2009; 276:21-31. [DOI: 10.1016/j.canlet.2008.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/25/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
|
34
|
Guerau-de-Arellano M, Mathis D, Benoist C. Transcriptional impact of Aire varies with cell type. Proc Natl Acad Sci U S A 2008; 105:14011-6. [PMID: 18780794 PMCID: PMC2544570 DOI: 10.1073/pnas.0806616105] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Indexed: 01/28/2023] Open
Abstract
Aire promotes T cell tolerance by inducing the expression of a broad swath of genes encoding peripheral tissue antigens (PTAs) in medullary epithelial cells (MECs) of the thymus. The exact mechanism used in inducing this ectopic transcription remains obscure. To address this issue, we generated transgenic mice expressing Aire in pancreatic islet beta cells. Gene-expression profiling of such islets revealed that Aire can have a significant impact on transcription in these cells, mainly inducing, but also repressing, transcript levels in a manner comparable with its influence on MECs. The exact transcripts affected differed in MECs and beta cells, with limited overlap between the two sets of Aire-modulated genes. We propose that Aire promotes ectopic gene expression by a generic mechanism that does not depend on any particular characteristics or transcription mechanisms operating in MECs, whereas the cellular environment does govern which genes are actually susceptible to Aire regulation.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| |
Collapse
|
35
|
Sauer ML, Kollars B, Geraets R, Sutton F. Sequential CaCl2, polyethylene glycol precipitation for RNase-free plasmid DNA isolation. Anal Biochem 2008; 380:310-4. [DOI: 10.1016/j.ab.2008.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
|
36
|
Bonifer C, Bosch FX, Faust N, Schuhmann A, Sippel AE. Evolution of Gene Regulation as Revealed by Differential Regulation of the Chicken Lysozyme Transgene and the Endogenous Mouse Lysozyme Gene in Mouse Macrophages. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1994.0t227.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Bosch M, Cayla X, Hoof C, Hemmings BA, Ozon R, Merlevede W, Goris J. The PR55 and PR65 Subunits of Protein Phosphatase 2A from Xenopus laevis. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1037g.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Bae HJ, Kim HJ, Kim YS. Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications. BIORESOURCE TECHNOLOGY 2008; 99:3513-9. [PMID: 17889523 DOI: 10.1016/j.biortech.2007.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 05/17/2023]
Abstract
The purpose of this study was to produce recombinant xylanase in transgenic plants and to test its potential application for pulp bleaching. The xynII xylanase gene from Trichoderma reesei was inserted into the Arabidopsis genome. Many transgenic plants produced biologically active XYNII and accumulated in leaves at level of 1.4-3.2% of total soluble proteins. The bleaching ability of XYNII on Kraft pulp was demonstrated by a reduction in the kappa number and the residual lignin contents. The bleaching efficiency of transgenic plant produced XYNII was similar to commercial xylanase on unbleached Kraft pulp. The effect of xylanase treatment on Kraft pulp was also investigated by SEM. Clear physical change on the pulp fiber surface was observed and was related to the amount xylan removed and microfibrils were visible on the fiber surface. This report demonstrates the potential application of plant produced recombinant xylanase for pulp and paper bleaching.
Collapse
Affiliation(s)
- Hyeun-Jong Bae
- Department of Forest Products and Technology, BK21 Program, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | |
Collapse
|
39
|
Gielen SCJP, Santegoets LAM, Kühne LCM, Van Ijcken WFJ, Boers-Sijmons B, Hanifi-Moghaddam P, Helmerhorst TJM, Blok LJ, Burger CW. Genomic and nongenomic effects of estrogen signaling in human endometrial cells: involvement of the growth factor receptor signaling downstream AKT pathway. Reprod Sci 2008; 14:646-54. [PMID: 18000226 DOI: 10.1177/1933719107306872] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For the endometrium, estradiol and tamoxifen induce proliferation, and consequently, tamoxifen treatment of breast cancer results in a 2-fold to 7-fold increased risk for endometrial cancer. Here, the role of activation of growth factor receptor signaling in mediating the effects of estrogen and tamoxifen is determined. Microarray analysis of ECC-1 cells treated with estradiol or tamoxifen indicate that rapid responses to treatment (1 hour) are very distinct from long-term responses (>24 hours). Furthermore, estradiol and tamoxifen are observed to induce AKT activation. Comparing long-term estrogen- and tamoxifen-regulated genes with genes regulated by insulin-like growth factor 1 and amphiregulin reveals that the late effects of estrogen and tamoxifen signaling may partly be mediated via activation of growth factor receptor signaling pathways. It is hypothesized that both early and late effects of estrogen and tamoxifen signaling in the endometrium are partly mediated via the activation of growth factor receptor signaling, putatively at the level of AKT activation.
Collapse
Affiliation(s)
- Sussane C J P Gielen
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 2008; 314:707-19. [PMID: 18201699 DOI: 10.1016/j.yexcr.2007.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/05/2007] [Accepted: 12/05/2007] [Indexed: 02/03/2023]
Abstract
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koppen A, Ait-Aissa R, Koster J, Øra I, Bras J, van Sluis PG, Caron H, Versteeg R, Valentijn LJ. Dickkopf-3 expression is a marker for neuroblastic tumor maturation and is down-regulated by MYCN. Int J Cancer 2007; 122:1455-64. [DOI: 10.1002/ijc.23180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Reiner T, de las Pozas A, Parrondo R, Perez-Stable C. Progression of Prostate Cancer from a Subset of p63-Positive Basal Epithelial Cells in FG/Tag Transgenic Mice. Mol Cancer Res 2007; 5:1171-9. [DOI: 10.1158/1541-7786.mcr-07-0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Koppen A, Ait-Aissa R, Hopman S, Koster J, Haneveld F, Versteeg R, Valentijn LJ. Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation. Cancer Lett 2007; 256:218-28. [PMID: 17643814 DOI: 10.1016/j.canlet.2007.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 02/02/2023]
Abstract
Neuroblastomas are tumors of the developing peripheral sympathetic nervous system, which originates from the neural crest. Twenty percent of neuroblastomas show amplification of the MYCN oncogene, which correlates with poor prognosis. The MYCN transcription factor can activate and repress gene expression. To broaden our insight in the spectrum of genes down-regulated by MYCN, we generated gene expression profiles of the neuroblastoma cell lines SHEP-21N and SKNAS-NmycER, in which MYCN activity can be regulated. In this study, we show that MYCN suppresses the expression of Dickkopf-1 (DKK1) in both cell lines. DKK1 is a potent inhibitor of the wnt/beta-catenin signalling cascade, which is known to function in neural crest cell migration. We generated a DKK1 inducible cell line, IMR32-DKK1, which showed impaired proliferation upon DKK1 expression. Surprisingly, DKK1 expression did not inhibit the canonical wnt/beta-catenin signalling, suggesting a role of DKK1 in an alternative route of the wnt pathway. Gene expression profiling of two IMR32-DKK1 clones showed that only a few genes, amongst which SYNPO2, were up-regulated by DKK1. SYNPO2 encodes an actin-binding protein and was previously found to inhibit proliferation and invasiveness of prostate cancer cells. These results suggest that MYCN might stimulate cell proliferation by inhibiting the expression of DKK1. DKK1 might exert part of its growth suppressive effect by induction of SYNPO2 expression.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Koppen A, Ait-Aissa R, Koster J, van Sluis PG, Ora I, Caron HN, Volckmann R, Versteeg R, Valentijn LJ. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur J Cancer 2007; 43:2413-22. [PMID: 17826980 DOI: 10.1016/j.ejca.2007.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 12/23/2022]
Abstract
The c-Myc and MYCN oncogenes strongly induce cell proliferation. Although a limited series of cell cycle genes were found to be induced by the myc transcription factors, it is still unclear how they mediate the proliferative phenotype. We therefore analysed a neuroblastoma cell line with inducible MYCN expression. We found that all members of the minichromosome maintenance complex (MCM2-7) and MCM8 and MCM10 were up-regulated by MYCN. Expression profiling of 110 neuroblastoma tumours revealed that these genes strongly correlated with MYCN expression in vivo. Extensive chromatin immunoprecipitation experiments were performed to investigate whether the MCM genes were primary MYCN targets. MYCN was bound to the proximal promoters of the MCM2 to -8 genes. These data suggest that MYCN stimulates the expression of not only MCM7, which is a well defined MYCN target gene, but also of the complete minichromosome maintenance complex.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pournajafi-Nazarloo H, Perry A, Partoo L, Papademeteriou E, Azizi F, Carter CS, Cushing BS. Neonatal oxytocin treatment modulates oxytocin receptor, atrial natriuretic peptide, nitric oxide synthase and estrogen receptor mRNAs expression in rat heart. Peptides 2007; 28:1170-7. [PMID: 17537544 PMCID: PMC2044561 DOI: 10.1016/j.peptides.2007.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 11/26/2022]
Abstract
Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERalpha) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of the following treatments: (a) 50microl i.p. injection of 7microg OT; (b) 0.7microg of OT antagonist (OTA); or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERalpha and estrogen receptor beta (ERbeta) were compared by age, treatment, and sex utilizing real time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERalpha increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21, there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERalpha mRNAs and that these effects are mitigated by D21. Also with the exception of ERalpha mRNA, the effects are the same in both sexes.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pelczar H, Caulet S, Thibier C, Aubet G, Poulhe R, Vallianou I, Yamashita M, Andéol Y. Characterization and expression of a maternal axolotl cyclin B1 during oogenesis and early development. Dev Growth Differ 2007; 49:407-19. [PMID: 17428262 DOI: 10.1111/j.1440-169x.2007.00934.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M phase promoting factor (MPF) is a dimer composed of a catalytic Cdk1 subunit and a Cyclin B regulatory subunit. We have characterized a cDNA containing the entire coding sequence of an axolotl Cyclin B1 protein that is able to promote MPF activity when added to a fraction from prophase I oocytes that contains monomeric Cdk1. The axolotl cyclin B1 gene is expressed as a maternal mRNA in oocytes and early embryos. Its poly(A) tail length increases in metaphase II oocytes and then decreases regularly during the first embryonic cell cycles. Endogenous Cyclin B1 protein is first expressed during oocyte meiotic maturation. Its level oscillates after fertilization and is coordinated to the phosphorylation level of tyrosine 15 residue of Cdk1 (pTyr15), with both maxima preceding each cell division. As expected, when translated into microinjected oocytes, axolotl Cyclin B1 induces the resumption of meiosis. In electrically activated unfertilized eggs (UFE), Cyclin B1 and pTyr15 cyclic accumulations are observed with kinetics different from those of the early embryonic cycles. The axolotl embryo and UFE provide interesting in vivo comparative models for studying events controlling Cyclin B1 regulation during development.
Collapse
Affiliation(s)
- Hélène Pelczar
- Equipe Biochimie du Développement précoce, Laboratoire de Biologie du Développement, UMR CNRS 7622, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pournajafi-Nazarloo H, Papademeteriou E, Partoo L, Saadat H, Cushing BS. Modulation of cardiac oxytocin receptor and estrogen receptor alpha mRNAs expression following neonatal oxytocin treatment. Endocrine 2007; 31:154-60. [PMID: 17873327 DOI: 10.1007/s12020-007-0023-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 11/29/2022]
Abstract
Oxytocin (OT) is known for its role in reproduction. However, evidence has emerged suggesting its involvement in the regulation of the cardiovascular system. Here we examine the hypothesis that neonatal exposure to OT can have both short-term and long-lasting consequences on gene expression in heart tissue. On the first day of postnatal life, female and male prairie voles (Microtus ochrogaster) were randomly assigned to receive one of following treatments: 50 microl i.p. injection of (a) 3 microg OT (b) 0.3 microg of OT antagonist (OTA), or (c) isotonic saline (SAL). Hearts were collected on postnatal day 1 (D1, 2 h after injection), day 8 (D8), or day 21 (D21), and the mRNA expression for OT receptor (OTR), estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta as a function of age, treatment, and sex were measured using RT-PCR. Neonatal treatment with OT showed a marked increase in cardiac OTR mRNA expression on postnatal D1, but not D8 or D21, in both female and male animals. ERalpha increased as a function of OT treatment only in females. Although significant treatment effects were no longer detected in D8 or D21 animals, there were significant changes in the relative expression of all types of mRNA between D1 and D21 with age-related declines in OTR and ERbeta and increases in ERalpha Neonatal treatment with OTA showed no changes in cardiac OTR, ERalpha, or ERbeta mRNAs expression. The results indicate that during the early postnatal period OT can have rapid effects on the expression of OTR and ERalpha mRNAs and that these effects are mitigated by D8 or D21. Also, with the exception of ERalpha mRNA, the effects are the same in both sexes.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine (MC 912), University of Illinois at Chicago, 1601 W. Taylor St., Rm.# 427, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
48
|
Gavanescu I, Kessler B, Ploegh H, Benoist C, Mathis D. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc Natl Acad Sci U S A 2007; 104:4583-7. [PMID: 17360567 PMCID: PMC1838644 DOI: 10.1073/pnas.0700259104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 12/21/2022] Open
Abstract
Both humans and mice with a mutation in the autoimmune regulator (aire) gene develop multiorgan autoimmune disease. Aire was shown to exert its critical function in medullary epithelial cells of the thymus by promoting ectopic expression of peripheral tissue antigens. It was hypothesized that the widespread autoimmunity of Aire-deficient individuals reflects a lack of tolerance induction to the repertoire of peripheral tissue antigens expressed in the thymus of normal individuals. Here, we substantiate this hypothesis by identifying Mucin 6 as a stomach-specific antigen targeted by autoantibodies in gastritis-prone mice lacking thymic expression of aire and demonstrate that transcription of the Mucin 6 gene in thymic medullary epithelial cells is indeed Aire-dependent.
Collapse
Affiliation(s)
- Irina Gavanescu
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center
| | - Benedikt Kessler
- Department of Pathology, Harvard Medical School, Boston, MA 02215
| | - Hidde Ploegh
- Department of Pathology, Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center
- Department of Medicine, Brigham and Women's Hospital, and
| | - Diane Mathis
- *Section on Immunology and Immunogenetics, Joslin Diabetes Center
- Department of Medicine, Brigham and Women's Hospital, and
| |
Collapse
|
49
|
Fortin MA, Salnikov AV, Nestor M, Heldin NE, Rubin K, Lundqvist H. Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies. Eur J Nucl Med Mol Imaging 2007; 34:1376-87. [PMID: 17277931 DOI: 10.1007/s00259-006-0346-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
PURPOSE We tested the suitability of the chimeric monoclonal anti-human CD44 splice version 6 antibody (cMAb U36) for targeting and visualising human anaplastic thyroid carcinoma with PET. We also performed experiments aimed at elucidating the relation between tumour interstitial fluid pressure (TIFP) and the tumour uptake of antibodies. METHODS The affinity and specificity of the cMAb U36 for KAT-4 cells were evaluated in vitro, as was the Na+/I- symporter (NIS) expression. Biodistribution studies were performed on KAT-4 carcinoma-bearing mice injected with 124I-cMAb U36 or free iodine. Biodistribution studies were also performed in animals treated with the specific TGF-beta1 and -beta3 inhibitor Fc:TbetaRII, which lowers TIFP. Treated and non-treated animals were scanned by microPET. RESULTS Cultured human undifferentiated/anaplastic thyroid carcinoma KAT-4 cells expressed low levels of NIS and uptake of free iodine was insignificant. The cMAb U36 expressed an affinity (KD) of 11+/-2 nM. Tumour radioactivity uptake reached maximum values 48 h after injection of 124I-cMAb U36 (approximately 22%IA/g). KAT-4 carcinomas were readily identified in all 124I-immuno-PET images. Radioactivity tumour uptake in Fc:TbetaRII-treated animals was significantly lower at 24 and 48 h after injection, and five times higher thyroid uptake was also noted. CONCLUSION We successfully used 124I-cMAb U36 to visualise CD44v6-expressing human anaplastic thyroid carcinoma. Given the lack of NIS expression in KAT-4, tumour visualisation is not due to free iodine uptake. Lowering the TIFP in KAT-4 carcinomas did not increase the uptake of mAbs into tumour tissue.
Collapse
Affiliation(s)
- Marc-André Fortin
- Laboratory for Biomaterials and Bioengineering, Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, G1K 7P4, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Pournajafi-Nazarloo H, Carr MS, Papademeteriou E, Schmidt JV, Cushing BS. Oxytocin selectively increases ERalpha mRNA in the neonatal hypothalamus and hippocampus of female prairie voles. Neuropeptides 2007; 41:39-44. [PMID: 17107710 PMCID: PMC2692963 DOI: 10.1016/j.npep.2006.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/18/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
During neonatal development exogenous oxytocin increases ERalpha immunoreactivity in the hypothalamus of female prairie voles. The purpose of this study was to determine if the increase in ERalpha is associated with an increase in ERalpha mRNA expression and to determine if the effect is specific to ER subtype or if oxytocin also influences ERbeta mRNA expression. On the day of birth female prairie vole pups were treated with oxytocin, an oxytocin antagonist, or saline. Brains were collected and RT-PCR was used to determine the effect of treatment on ER mRNA production in the hypothalamus, hippocampus, and cortex. Within 2h of treatment oxytocin significantly increased ERalpha mRNA expression in the hypothalamus and hippocampus, but not the cortex, while inhibiting the effects of endogenous oxytocin reduced the expression of ERalpha mRNA in the hippocampus. Neonatal treatment did not affect the expression of ERbetamRNA. The results demonstrate that the effects of oxytocin treatment are region and ER subtype specific and that during the neonatal period oxytocin can affect the expression of ERalpha by altering message production. The regional specific changes in ERalpha mRNA expression in females are consistent with studies examining the behavioral and physiological effects of neonatal manipulation of oxytocin in females.
Collapse
|