1
|
Lipidomics and Comparative Metabolite Excretion Analysis of Methanogenic Archaea Reveal Organism-Specific Adaptations to Varying Temperatures and Substrate Concentrations. mSystems 2023; 8:e0115922. [PMID: 36880756 PMCID: PMC10134847 DOI: 10.1128/msystems.01159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.
Collapse
|
2
|
Miller TL, Chen X, Yan B, Bank S. Solution (sup13)C Nuclear Magnetic Resonance Spectroscopic Analysis of the Amino Acids of Methanosphaera stadtmanae: Biosynthesis and Origin of One-Carbon Units from Acetate and Carbon Dioxide. Appl Environ Microbiol 2010; 61:1180-6. [PMID: 16534983 PMCID: PMC1388401 DOI: 10.1128/aem.61.4.1180-1186.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth with (sup13)C-labeled acetate, CO(inf2), serine, and methanol. The (alpha) and (beta) carbons of serine and alanine were formed from carboxyl and methyl carbons of acetate, respectively, and the amino acid carboxyl groups were formed from CO(inf2). This indicates that pyruvate was formed by reductive carboxylation of acetate. Labeling of the methyl carbon of methionine indicated that the major route of synthesis was from the hydroxymethyl carbon of serine that arises from the methyl carbon of acetate. Methanol was a minor source of the methyl of methionine. Unambiguous assignment was made of the sources of all carbons of histidine. Labeling of the histidine 7 position ((epsilon) carbon) was consistent with formation from the C-2 of the purine ring of ATP and the origin of the C-2 from a formyl unit derived from the hydroxymethyl carbon of serine.
Collapse
|
3
|
Sprott GD, Ekiel I, Patel GB. Metabolic Pathways in Methanococcus jannaschii and Other Methanogenic Bacteria. Appl Environ Microbiol 2010; 59:1092-8. [PMID: 16348909 PMCID: PMC202243 DOI: 10.1128/aem.59.4.1092-1098.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eleven strains of methanogenic bacteria were divided into two groups on the basis of the directionality (oxidative or reductive) of their citric acid pathways. These pathways were readily identified for most methanogens from the patterns of carbon atom labeling in glutamate, following growth in the presence of [2-C]acetate. All used noncyclic pathways, but members of the family Methanosarcinaceae were the only methanogens found to use the oxidative direction. Methanococcus jannaschii failed to incorporate carbon from acetate despite transmembrane equilibration comparable to other weak acids. This organism was devoid of detectable activities of the acetate-incorporating enzymes acetyl coenzyme A synthetase, acetate kinase, and phosphotransacetylase. However, incorporation of [1-C]-, [2-C]-, or [3-C]pyruvate during the growth of M. jannaschii was possible and resulted in labeling patterns indicative of a noncyclic citric acid pathway operating in the reductive direction to synthesize amino acids. Carbohydrates were labeled consistent with glucogenesis from pyruvate. Leucine, isoleucine, phenylalanine, lysine, formate, glycerol, and mevalonate were incorporated when supplied to the growth medium. Lysine was preferentially incorporated into the lipid fraction, suggesting a role as a phytanyl chain precursor.
Collapse
Affiliation(s)
- G D Sprott
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | |
Collapse
|
4
|
Whitman WB, Sohn S, Kuk S, Xing R. Role of Amino Acids and Vitamins in Nutrition of Mesophilic Methanococcus spp. Appl Environ Microbiol 2010; 53:2373-8. [PMID: 16347458 PMCID: PMC204115 DOI: 10.1128/aem.53.10.2373-2378.1987] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we found that autotrophic methanococci similar to Methanococcus maripaludis obtained up to 57% of their cellular carbon from exogenous amino acids. About 85% of the incorporation was into protein. Primarily nonpolar and basic amino acids and glycine were incorporated; only small amounts of acidic and some polar amino acids were taken up. An additional 10% of the incorporation was into the nucleic acid fraction. Because little CO(2) was formed from the C-amino acids, little metabolism of the amino acids occurred. Therefore the growth stimulation by amino acids was probably due to the sparing of anabolic energy requirements. Of the amino acids incorporated, only alanine was also a sole nitrogen source for these methanococci. In contrast, Methanococcus vannielii and "Methanococcus aeolicus" are autotrophic methanococci which did not incorporate amino acids and did not utilize alanine as a sole nitrogen source. Although glutamine served as a sole nitrogen source for the autotrophic methanococci and Methanococcus voltae, a heterotrophic methanococcus, growth was due to chemical deamination in the medium. M. voltae requires leucine and isoleucine for growth. However, these amino acids were not significant nitrogen sources, and alanine was not a sole nitrogen source for the growth of M. voltae. The branched-chain amino acids were not extensively metabolized by M. voltae. Pantoyl lactone and pantoic acid were readily incorporated by M. voltae. The intact vitamin pantothenate was neither stimulatory to growth nor incorporated. In conclusion, although amino acids and vitamins are nutritionally important to both autotrophic and heterotrophic methanococci, generally they are not subject to extensive catabolism.
Collapse
Affiliation(s)
- W B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | | | | | | |
Collapse
|
5
|
Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis. J Bacteriol 2010; 192:3304-10. [PMID: 20418392 DOI: 10.1128/jb.00172-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Deltammp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and alpha-ketoglutarate as substrates was 24.3 + or - 2.0 nmol min(-1) mg of protein(-1). The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70 degrees C and pH 8.0 to 9.0. The apparent K(m)s of MJ1391 for ll-DAP and alpha-ketoglutarate were 82.8 + or - 10 microM and 0.42 + or - 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales.
Collapse
|
6
|
Graham DE, Huse HK. Methanogens with pseudomurein use diaminopimelate aminotransferase in lysine biosynthesis. FEBS Lett 2008; 582:1369-74. [PMID: 18371309 DOI: 10.1016/j.febslet.2008.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Methanothermobacter thermautotrophicus uses lysine for both protein synthesis and cross-linking pseudomurein in its cell wall. A diaminopimelate aminotransferase enzyme from this methanogen (MTH0052) converts tetrahydrodipicolinate to l,l-diaminopimelate, a lysine precursor. This gene complemented an Escherichia coli diaminopimelate auxotrophy, and the purified protein catalyzed the transamination of diaminopimelate to tetrahydrodipicolinate. Phylogenetic analysis indicated this gene was recruited from anaerobic Gram-positive bacteria. These results expand the family of diaminopimelate aminotransferases to a diverse set of plant, bacterial and archaeal homologs. In contrast marine methanogens from the Methanococcales, which lack pseudomurein, appear to use a different diaminopimelate pathway for lysine biosynthesis.
Collapse
Affiliation(s)
- David E Graham
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0165, USA.
| | | |
Collapse
|
7
|
Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB. Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol Microbiol 2006; 62:1117-31. [PMID: 17010158 DOI: 10.1111/j.1365-2958.2006.05426.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
8
|
Helgadóttir S, Rosas-Sandoval G, Söll D, Graham DE. Biosynthesis of phosphoserine in the Methanococcales. J Bacteriol 2006; 189:575-82. [PMID: 17071763 PMCID: PMC1797378 DOI: 10.1128/jb.01269-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis and Methanocaldococcus jannaschii produce cysteine for protein synthesis using a tRNA-dependent pathway. These methanogens charge tRNA(Cys) with l-phosphoserine, which is also an intermediate in the predicted pathways for serine and cystathionine biosynthesis. To establish the mode of phosphoserine production in Methanococcales, cell extracts of M. maripaludis were shown to have phosphoglycerate dehydrogenase and phosphoserine aminotransferase activities. The heterologously expressed and purified phosphoglycerate dehydrogenase from M. maripaludis had enzymological properties similar to those of its bacterial homologs but was poorly inhibited by serine. While bacterial enzymes are inhibited by micromolar concentrations of serine bound to an allosteric site, the low sensitivity of the archaeal protein to serine is consistent with phosphoserine's position as a branch point in several pathways. A broad-specificity class V aspartate aminotransferase from M. jannaschii converted the phosphohydroxypyruvate product to phosphoserine. This enzyme catalyzed the transamination of aspartate, glutamate, phosphoserine, alanine, and cysteate. The M. maripaludis homolog complemented a serC mutation in the Escherichia coli phosphoserine aminotransferase. All methanogenic archaea apparently share this pathway, providing sufficient phosphoserine for the tRNA-dependent cysteine biosynthetic pathway.
Collapse
Affiliation(s)
- Sunna Helgadóttir
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
9
|
Incharoensakdi A, Laloknam S. Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by DeltapH. BMB Rep 2005; 38:468-73. [PMID: 16053714 DOI: 10.5483/bmbrep.2005.38.4.468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The energetics of nitrate uptake by intact cells of the halotolerant cyanobacterium Aphanothece halophytica were investigated. Nitrate uptake was inhibited by various protonophores suggesting the coupling of nitrate uptake to the proton motive force. An artificially-generated pH gradient across the membrane (DeltapH) caused an increase of nitrate uptake. In contrast, the suppression of DeltapH resulted in a decrease of nitrate uptake. The increase of external pH also resulted in an enhancement of nitrate uptake. The generation of the electrical potential across the membrane (Deltapsi) resulted in no elevation of the rate of nitrate uptake. On the other hand, the valinomycin-mediated dissipation of Deltapsi caused no depression of the rate of nitrate uptake. Thus, it is unlikely that Deltapsi participated in the energization of the uptake of nitrate. However, Na(+)-gradient across the membrane was suggested to play a role in nitrate uptake since monensin which collapses Na(+)-gradient strongly inhibited nitrate uptake. Exogenously added glucose and lactate stimulated nitrate uptake in the starved cells. N, N'-dicyclohexylcarbodiimide, an inhibitor of ATPase, could alsoinhibit nitrate uptake suggesting that ATP hydrolysis was required for nitrate uptake. All these results indicate that nitrate uptake in A. halophytica is ATP-dependent, driven by DeltapH and Na(+)-gradient.
Collapse
Affiliation(s)
- Aran Incharoensakdi
- Department of Biochemistry and Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | |
Collapse
|
10
|
Porat I, Waters BW, Teng Q, Whitman WB. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J Bacteriol 2004; 186:4940-50. [PMID: 15262931 PMCID: PMC451642 DOI: 10.1128/jb.186.15.4940-4950.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon. Aromatic amino acids (AroAAs) are biosynthesized in this autotroph either by the de novo pathway, with chorismate as an intermediate, or by the incorporation of exogenous aryl acids via indolepyruvate oxidoreductase (IOR). In order to evaluate the roles of these pathways, the gene that encodes the third step in the de novo pathway, 3-dehydroquinate dehydratase (DHQ), was deleted. This mutant required all three AroAAs for growth, and no DHQ activity was detectible in cell extracts, compared to 6.0 +/- 0.2 mU mg(-1) in the wild-type extract. The growth requirement for the AroAAs could be fulfilled by the corresponding aryl acids phenylacetate, indoleacetate, and p-hydroxyphenylacetate. The specific incorporation of phenylacetate into phenylalanine by the IOR pathway was demonstrated in vivo by labeling with [1-(13)C]phenylacetate. M. maripaludis has two IOR homologs. A deletion mutant for one of these homologs contained 76, 74, and 42% lower activity for phenylpyruvate, p-hydoxyphenylpyruvate, and indolepyruvate oxidation, respectively, than the wild type. Growth of this mutant in minimal medium was inhibited by the aryl acids, but the AroAAs partially restored growth. Genetic complementation of the IOR mutant also restored much of the wild-type phenotype. Thus, aryl acids appear to regulate the expression or activity of the de novo pathway. The aryl acids did not significantly inhibit the activity of the biosynthetic enzymes chorismate mutase, prephenate dehydratase, and prephenate dehydrogenase in cell extracts, so the inhibition of growth was probably not due to an effect on these enzymes.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | |
Collapse
|
11
|
Na+-driven ATP synthesis inMethanobacterium thermoautotrophicumcan be modulated with sodium ion concentrations in the growth medium. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80990-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
McDonald JH. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. Mol Biol Evol 2001; 18:741-9. [PMID: 11319258 DOI: 10.1093/oxfordjournals.molbev.a003856] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asymmetrical patterns of amino acid substitution in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are generally taken to indicate selection favoring different amino acids at different temperatures due to their biochemical properties. If that were the case, comparisons of different pairs of mesophilic and thermophilic taxa would exhibit similar patterns of substitutional asymmetry. A previous comparison of mesophilic versus thermophilic Methanococcus with mesophilic versus thermophilic Bacillus revealed several pairs of amino acids for which one amino acid was favored in thermophilic Bacillus and the other was favored in thermophilic Methanococcus. Most of this could be explained by the higher G+C content of the DNA of thermophilic Bacillus, a phenomenon not seen in the Methanococcus comparison. Here, I compared the mesophilic bacterium Deinococcus radiodurans and its thermophilic relative Thermus thermophilus, which are similar in G+C content. Of the 190 pairs of amino acids, 83 exhibited significant substitutional asymmetry, consistent with the pervasive effects of selection. Most of these significantly asymmetrical pairs of amino acids were asymmetrical in the direction predicted from the Methanococcus data, consistent with thermal adaptation resulting from universal biochemical properties of the amino acids. However, 12 pairs of amino acids exhibited asymmetry significantly different from and in the opposite direction of that found in the Methanococcus comparison, and 21 pairs of amino acids exhibited asymmetry that was significantly different from that found in the Bacillus comparison and could not be explained by the greater G+C content in thermophilic Bacillus. This suggests that selection due to universal biochemical properties of the amino acids and differences in G+C content are not the only causes of substitutional asymmetry between mesophiles and thermophiles. Instead, selection on taxon-specific properties of amino acids, such as their metabolic cost, may play a role in causing asymmetrical patterns of substitution.
Collapse
Affiliation(s)
- J H McDonald
- Department of Biological Sciences, University of Delaware, Newark 19716, USA.
| |
Collapse
|
13
|
Graham DE, Kyrpides N, Anderson IJ, Overbeek R, Whitman WB. Genome of Methanocaldococcus (Methanococcus) jannaschii. Methods Enzymol 2001; 330:40-123. [PMID: 11210518 DOI: 10.1016/s0076-6879(01)30370-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- D E Graham
- Department of Biochemistry, Virginia Polytechnical Institute & State University, Blackburg, Virginia 24061-0308, USA
| | | | | | | | | |
Collapse
|
14
|
Hochuli M, Patzelt H, Oesterhelt D, Wüthrich K, Szyperski T. Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J Bacteriol 1999; 181:3226-37. [PMID: 10322026 PMCID: PMC93780 DOI: 10.1128/jb.181.10.3226-3237.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya.
Collapse
Affiliation(s)
- M Hochuli
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Selkov E, Maltsev N, Olsen GJ, Overbeek R, Whitman WB. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene 1997; 197:GC11-26. [PMID: 9332394 DOI: 10.1016/s0378-1119(97)00307-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interpretation of the Methanococcus jannaschii genome will inevitably require many years of effort. This initial attempt to connect the sequence data to aspects of known biochemistry and to provide an overview of what is already apparent from the sequence data will be refined. Numerous issues remain that can be resolved only by direct biochemical analysis. Let us draw the reader's attention to just a few that might be considered central: (1) We are still missing key enzymes from the glycolytic pathway, and the conjecture is that this is due to ADP-dependency. The existence of glycolytic activity in the cell-free extract should be tested. (2) The issue of whether the Calvin cycle is present needs to be examined. (3) We need to determine whether the 2-oxoglutarate synthase (ferredoxin-dependent) (EC 1.2.7.3) activity is present. (4) The issue of whether cyclic 2,3-bisphosphate is detectable in the cell-free extracts needs to be checked. If it is, this result would confirm our assertion of the two pathways controlling synthesis and degradation of cyclic 2,3-bisphosphate.
Collapse
Affiliation(s)
- E Selkov
- Mathematics and Computer Science Division, Argonne National Laboratory, IL 60439-4844, USA.
| | | | | | | | | |
Collapse
|
16
|
Proctor LM, Lai R, Gunsalus RP. The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 1997; 63:2252-7. [PMID: 9172344 PMCID: PMC168517 DOI: 10.1128/aem.63.6.2252-2257.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methanogenic Archaea are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, Methanosarcina thermophila TM-1, can adapt to various osmotic conditions by synthesis of alpha-glutamate and a newly discovered compatible solute, Ne-acetyl-beta-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic Archaea, we examined the uptake of this solute by M. thermophila TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaC1, M. thermophila accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent K3 of 10 microM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. M. thermophila TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 microM betaine was present. Betaine transport appears to be H+ and/or Na+ driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.
Collapse
Affiliation(s)
- L M Proctor
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90095-1489, USA
| | | | | |
Collapse
|
17
|
Gast DA, Wasserfallen A, Pfister P, Ragettli S, Leisinger T. Characterization of Methanobacterium thermoautotrophicum Marburg mutants defective in regulation of L-tryptophan biosynthesis. J Bacteriol 1997; 179:3664-9. [PMID: 9171414 PMCID: PMC179162 DOI: 10.1128/jb.179.11.3664-3669.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three nitrosoguanidine-induced mutants of the archaeon Methanobacterium thermoautotrophicum Marburg resistant to 5-methyltryptophan were isolated and characterized. They were found to take up L-tryptophan, as wild-type cells, via an energy-dependent, low-affinity transport system specific for L-tryptophan, with a Km of 300 microM and a Vmax of 7 nmol/mg (dry weight)/min. Resistance to 5-methyltryptophan was not due to feedback-resistant anthranilate synthase but to constitutive expression of the trp genes, as measured by the specific activities of anthranilate synthase and tryptophan synthase, the enzymes encoded by trpEG and trpB, respectively, of the trpEGCFBAD gene cluster. Estimation of trpE mRNA obtained from mutant cells grown in minimal medium with or without L-tryptophan suggested that constitutive expression resulted from deficient transcriptional regulation. The enhanced expression of the trp genes in the mutants was found to result in intracellular L-tryptophan pools that were two- to fourfold higher than in the wild type. Sequencing of the region upstream of trpE revealed in two mutants point mutations mapping on the 5'-side of the archaeal box A, whereas in the third mutant this region did not differ from that of the wild type. These results suggest that (i) in M. thermoautotrophicum the 5-methyltryptophan-resistant phenotype arises from lesions in components of a regulatory system controlling transcription of the trp genes and (ii) cis-acting sequence elements in front of the trpE promoter may form part of this system.
Collapse
Affiliation(s)
- D A Gast
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Bank S, Yan B, Miller TL. Solid 13C CPMAS NMR spectroscopy studies of biosynthesis in whole cells of Methanosphaera stadtmanae. SOLID STATE NUCLEAR MAGNETIC RESONANCE 1996; 7:253-261. [PMID: 9050163 DOI: 10.1016/s0926-2040(96)01261-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Whole cells of Methanosphaera stadtmanae were grown in media containing [13C]CO2, [2-13C]acetate, [1-13C]acetate, [3-13C]serine and [1-13C]formate. The label incorporation was determined using solid state 13C CPMAS NMR spectroscopy. The incorporation of serine hydroxymethyl carbon into the purine rings of nucleic acids and most probably the methyl group of thymine is demonstrated. The one carbon atom pathway shown in our previous work is operative in the biosynthesis of purines and pyrimidines. In addition, these studies clearly identified signals not observed in solution NMR spectroscopy and revealed an important pathway not previously known. The reversibility of formyl-containing one carbon atom carriers is demonstrated. The pattern of labeled carbon atoms in sugars confirms the biosynthetic route from pyruvate, which is formed from acetic acid and carbon dioxide. Finally, a preliminary lipid assignment is indicated. The solid state 13C CPMAS NMR of these intact cells proved to be a facile method to follow specific pathways.
Collapse
Affiliation(s)
- S Bank
- Department of Chemistry, State University of New York at Albany 12222, USA.
| | | | | |
Collapse
|
19
|
Choquet CG, Richards JC, Patel GB, Sprott GD. Purine and pyrimidine biosynthesis in methanogenic bacteria. Arch Microbiol 1994. [DOI: 10.1007/bf00307767] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.
Collapse
Affiliation(s)
- M Blaut
- Institut für Mikrobiologie, Universität Göttingen, Germany
| |
Collapse
|
21
|
Patel GB, Sprott D, Ekiel I. Production of Specifically Labeled Compounds by
Methanobacterium espanolae
Grown on H
2
-CO
2
plus [
13
C]Acetate. Appl Environ Microbiol 1993; 59:1099-103. [PMID: 16348910 PMCID: PMC202244 DOI: 10.1128/aem.59.4.1099-1103.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanobacterium espanolae
, an acidiphilic methanogen, required acetate for maximal growth on H
2
-CO
2
. In the presence of 5 to 15 mM acetate, at a growth pH of 5.5, the μ
max
was 0.05 h
-1
.
M. espanolae
consumed 12.3 mM acetate during 96 h of incubation at 35°C with shaking at 100 rpm. At initial acetate levels of 2.5 to 10.0 mM, the amount of biomass produced was dependent on the amount of acetate in the medium.
13
C nuclear magnetic resonance spectra of protein hydrolysates obtained from cultures grown on [1-
13
C]- or [2-
13
C]acetate indicated that an incomplete tricarboxylic acid pathway, operating in the reductive direction, was functional in this methanogen. The amino acids were labeled with a very high degree of specificity and at greater than 90% enrichment levels. Less than 2% label randomization occurred between positions primarily labeled from either the carboxyl or methyl group of acetate, and very little label was transferred to positions primarily labeled from CO
2
. The labeling pattern of carbohydrates was typical for glucogenesis from pyruvate. This methanogen, by virtue of the properties described above and its ability to incorporate all of the available acetate (10 mM or lower) from the growth medium, has advantages over other microorganisms for use in the production of specifically labeled compounds.
Collapse
Affiliation(s)
- G B Patel
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
22
|
Chapter 1 Central metabolism of the archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Chapter 4 Bioenergetics and transport in methanogens and related thermophilic archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Abstract
Four aminotransferases were identified and characterized from Methanococcus aeolicus. Branched-chain aminotransferase (BcAT, EC 2.6.1.42), aspartate aminotransferase (AspAT, EC 2.6.1.1), and two aromatic aminotransferases (EC 2.6.1.57) were partially purified 175-, 84-, 600-, and 30-fold, respectively. The apparent molecular weight, substrate specificity, and kinetic properties of the BcAT were similar to those of other microbial BcATs. The AspAT had an apparent molecular weight of 162,000, which was unusually high. It had also a broad substrate specificity, which included activity towards alanine, a property which resembled the enzyme from Sulfolobus solfataricus. An additional alanine aminotransferase was not found in M. aeolicus, and this activity of AspAT could be physiologically significant. The apparent molecular weights of the aromatic aminotransferases (ArAT-I and ArAT-II) were 150,000 and 90,000, respectively. The methanococcal ArATs also had different pIs and kinetic constants. ArAT-I may be the major ArAT in methanococci. High concentrations of 2-ketoglutarate strongly inhibited valine, isoleucine, and alanine transaminations but were less inhibitory for leucine and aspartate transaminations. Aromatic amino acid transaminations were not inhibited by 2-ketoglutarate. 2-Ketoglutarate may play an important role in the regulation of amino acid biosynthesis in methanococci.
Collapse
Affiliation(s)
- R Y Xing
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
25
|
Chapter 2 Chemiosmotic systems and the basic principles of cell energetics. MOLECULAR MECHANISMS IN BIOENERGETICS 1992. [DOI: 10.1016/s0167-7306(08)60170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Sprott GD, Meloche M, Richards JC. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 1991; 173:3907-10. [PMID: 2050642 PMCID: PMC208025 DOI: 10.1128/jb.173.12.3907-3910.1991] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growth of Methanococcus jannaschii over a wide temperature range (47 to 75 degrees C) is correlated with an ability to alter dramatically the proportions of three ether lipid cores. These lipids shifted from predominantly diether (2,3-di-O-phytanyl-sn-glycerol) at the lower growth temperatures to macrocyclic diether and tetraether at near optimal growth temperatures. Lipid head groups varied as well, especially with respect to an increase in phosphate at the higher temperatures.
Collapse
Affiliation(s)
- G D Sprott
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | |
Collapse
|
27
|
Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp. J Bacteriol 1991; 173:2086-92. [PMID: 2002010 PMCID: PMC207744 DOI: 10.1128/jb.173.6.2086-2092.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae contain similar levels of four enzymes of branched-chain amino acid biosynthesis: acetohydroxy acid synthase, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. Following growth at low partial pressures of H2-CO2, the levels of these enzymes in extracts of M. voltae are reduced three- to fivefold, which suggests that their synthesis is regulated. The enzymes from M. aeolicus were found to be similar to the eubacterial and eucaryotic enzymes with respect to molecular weights, pH optima, kinetic properties, and sensitivities to O2. The acetohydroxy acid isomeroreductase has a specific requirement for Mg2+, and other divalent cations were inhibitory. It was stimulated threefold by K+ and NH4+ ions and was able to utilize NADH as well as NADPH. The partially purified enzyme was not sensitive to O2. The dihydroxy acid dehydratase is extremely sensitive to O2, and it has a half-life under 5% O2 of 6 min at 25 degrees C. Divalent cations were required for activity, and Mg2+, Mn2+, Ni2+, Co2+, and Fe2+ were nearly equally effective. In conclusion, the archaebacterial enzymes are functionally homologous to the eubacterial and eucaryotic enzymes, which implies that this pathway is very ancient.
Collapse
|
28
|
Lundberg P, Harmsen E, Ho C, Vogel HJ. Nuclear magnetic resonance studies of cellular metabolism. Anal Biochem 1990; 191:193-222. [PMID: 2085167 DOI: 10.1016/0003-2697(90)90210-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P Lundberg
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
In this review, I focus on the bioenergetics of the methanogenic bacteria, with particular attention directed to the roles of transmembrane electrochemical gradients of sodium and proton. In addition, the mechanism of coupling ATP synthesis to methanogenic electron transfer is addressed. Evidence is reviewed which suggests that the methanogens possess great diversity in their bioenergetic machinery. In particular, in some methanogens the primary ion which is translocated coupled to metabolic energy is the proton, while others appear to utilize sodium. In addition, ATP synthesis driven by methanogenic electron transfer is accomplished in some organisms by a chemiosmotic mechanism and is coupled by a more direct mechanism in others. A possible explanation for this diversity (which is consistent with the relatedness of these organisms to each other and to other members of the Archaebacteria as determined by molecular biological techniques) is discussed.
Collapse
Affiliation(s)
- J R Lancaster
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300
| |
Collapse
|
30
|
Dybas M, Konisky J. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems. J Bacteriol 1989; 171:5866-71. [PMID: 2509421 PMCID: PMC210447 DOI: 10.1128/jb.171.11.5866-5871.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A transport system for coenzyme M (2-mercaptoethanesulfonic acid [HS-CoM]) and methylcoenzyme M [(2-(methylthio)ethanesulfonic acid (CH3-S-CoM)] in Methanococcus voltae required energy, showed saturation kinetics, and concentrated both forms of coenzyme M against a concentration gradient. Transport required hydrogen and carbon dioxide for maximal uptake. CH3-S-CoM uptake was inhibited by N-ethylmaleimide and monensin. Both HS-CoM and CH3-S-CoM uptake showed sodium dependence. In wild-type M. voltae, HS-CoM uptake was concentration dependent, with a Vmax of 960 pmol/min per mg of protein and an apparent Km of 61 microM. Uptake of CH3-S-CoM showed a Vmax of 88 pmol/min per mg of protein and a Km of 53 microM. A mutant of M. voltae resistant to the coenzyme M analog 2-bromoethanesulfonic acid (BES) showed no uptake of CH3-S-CoM but accumulated HS-CoM at the wild-type rate. While the higher-affinity uptake system was specific for HS-CoM, the lower-affinity system mediated uptake of HS-CoM, CH3-S-CoM, and BES. Analysis of the intracellular coenzyme M pools in metabolizing cells showed an intracellular HS-CoM concentration of 14.8 mM and CH3-S-CoM concentration of 0.21 mM.
Collapse
Affiliation(s)
- M Dybas
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
31
|
Abstract
The archaebacterium Methanococcus voltae, was shown to be chemotactic. Acetate, isoleucine, and leucine were identified as attractants; whereas histidine was not an attractant. A motile, generally nonchemotactic mutant was isolated.
Collapse
Affiliation(s)
- K A Sment
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
32
|
Abstract
Magnetic resonance spectroscopy has developed from a standard tool of the chemist into a very promising modality for clinical and analytical evaluation of human pathophysiology. We present a brief outline of the method and its parameters, as well as a series of examples of its application. Anatomical imaging is also discussed.
Collapse
Affiliation(s)
- I C Smith
- Laboratory of Medical Biosciences, Division of Biological Sciences, National Research Council of Canada, Ottawa
| |
Collapse
|
33
|
Affiliation(s)
- K F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
34
|
Müller V, Winner C, Gottschalk G. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:519-25. [PMID: 2850182 DOI: 10.1111/j.1432-1033.1988.tb14478.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methanogenesis from formaldehyde or formaldehyde + H2, as carried out by Methanosarcina barkeri, was strictly dependent on sodium ions whereas methane formation from methanol + H2 or methanol + formaldehyde was Na+-independent. This indicates that the reduction of formaldehyde to the formal redox level of methanol exhibits a Na+ requirement. During methanogenesis from formaldehyde, a delta pNa in the range of -62 mV to -80 mV was generated by means of a primary, electron-transport-driven sodium pump. This could be concluded from the following results obtained on cell suspensions of M. barkeri. 1. The addition of proton conductors or inhibitors of the Na+/H+ antiporter had no effect on sodium extrusion. 2. During methanogenesis from formaldehyde + H2 a delta psi of -60 mV to -70 mV was generated even in the presence of proton conductors. 3. ATPase inhibitors, applied in the presence of proton conductors, had no effect on primary sodium extrusion or generation of a delta psi. Evidence for a Na+-translocating ATPase could not be obtained.
Collapse
Affiliation(s)
- V Müller
- Institut für Mikrobiologie der Georg-August-Universität, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Wood JM. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol 1988; 106:183-202. [PMID: 3072423 DOI: 10.1007/bf01872157] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proline is utilized by all organisms as a protein constituent. It may also serve as a source of carbon, energy and nitrogen for growth or as an osmoprotectant. The molecular characteristics of the proline transport systems which mediate the multiple functions of proline in the Gram negative enteric bacteria, Escherichia coli and Salmonella typhimurium, are now becoming apparent. Recent research on those organisms has provided both protocols for the genetic and biochemical characterization of the enzymes mediating proline transport and molecular probes with which the degree of homology among the proline transport systems of archaebacteria, eubacteria and eukaryotes can be assessed. This review has provided a detailed summary of recent research on proline transport in E. coli and S. typhimurium; the properties of other organisms are cited primarily to illustrate the generality of those observations and to show where homologous proline transport systems might be expected to occur. The characteristics of proline transport in eukaryotic microorganisms have recently been reviewed (Horak, 1986).
Collapse
Affiliation(s)
- J M Wood
- Department of Chemistry and Biochemistry, University of Guelph, Ontario, Canada
| |
Collapse
|
36
|
Shieh J, Mesbah M, Whitman WB. Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol 1988; 170:4091-6. [PMID: 3137212 PMCID: PMC211413 DOI: 10.1128/jb.170.9.4091-4096.1988] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium. Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.
Collapse
Affiliation(s)
- J Shieh
- Department of Microbiology, University of Georgia, Athens 30602
| | | | | |
Collapse
|
37
|
Danson MJ. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol 1988; 29:165-231. [PMID: 3132816 DOI: 10.1016/s0065-2911(08)60348-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M J Danson
- Department of Biochemistry, University of Bath, England
| |
Collapse
|
38
|
Shieh JS, Whitman WB. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol 1987; 169:5327-9. [PMID: 3667534 PMCID: PMC213948 DOI: 10.1128/jb.169.11.5327-5329.1987] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The autotroph Methanococcus maripaludis contained high levels of acetate-coenzyme A ligase, pyruvate synthase, pyruvate, water dikinase, pyruvate carboxylase, and the enzymes of the incomplete reductive tricarboxylic acid cycle. Phosphoenolpyruvate carboxykinase, citrate synthase, and isocitrate dehydrogenase were not detected. In contrast, the heterotroph Methanococcus sp. strain A3 contained acetate kinase, and acetate coenzyme A ligase was virtually absent.
Collapse
Affiliation(s)
- J S Shieh
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
39
|
Xing RY, Whitman WB. Sulfometuron methyl-sensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp. J Bacteriol 1987; 169:4486-92. [PMID: 3654579 PMCID: PMC213812 DOI: 10.1128/jb.169.10.4486-4492.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.
Collapse
Affiliation(s)
- R Y Xing
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
40
|
Structures of diether lipids of Methanospirillum hungatei containing novel head groups N,N-diniethylamino- and N,N,N-trimethylaminopentanetetrol. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0005-2760(87)90029-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Jarrell KF, Julseth C, Pearson B, Kuzio J. Paucity of the Sau3AI recognition sequence (GATC) in the genome of Methanococcus voltae. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00330441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Abstract
The ultrastructure and chemical composition of the cell wall of the marine archaebacterium Methanococcus voltae were studied by negative-staining and freeze-etch electron microscopy and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. M. voltae possesses a single regularly structured (RS) protein layer external to the plasma membrane. Freeze-etch preparations of cells indicated that the protein subunits are hexagonally arranged with a center-to-center spacing of approximately 10 nm. The extracted RS protein had a molecular weight of 76,000. It was present on envelopes prepared by shearing in a French press, osmotic lysis, or sonication, as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NaCl was not required for attachment of the RS protein to the underlying plasma membrane. The hexagonal array could be demonstrated by platinum shadowing and freeze-etching of envelopes, but negative staining in the abscence of NaCl failed to stabilize the array. The RS protein could be solubilized by urea, guanidine hydrochloride, dithiothreitol, and several detergents, including Nonidet P-40, Triton X-100, and Tween 20. However, the most specific release of the wall protein from envelopes occurred after a heat treatment in HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer at 50 to 60 degrees C.
Collapse
|
43
|
|
44
|
Santoro N, Konisky J. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system. J Bacteriol 1987; 169:660-5. [PMID: 3027043 PMCID: PMC211829 DOI: 10.1128/jb.169.2.660-665.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutants of Methanococcus voltae were isolated that were resistant to the coenzyme M (CoM; 2-mercaptoethanesulfonic acid) analog 2-bromoethanesulfonic acid (BES). The mutants displayed a reduced ability to accumulate [35S]BES relative to the sensitive parental strain. BES inhibited methane production from CH3-S-CoM in cell extracts prepared from wild-type sensitive or resistant strains. BES uptake required the presence of both CO2 and H2 and was inhibited by N-ethylmaleimide and several reagents that are known to disrupt energy metabolism. The mutants showed normal uptake of isoleucine and were not cross-resistant to either azaserine or 5-methyltryptophan and, thus, were neither defective in general energy-dependent substrate transport nor envelope permeability. Both HS-CoM and CH3-S-CoM prevented the uptake of BES and protected cells from inhibition by it. We propose that M. voltae has an energy-dependent, carrier-mediated uptake system for HS-CoM and CH3-S-CoM which can also mediate uptake of BES.
Collapse
|
45
|
Ferrante G, Ekiel I, Sprott GD. Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)75999-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
|
47
|
Ekiel I, Sprott GD, Smith IC. Mevalonic acid is partially synthesized from amino acids in Halobacterium cutirubrum: a 13C nuclear magnetic resonance study. J Bacteriol 1986; 166:559-64. [PMID: 3700337 PMCID: PMC214641 DOI: 10.1128/jb.166.2.559-564.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
13C nuclear magnetic resonance revealed an unusual pathway for the biosynthesis of lipids in Halobacterium cutirubrum and H. halobium. Mevalonic acid was not synthesized from three acetyl-coenzyme A molecules, as has been suggested previously, and the branch-methyl and methine carbons in phytanyl chains were derived from neither acetate nor glycerol. Instead, they were supplied by the degradation of amino acids, in particular of lysine. Presumably, two different types of two-carbon fragments were used simultaneously by halobacteria for the biosynthesis of mevalonate. The labeling pattern of squalene supported the above conclusions. Based on these data, a general scheme is proposed to account for the contribution of lysine-to-lipid biosynthesis.
Collapse
|
48
|
|
49
|
Bott MH, Eikmanns B, Thauer RK. Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 1985. [DOI: 10.1007/bf00411248] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|