1
|
Komori T, Kram V, Perry S, Pham H, Jani P, Kilts T, Watanabe K, Kim D, Martin D, Young M. Type VI Collagen Deficiency Causes Enhanced Periodontal Tissue Destruction. J Dent Res 2024; 103:878-888. [PMID: 38910439 PMCID: PMC11377870 DOI: 10.1177/00220345241256306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The periodontal ligament (PDL) is a fibrillar connective tissue that lies between the alveolar bone and the tooth and is composed of highly specialized extracellular matrix (ECM) molecules and a heterogeneous population of cells that are responsible for collagen formation, immune response, bone formation, and chewing force sensation. Type VI collagen (COL6), a widely distributed ECM molecule, plays a critical role in the structural integrity and mechanical properties of various tissues including muscle, tendon, bone, cartilage, and skin. However, its role in the PDL remains largely unknown. Our study shows that deficiency of COL6 impairs PDL fibrillogenesis and exacerbates tissue destruction in ligature-induced periodontitis (LIP). We found that COL6-deficient mice exhibited increased bone loss and degraded PDL in LIP and that fibroblasts expressing high levels of Col6α2 are pivotal in ECM organization and cell-ECM interactions. Moreover, COL6 deficiency in the PDL led to an increased number of fibroblasts geared toward the inflammatory response. We also observed that cultured COL6-deficient fibroblasts from the PDL exhibited decreased expression of genes related to collagen fiber turnover and ECM organization as well as migration and proliferation. Our findings suggest that COL6 plays a crucial role in the PDL, influencing fibroblast function in fibrillogenesis and affecting the immune response in periodontitis. These insights advance our understanding of the molecular mechanisms underlying PDL maturation and periodontal disease.
Collapse
Affiliation(s)
- T. Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - V. Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - S. Perry
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - H.T. Pham
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
- Hai Phong University of Medicine and Pharmacy, Faculty of Dentistry, Haiphong, Vietnam
| | - P. Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - T.M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - K. Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D.G. Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D. Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, USA
| | - M.F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
The Role of Type VI Collagen in Alveolar Bone. Int J Mol Sci 2022; 23:ijms232214347. [PMID: 36430826 PMCID: PMC9697549 DOI: 10.3390/ijms232214347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Many studies have been conducted to elucidate the role of Type VI collagen in muscle and tendon, however, its role in oral tissues remains unclear. In this study, an α2(VI) deficient mouse (Col6α2-KO) model was used to examine the role of Type VI collagen in oral tissues. Tissue volume and mineral density were measured in oral tissues by µCT. Proteome analysis was performed using protein extracted from alveolar bone. In addition, alveolar bone was evaluated with a periodontitis induced model. µCT analysis showed the Col6α2-KO mice had less volume of alveolar bone, dentin and dental pulp, while the width of periodontal ligament (PDL) was greater than WT. The mineral density in alveolar bone and dentin were elevated in Col6α2-KO mice compared with WT. Our proteome analysis showed significant changes in proteins related to ECM organization and elevation of proteins associated with biomineralization in the Col6α2-KO mice. In induced periodontitis, Col6α2-KO mice had greater alveolar bone loss compared with WT. In conclusion, Type VI collagen has a role in controlling biomineralization in alveolar bone and that changes in the ECM of alveolar bone could be associated with greater bone loss due to periodontitis.
Collapse
|
4
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
7
|
Pham HT, Kram V, Dar QA, Komori T, Ji Y, Mohassel P, Rooney J, Li L, Kilts TM, Bonnemann C, Lamande S, Young MF. Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Sci Rep 2020; 10:13749. [PMID: 32792616 PMCID: PMC7426410 DOI: 10.1038/s41598-020-70730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Collapse
Affiliation(s)
- Hai T Pham
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Qurratul-Ain Dar
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jachinta Rooney
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Li
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shireen Lamande
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Sato T, Takano R, Tokunaka K, Saiga K, Tomura A, Sugihara H, Hayashi T, Imamura Y, Morita M. Type VI collagen α1 chain polypeptide in non-triple helical form is an alternative gene product of COL6A1. J Biochem 2018; 164:173-181. [PMID: 29659864 DOI: 10.1093/jb/mvy040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 01/08/2023] Open
Abstract
Expression of type IV collagen α1 chain in non-triple helical form, NTH α1(IV), is observed in cultured human cells, human placenta and rabbit tissues. Biological functions of NTH α1(IV) are most likely to be distinct from type IV collagen, since their biochemical characteristics are quite different. To explore the biological functions of NTH α1(IV), we prepared some anti-NTH α1(IV) antibodies. In the course of characterization of these antibodies, one antibody, #141, bound to a polypeptide of 140 kDa in size in addition to NTH α1(IV). In this study, we show evidence that the 140 kDa polypeptide is a novel non-triple helical polypeptide of type VI collagen α1 chain encoded by COL6A1, or NTH α1(VI). Expression of NTH α1(VI) is observed in supernatants of several human cancer cell lines, suggesting that the NTH α1(VI) might be involved in tumourigenesis. Reactivity with lectins indicates that sugar chains of NTH α1(VI) are different from those of the α1(VI) chain in triple helical form of type VI collagen, suggesting a synthetic mechanism and a mode of action of NTH α1(VI) is different from type VI collagen.
Collapse
Affiliation(s)
- Takamichi Sato
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Ryo Takano
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Kazuhiro Tokunaka
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Kan Saiga
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Arihiro Tomura
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Hidemitsu Sugihara
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, Liaoning, China
| | - Yasutada Imamura
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Makoto Morita
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| |
Collapse
|
9
|
Gregorio I, Braghetta P, Bonaldo P, Cescon M. Collagen VI in healthy and diseased nervous system. Dis Model Mech 2018; 11:dmm032946. [PMID: 29728408 PMCID: PMC6031366 DOI: 10.1242/dmm.032946] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2017; 50:29-38. [PMID: 28929384 DOI: 10.1007/s00726-017-2490-6] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Glycine, proline, and hydroxyproline (Hyp) contribute to 57% of total amino acids (AAs) in collagen, which accounts for one-third of proteins in animals. As the most abundant protein in the body, collagen is essential to maintain the normal structure and strength of connective tissue, such as bones, skin, cartilage, and blood vessels. Mammals, birds, and fish can synthesize: (1) glycine from threonine, serine, choline, and Hyp; (2) proline from arginine; and (3) Hyp from proline residues in collagen, in a cell- and tissue-specific manner. In addition, livestock (e.g., pigs, cattle, and sheep) produces proline from glutamine and glutamate in the small intestine, but this pathway is absent from birds and possibly most fish species. Results of the recent studies indicate that endogenous synthesis of glycine, proline, and Hyp is inadequate for maximal growth, collagen production, or feed efficiency in pigs, chickens, and fish. Although glycine, proline and Hyp, and gelatin can be used as feed additives in animal diets, these ingredients except for glycine are relatively expensive, which precludes their inclusion in practical rations. Alternatively, hydrolyzed feather meal (HFM), which contains 9% glycine, 5% Hyp, and 12% proline, holds great promise as a low cost but abundant dietary source of glycine, Hyp, and proline for ruminants and nonruminants. Because HFM is deficient in most AAs, future research efforts should be directed at improving the bioavailability of its AAs and the balance of AAs in HFM-supplemented diets. Finally, HFM may be used as a feed additive to prevent or ameliorate connective tissue disorders in domestic and aquatic animals.
Collapse
Affiliation(s)
- Peng Li
- National Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
11
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Fernández M, Minguell JJ. G-CSF Regulates the Expression of mRNA for Collagen Type VI and Collagen VI Production in Human Bone Marrow Stromal Cells. Hematology 2016; 2:219-27. [DOI: 10.1080/10245332.1997.11746340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mireya Fernández
- Unidad de Biología Celular, INTA. Universidad de Chile. Casilla 138, Santiago 11, Chile
| | - José J. Minguell
- Unidad de Biología Celular, INTA. Universidad de Chile. Casilla 138, Santiago 11, Chile
| |
Collapse
|
13
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
14
|
Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:5-29. [PMID: 24443018 DOI: 10.1007/978-94-007-7893-1_2] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.
Collapse
Affiliation(s)
- Michael J Mienaltowski
- Departments of Molecular Pharmacology & Physiology and Orthopaedics & Sports Medicine, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | | |
Collapse
|
15
|
Abstract
Collagen VI is a component of the extracellular matrix of almost all connective tissues, including cartilage, bone, tendon, muscles and cornea, where it forms abundant and structurally unique microfibrils organized into different suprastructural assemblies. The precise role of collagen VI is not clearly defined although it is most abundant in the interstitial matrix of tissues and often found in close association with basement membranes. Three genetically distinct collagen VI chains, α1(VI), α2(VI) and α3(VI), encoded by the COL6A1. COL6A2 and COL6A3 genes, were first described more than 20 years ago. Their molecular assembly and role in congenital muscular dystrophy has been broadly characterized. In 2008, three additional collagen VI genes arrayed in tandem at a single gene locus on chromosome 3q in humans, and chromosome 9 in mice, were described. Following the naming scheme for collagens the new genes were designated COL6A4. COL6A5 and COL6A6 encoding the α4(VI), α5(VI) and α6(VI) chains, respectively. This review will focus on the current state of knowledge of the three new chains.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Paul Holden
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA
| | - Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, 48129 Muenster, Germany
| |
Collapse
|
16
|
Hansen U, Allen JM, White R, Moscibrocki C, Bruckner P, Bateman JF, Fitzgerald J. WARP interacts with collagen VI-containing microfibrils in the pericellular matrix of human chondrocytes. PLoS One 2012; 7:e52793. [PMID: 23300779 PMCID: PMC3530481 DOI: 10.1371/journal.pone.0052793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent K(d) of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.
Collapse
Affiliation(s)
- Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, Muenster, Germany
| | - Justin M. Allen
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, and University of Melbourne, Parkville, Victoria, Australia
| | - Rachel White
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cathleen Moscibrocki
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peter Bruckner
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, Muenster, Germany
| | - John F. Bateman
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous neuromuscular disorders with onset at birth or in infancy in which the muscle biopsy is compatible with a dystrophic myopathy. In the past 10 years, knowledge of neuromuscular disorders has dramatically increased, particularly with the exponential boost of disclosing the genetic background of CMDs. This review will highlight the clinical description of the most important forms of CMD, paying particular attention to the main keys for diagnostic approach. The diagnosis of CMDs requires the concurrence of expertise in multiple specialties (neurology, morphology, genetics, neuroradiology) available in a few centers worldwide that have achieved sufficient experience with the different CMD subtypes. Currently, molecular diagnosis is of paramount importance not only for phenotype-genotype correlations, genetic and prenatal counseling, and prognosis and aspects of management, but also concerning the imminent availability of clinical trials and treatments.
Collapse
|
18
|
Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML, Birk DE. Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol 2010; 30:53-61. [PMID: 20951202 DOI: 10.1016/j.matbio.2010.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/30/2022]
Abstract
Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1-/- versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1-/- tendon. In Col6a1-/- tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1-/- tendons compared to controls. An analysis of fibril density (number/μm(2)) demonstrated a ~2.5 fold increase in the Col6a1-/- versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1-/- tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1-/- tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.
Collapse
Affiliation(s)
- Yayoi Izu
- Department of Pathology & Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612-4799, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Shi L, Ermis R, Garcia A, Telgenhoff D, Aust D. Degradation of human collagen isoforms by Clostridium collagenase and the effects of degradation products on cell migration. Int Wound J 2010; 7:87-95. [PMID: 20529148 DOI: 10.1111/j.1742-481x.2010.00659.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Clostridium collagenase has been widely used in biomedical research to dissociate tissues and isolate cells; and, since 1965, as a therapeutic drug for the removal of necrotic wound tissues. Previous studies found that purified collagenase-treated extracellular matrix stimulated cellular response to injury and increased cell proliferation and migration. This article presents an in vitro study investigating the digestive ability of Clostridium collagenase on human collagen types I, III, IV, V and VI. Our results showed that Clostridium collagenase displays proteolytic power to digest all these types of human collagen, except type VI. The degradation products derived were tested in cell migration assays using human keratinocytes (gold surface migration assay) and fibroblasts (chemotaxis cell migration assay). Clostridium collagenase itself and the degradation products of type I and III collagens showed an increase in keratinocyte and fibroblast migration, type IV-induced fibroblast migration only, and the remainder showed no effects compared with the control. The data indicate that Clostridium collagenase can effectively digest collagen isoforms that are present in necrotic wound tissues and suggest that collagenase treatment provides several mechanisms to enhance cell migration: collagenase itself and collagen degradation products.
Collapse
Affiliation(s)
- Lei Shi
- Research & Development, Healthpoint Ltd, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
20
|
Freise C, Erben U, Muche M, Farndale R, Zeitz M, Somasundaram R, Ruehl M. The alpha 2 chain of collagen type VI sequesters latent proforms of matrix-metalloproteinases and modulates their activation and activity. Matrix Biol 2009; 28:480-9. [DOI: 10.1016/j.matbio.2009.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/22/2009] [Accepted: 08/10/2009] [Indexed: 11/25/2022]
|
21
|
Effects of UVA irradiation following treatment with 8-methoxypsoralen on type I and type III collagen synthesis in normal and scleroderma fibroblast cultures. Arch Dermatol Res 2009; 301:507-13. [DOI: 10.1007/s00403-009-0949-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
22
|
Fitzgerald J, Rich C, Zhou FH, Hansen U. Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 2008; 283:20170-80. [PMID: 18400749 DOI: 10.1074/jbc.m710139200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of three new collagen VI genes at a single locus on human chromosome 3q22.1. The three new genes are COL6A4, COL6A5, and COL6A6 that encode the alpha4(VI), alpha5(VI), and alpha6(VI) chains. In humans, the COL6A4 gene has been disrupted by a chromosome break. Each of the three new collagen chains contains a 336-amino acid triple helix flanked by seven N-terminal von Willebrand factor A-like domains and two (alpha4 and alpha6 chains) or three (alpha5 chain) C-terminal von Willebrand factor A-like domains. In humans, mRNA expression of COL6A5 is restricted to a few tissues, including lung, testis, and colon. In contrast, the COL6A6 gene is expressed in a wide range of fetal and adult tissues, including lung, kidney, liver, spleen, thymus, heart, and skeletal muscle. Antibodies to the alpha6(VI) chain stained the extracellular matrix of human skeletal and cardiac muscle, lung, and the territorial matrix of articular cartilage. In cell transfection and immunoprecipitation experiments, mouse alpha4(VI)N6-C2 chain co-assembled with endogenous alpha1(VI) and alpha2(VI) chains to form trimeric collagen VI molecules that were secreted from the cell. In contrast, alpha5(VI)N5-C1 and alpha6(VI)N6-C2 chains did not assemble with alpha1(VI) and alpha2(VI) chains and accumulated intracellularly. We conclude that the alpha4(VI)N6-C2 chain contains all the elements necessary for trimerization with alpha1(VI) and alpha2(VI). In summary, the discovery of three additional collagen VI chains doubles the collagen VI family and adds a layer of complexity to collagen VI assembly and function in the extracellular matrix.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.
Collapse
Affiliation(s)
- A K Lampe
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ.
| | | |
Collapse
|
24
|
Petrini S, Tessa A, Stallcup WB, Sabatelli P, Pescatori M, Giusti B, Carrozzo R, Verardo M, Bergamin N, Columbaro M, Bernardini C, Merlini L, Pepe G, Bonaldo P, Bertini E. Altered expression of the MCSP/NG2 chondroitin sulfate proteoglycan in collagen VI deficiency. Mol Cell Neurosci 2006; 30:408-17. [PMID: 16169245 DOI: 10.1016/j.mcn.2005.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/09/2005] [Accepted: 08/10/2005] [Indexed: 01/27/2023] Open
Abstract
NG2, the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP), is a ligand for collagen VI (COL6). We have examined skeletal muscles of patients affected by Ullrich scleroatonic muscular dystrophy (UCMD), an inherited syndrome caused by COL6 genes mutations. A significant decrease of NG2 immunolabeling was found in UCMD myofibers, as well as in skeletal muscle and cornea of COL6 null-mice. In UCMD muscles, truncated NG2 core protein isoforms were detected. However, real-time RT-PCR analysis revealed marked increase in NG2 mRNA content in UCMD muscle compared to controls. We hypothesize that NG2 immunohistochemical and biochemical behavior may be compromised owing to the absence of its physiological ligand. MCSP/NG2 proteoglycan may be considered an important receptor mediating COL6-sarcolemma interactions, a relationship that is disrupted by the pathogenesis of UCMD muscle.
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, P.zza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baldock C, Sherratt MJ, Shuttleworth CA, Kielty CM. The supramolecular organization of collagen VI microfibrils. J Mol Biol 2003; 330:297-307. [PMID: 12823969 DOI: 10.1016/s0022-2836(03)00585-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collagen VI has a ubiquitous distribution throughout connective tissues, and has key roles in linking cells and matrix macromolecules. We have generated three-dimensional reconstructions of collagen VI microfibrils using automated electron tomography (AET) in order to obtain new insights into the organisation of collagen VI in assembled microfibrils. Analysis of the reconstruction data has allowed the resolution of the double-beaded structure into smaller subunits. Volume calculations from the tomography data indicate that ten and six A-domains could be packed into the N and C-terminal regions from each monomer, respectively. A putative location for the globular N-terminal regions of the alpha3 chain, important for microfibril assembly and function, has been identified. Some surfaces of the alpha3 chain N-terminal domains appear to be exposed on the surface of a microfibril, where they may provide an interactive surface for molecules. Analysis of the interbead region provides evidence for complex triple helical supercoiling in microfibrils. Frequently, two strands were visualised emerging from the beaded region and merging into a single interbead region. Measurements taken from the AET data show that there is a decrease in periodicity from dimer/tetramer to microfibrils. Molecular combing reverses this effect by mechanically increasing periodicity to give measurements similar to the component dimers/tetramers. Together, these data have provided important new insights into the organisation and function of these large macromolecular assemblies.
Collapse
Affiliation(s)
- Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, M13 9PT, Manchester, UK.
| | | | | | | |
Collapse
|
26
|
Wiberg C, Heinegård D, Wenglén C, Timpl R, Mörgelin M. Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 2002; 277:49120-6. [PMID: 12354766 DOI: 10.1074/jbc.m206891200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of the leucine-rich repeat (LRR) proteins biglycan, decorin, and chondroadherin to interact with collagen VI and influence its assembly to supramolecular structures was studied by electron microscopy and surface plasmon resonance measurements in the BIAcore 2000 system. Biglycan showed a unique ability to organize collagen VI into extensive hexagonal-like networks over a time period of only a few minutes. Only the intact molecule, substituted with two dermatan sulfate chains, had this capacity. Intact decorin, with one dermatan sulfate chain only, was considerably less efficient, and aggregates of organized collagen VI were found only after several hours. Chondroadherin without glycosaminoglycan substitutions did not induce any ordered collagen VI organization. However, all three related LRR proteins were shown to interact with collagen VI using electron microscopy and surface plasmon resonance. Biglycan and decorin were exclusively found close to the N-terminal parts of the collagen VI tetramers, whereas chondroadherin was shown to bind close to both the N- and C-terminal parts of collagen VI. In the formed hexagonal networks, biglycan was localized to the intra-network junctions of the collagen VI filaments. This was demonstrated by electron microscopy after negative staining of gold-labeled biglycan in aggregation experiments with collagen VI.
Collapse
Affiliation(s)
- Charlotte Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
27
|
Söder S, Hambach L, Lissner R, Kirchner T, Aigner T. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthritis Cartilage 2002; 10:464-70. [PMID: 12056849 DOI: 10.1053/joca.2002.0512] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Type VI collagen is a major component of the pericellular matrix compartment in articular cartilage and shows severe alterations in osteoarthritic cartilage degeneration. In this study, we analysed the exact localization of type VI collagen in its relationship to the chondrocyte and the (inter)territorial cartilage matrix. Additionally, we were interested in its ultrastructural appearance in normal and osteoarthritic cartilage. DESIGN Distribution and molecular appearance was investigated by conventional immunostaining, by multilabeling confocal scanning microscopy, conventional transmission, and immunoelectron microscopy. RESULTS Our analysis confirmed the pericellular concentration of type VI collagen in normal and degenerated cartilage. Type VI collagen formed an interface in between the cell surface and the type II collagen network. The type VI collagen and the type II collagen networks appeared to have a slight physical overlap in both normal and diseased cartilage. Additionally, some epitope staining was observed in the cell-associated interterritorial cartilage matrix, which did not appear to have an immediate relation to the type II collagen fibrillar network as evaluated by immunoelectron microscopy. In osteoarthritic cartilage, significant differences were found compared with normal articular cartilage: the overall dimension of the lacunar volume increased, and a significantly increased type VI collagen epitope staining was observed in the interterritorial cartilage matrix. Also, the banded isoform of type VI collagen was found around many chondrocytes. CONCLUSIONS Our study confirms the close association of type VI collagen with both, the chondrocyte cell surface and the territorial cartilage matrix. They show severe alterations in type VI collagen distribution and appearance in osteoarthritic cartilage. Our immunohistochemical and ultrastructural data are compatible with two ways of degradation of type VI collagen in osteoarthritic cartilage: (1) the pathologically increased physiological molecular degradation leading to the complete loss of type VI collagen filaments from the pericellular chondrocyte matrix and (2) the transformation of the fine filaments to the band-like form of type VI collagen. Both might implicate a significant loss of function of the pericellular microenvironment in osteoarthritic cartilage.
Collapse
Affiliation(s)
- S Söder
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Dziadek M, Kazenwadel JS, Hendrey JA, Pan TC, Zhang RZ, Chu ML. Alternative splicing of transcripts for the alpha 3 chain of mouse collagen VI: identification of an abundant isoform lacking domains N7-N10 in mouse and human. Matrix Biol 2002; 21:227-41. [PMID: 12009329 DOI: 10.1016/s0945-053x(02)00009-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three distinct alpha chains form the collagen VI monomer, the alpha 3(VI) chain being much larger than the alpha 1(VI) and alpha 2(VI) chains. The alpha 3(VI) chain has 10 von Willebrand Factor type A domains of approximately 200 amino acids at the N-terminus (N1-N10) compared with only one such domain in the alpha 1(VI) and alpha 2(VI) chains. Domains N10, N9, N7 and N3 of the alpha 3(VI) chain are subject to alternative splicing in chick and/or human tissues, indicating the possibility of isoforms that have different functions depending on which N-terminal domains are included or excluded. In this study we have PCR amplified and sequenced mouse alpha 3(VI) cDNA encoding the N2-N10 domains. By reverse transcription-PCR using oligonucleotides spanning different regions of the cDNA we have undertaken a comprehensive analysis of alternative splicing of the alpha 3(VI) mRNA in embryonic and adult mouse tissues. We demonstrate that domains N10, N9 and N7 are also subject to alternative splicing in mouse tissues and in addition identify an abundant novel variant transcript that lacks all four N-terminal domains (N7-N10) in mouse tissues and human cells. We also identify less abundant transcripts that lack a large part of the N3 domain, and transcripts lacking the entire N5 domain. Using specific RNase protection assays we show that the shorter transcripts containing domains (N8+N7+N6), (N8+N6) and N6 are present at higher levels than transcripts containing the N10 and/or N9 domains, with tissue-specific variation in the levels of variant transcripts. These studies demonstrate a larger range of collagen VI protein variants than previously described.
Collapse
Affiliation(s)
- Marie Dziadek
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Aigner T, Hambach L, Söder S, Schlötzer-Schrehardt U, Pöschl E. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem Biophys Res Commun 2002; 290:743-8. [PMID: 11785962 DOI: 10.1006/bbrc.2001.6227] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In articular cartilage, type VI collagen is concentrated in the pericellular matrix compartment. During protein synthesis and processing at least the alpha3(VI) chain undergoes significant posttranslational modification and cleavage. In this study, we investigated the processing of type VI collagen in articular cartilage. Immunostaining with a specific polyclonal antiserum against the C5 domain of alpha3(VI) showed strong cellular staining seen in nearly all chondrocytes of articular cartilage. Confocal laser-scanning microscopy and immunoelectron microscopy allowed localization of this staining mainly to the cytoplasm and the immediate pericellular matrix. Double-labeling experiments showed a narrow overlap of the C5 domain and the pericellular mature type VI collagen. Our results suggest that at least in human adult articular cartilage the C5 domain of alpha3(VI) collagen is synthesized and initially incorporated into the newly formed type VI collagen fibrils, but immediately after secretion is cut off and is not present in the mature pericellular type VI matrix of articular cartilage.
Collapse
Affiliation(s)
- T Aigner
- Cartilage Research Group, Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
30
|
Wiberg C, Hedbom E, Khairullina A, Lamandé SR, Oldberg A, Timpl R, Mörgelin M, Heinegård D. Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 2001; 276:18947-52. [PMID: 11259413 DOI: 10.1074/jbc.m100625200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of native biglycan and decorin to pepsin-extracted collagen VI from human placenta was examined by solid phase assay and by measurement of surface plasmon resonance in the BIAcore(TM)2000 system. Both proteoglycans exhibited a strong affinity for collagen VI with dissociation constants (K(D)) of approximately 30 nm. Removal of the glycosaminoglycan chains by chondroitinase ABC digestion did not significantly affect binding. In coprecipitation experiments, biglycan and decorin bound to collagen VI and equally competed with the other, suggesting that biglycan and decorin bind to the same binding site on collagen VI. This was confirmed by electron microscopy after negative staining of complexes between gold-labeled proteoglycans and collagen VI, demonstrating that both biglycan and decorin bound exclusively to a domain close to the interface between the N terminus of the triple helical region and the following globular domain. In solid phase assay using recombinant collagen VI fragments, it was shown that the alpha2(VI) chain probably plays a role in the interaction.
Collapse
Affiliation(s)
- C Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC Plan C12, Lund S-221 84, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Iwahashi M, Muragaki Y, Ooshima A, Nakano R. Type VI collagen expression during growth of human ovarian follicles. Fertil Steril 2000; 74:343-7. [PMID: 10927056 DOI: 10.1016/s0015-0282(00)00618-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify type VI collagen expression in human ovarian follicles during follicular growth. DESIGN In vitro experiment. SETTING Department of Obstetrics and Gynecology, Wakayama Medical College, Japan. PATIENT(S) Regularly cycling women who underwent adnexectomy. INTERVENTION(S) Immunohistochemistry and in situ hybridization for human type VI collagen. MAIN OUTCOME MEASURE(S) Expression of type VI collagen. RESULT(S) Expression of type VI collagen was observed in the theca cell layers during folliculogenesis, whereas no expression of type VI collagen was observed in the granulosa cell layers at the mRNA and protein levels. As the follicles grew, immunostaining for type VI collagen became intense in the theca cell layers, especially the theca externa. In preovulatory follicles, however, weak, fragmented, or discontinuous immunostaining of the theca cell layers was observed. This fragmented or discontinuous immunostaining was evident predominantly in the apical area of preovulatory follicles rather than in the basal area. CONCLUSION(S) Type VI collagen is present in the theca cell layers of follicles during folliculogenesis and plays an important role in interactions between the theca cells and extracellular matrix. These interactions may lead to changes in the shape, proliferation, migration, or differentiation of follicular cells during follicular development, maturation, and ovulation.
Collapse
Affiliation(s)
- M Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical College, Wakayama, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Expression of type VI collagen, an adhesive protein of mesenchymal tissues, is significantly down-regulated upon viral transformation of fibroblasts. Likewise, most cell lines derived from spontaneous mesenchymal tumors, including fibrosarcomas, rhabdomyosarcomas, leiomyosarcomas, chondrosarcomas and liposarcomas, do not synthesize type VI collagen because they are not capable of expressing all 3 of the polypeptide chains required for the assembly of a functional heterotrimeric molecule. When injected into nude mice, neither fibrosarcoma cells (HT1080) nor rhabdomyosarcoma cells (A204) initiate the synthesis of type VI collagen, suggesting that the inhibition is not caused by deficiency of a paracrine factor. Immuno-histochemical studies further illustrate that 15 of 17 spontaneous adult fibrosarcomas lack type VI collagen in the tumor stroma. The absence of this important adhesion protein may contribute to tumorigenicity, invasiveness and/or metastasis of mesenchymal tumor cells.
Collapse
Affiliation(s)
- B Trueb
- M.E. Müller-Institute, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
33
|
|
34
|
Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. ARTHRITIS AND RHEUMATISM 1998; 41:986-96. [PMID: 9627008 DOI: 10.1002/1529-0131(199806)41:6<986::aid-art5>3.0.co;2-n] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the messenger RNA (mRNA) expression and distribution of the major pericellular type VI collagen in normal and osteoarthritic (OA) cartilage. METHODS Conventional and confocal laser scanning immunohistochemistry, as well as in situ hybridization experiments, were performed for all 3 collagen type VI chains in sections of normal and OA articular cartilage. RESULTS Normal adult articular chondrocytes were surrounded by a type VI collagen-positive pericellular matrix and showed significant levels of mRNA expression for all 3 type VI collagen chains. In OA cartilage, the expression and overall distribution of type VI collagen was largely increased in the lower middle and upper deep zones. In contrast, the upper zones showed a significant loss of pericellular type VI collagen staining. CONCLUSION Our results suggest that there is a significant basic turnover of type VI collagen in normal articular cartilage. In OA cartilage, the chondrocytes of the lower middle and upper deep zones account for a net increase in type VI collagen synthesis. The loss of type VI collagen staining in the upper zones is most likely the result of increased protein degradation rather than reduced synthetic activity.
Collapse
Affiliation(s)
- L Hambach
- Orthopedic Hospital Wichernhaus, Rummelsberg, Schwarzenbruck, Germany
| | | | | | | | | |
Collapse
|
35
|
Lamandé SR, Sigalas E, Pan TC, Chu ML, Dziadek M, Timpl R, Bateman JF. The role of the alpha3(VI) chain in collagen VI assembly. Expression of an alpha3(VI) chain lacking N-terminal modules N10-N7 restores collagen VI assembly, secretion, and matrix deposition in an alpha3(VI)-deficient cell line. J Biol Chem 1998; 273:7423-30. [PMID: 9516440 DOI: 10.1074/jbc.273.13.7423] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen VI is a microfibrillar protein found in the extracellular matrix of virtually all connective tissues. Three genetically distinct subunits, the alpha1(VI), alpha2(VI), and alpha3(VI) chains, associate intracellularly to form triple-helical monomers, which then assemble into disulfide-bonded dimers and tetramers before secretion. Although sequence considerations suggest that collagen VI monomers composed of all three chains are the most stable isoform, the precise chain composition of collagen VI remains controversial and alternative assemblies containing only alpha1(VI) and alpha2(VI) chains have also been proposed. To address this question directly and study the role of the alpha3(VI) chain in assembly, we have characterized collagen VI biosynthesis and in vitro matrix formation by a human osteosarcoma cell line (SaOS-2) that is deficient in alpha3(VI) production. Northern analysis showed an abundance of alpha1(VI) and alpha2(VI) mRNAs, but no detectable alpha3(VI) mRNA was apparent in SaOS-2 cells. By day 30 of culture, however, small amounts of alpha3(VI) mRNA were detected, although the level of expression was still much less than alpha1(VI) and alpha2(VI). Collagen VI protein was not detected in SaOS-2 medium or cell layer samples until day 30 of culture, demonstrating that despite the abundant synthesis of alpha1(VI) and alpha2(VI), no stable collagen VI protein was produced without expression of alpha3(VI). The alpha1(VI) and alpha2(VI) chains produced in the absence of alpha3(VI) were non-helical and were largely retained intracellularly and degraded. The critical role of the alpha3(VI) chain in collagen VI assembly was directly demonstrated after stable transfection of SaOS-2 cells with an alpha3(VI) cDNA expression construct that lacked 4 of the 10 N-terminal type A subdomains. The transfected alpha3(VI) N6-C5 chains associated with endogenous alpha1(VI) and alpha2(VI) and formed collagen VI dimers and tetramers, which were secreted and deposited into an extensive network in the extracellular matrix. These data demonstrated that alpha3(VI) is essential for the formation of stable collagen VI molecules and subdomains N10-N7 are not required for molecular assembly.
Collapse
Affiliation(s)
- S R Lamandé
- Orthopaedic Molecular Biology Research Unit, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Kopp MU, Winterhalter KH, Trueb B. DNA methylation accounts for the inhibition of collagen VI expression in transformed fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:489-96. [PMID: 9370358 DOI: 10.1111/j.1432-1033.1997.00489.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of collagen VI, an adhesive glycoprotein of the extracellular matrix, is completely inhibited in virally transformed fibroblasts and in many cell lines derived from spontaneous mesenchymal tumors. Here we present evidence that DNA methylation plays an important role in this inhibition: (a) The mRNA level for DNA methyltransferase is highly increased in simian virus 40 (SV40)-transformed fibroblasts compared with normal cells and this increase correlates with the decrease of the mRNA level for collagen VI. (b) Methylation of the alpha2(VI) collagen promoter in vitro abolishes promoter activity in a transient transfection assay. (c) Genomic sequencing reveals extensive methylation of the promoter region in SV40-transformed cells, but virtually no methylation of the corresponding region in normal cells. Increased methylation is also observed in a rhabdomyosarcoma cell line. (d) Two of the cis-acting elements of the alpha2(VI) collagen promoter lose their affinity for transcription factor AP2 when methylated in vitro as demonstrated by gel retardation experiments. DNA methylation is therefore involved in the silencing of the alpha2(VI) collagen gene. It seems likely that the same mechanism is also responsible for the repression of other transformation-sensitive proteins.
Collapse
Affiliation(s)
- M U Kopp
- MEM-Institute, Division of Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
37
|
Finnis ML, Gibson MA. Microfibril-associated glycoprotein-1 (MAGP-1) binds to the pepsin-resistant domain of the alpha3(VI) chain of type VI collagen. J Biol Chem 1997; 272:22817-23. [PMID: 9278443 DOI: 10.1074/jbc.272.36.22817] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interactions of type VI collagen have been investigated, using solid phase binding assays, with two components of the fibrillin-containing microfibrils, the elastin-binding protein, MAGP-1 and its structural relative MAGP-2. Both native and pepsin-treated forms of type VI collagen specifically bound to MAGP-1 but not to MAGP-2. Pepsin type VI collagen was shown to block the binding of MAGP-1 to native type VI collagen indicating that the major MAGP-1-binding site was in the triple-helical region of the molecule. MAGP-1 was found not to bind to collagens I, III, and V. Affinity blotting of pepsin-treated type VI collagen showed that MAGP-1 binding was specific for the collagenous domain of the alpha3(VI) chain. Decorin and biglycan were found not to inhibit the interaction of pepsin-treated type VI collagen with MAGP-1, indicating that its binding site on the collagen is not close to that for the proteoglycans. Reduction and alkylation of disulfide bonds in MAGP-1 did not destroy its type VI collagen-binding properties, indicating that the binding site was likely to be in the cysteine-free, N-terminal domain of MAGP-1. Interestingly, the interaction of MAGP-1 with type VI collagen was inhibited by tropoelastin, suggesting that the binding sites for tropoelastin and type VI collagen may be in the same domain of MAGP-1. A peptide, corresponding to amino acids 29-38 of MAGP-1, was found to inhibit the interactions of MAGP-1 with type VI collagen and tropoelastin. The results suggest that the peptide may contain the binding sequences for both type VI collagen and tropoelastin, and thus that these two proteins may share the same binding site on MAGP-1. The interactions of MAGP-1 with type VI collagen and tropoelastin were both determined to be of moderately high affinity, with Kd values of 5.6 x 10(-7) M and 2.6 x 10(-7) M, respectively. The findings indicate that MAGP-1 may mediate a molecular interaction between type VI collagen microfibrils and fibrillin-containing microfibrils, structures which are often found in close proximity to each other in a wide range of extracellular matrices.
Collapse
Affiliation(s)
- M L Finnis
- Department of Pathology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
38
|
Henson FM, Davies ME, Jeffcott LB. Equine dyschondroplasia (osteochondrosis)--histological findings and type VI collagen localization. Vet J 1997; 154:53-62. [PMID: 9265853 DOI: 10.1016/s1090-0233(05)80008-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study describes (1) the histological appearance of dyschondroplasia, the primary lesion of osteochondrosis, in articular cartilage of the horse and (2) the localization of type VI collagen which is an important constituent of the extracellular matrix (ECM). Dyschondroplastic cartilage was identified on the basis of the presence of cartilage cores (i.e., cartilage extending into the subchondral bone) and confirmed with subsequent histological examination. Full-thickness cartilage samples from 57 horses were collected and paraffin embedded. Histological examination was used to examine the normal architecture of equine growth cartilage and to determine the presence of various pathological changes in dyschondroplastic lesions. Immunolocalization was used to identify type VI collagen in normal and dyschondroplastic lesions. The abnormalities observed in the dyschondroplastic cartilage fell into two groups. In Group A (n = 18) the lesions were associated with a disruption in the normal sequential transition of the chondrocytes through proliferation and maturation resulting in an accumulation of large numbers of small, rounded chondrocytes. A decrease in type VI collagen immunoreactivity compared with normal animals was detected except around chondrocyte clusters. Group B lesions (n = 9) were characterized by an alteration in the staining pattern of the mineralized cartilage and underlying bone. In these lesions type VI collagen immunoreactivity was increased. In both groups the presence of retained blood vessels, chondrocyte clusters, chondronecrosis and fissure formation was detected. These two histologically-distinct groups suggest that equine dyschondroplasia may be comprised of different pathological entities and that it is associated with alterations in the pattern of distribution of an ECM protein.
Collapse
Affiliation(s)
- F M Henson
- Department of Clinical Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
39
|
Chaqour B, Bellon G, Seite S, Borel JP, Fourtanier A. All-trans-retinoic acid enhances collagen gene expression in irradiated and non-irradiated hairless mouse skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 37:52-9. [PMID: 9043095 DOI: 10.1016/s1011-1344(96)07399-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All-trans-retinoic acid (t-RA) can repair some of the tissue damage caused by chronic exposure of skin to UV radiation. In the present study, we have investigated its effect on collagen and collagenase gene expression in hairless mouse skin. Hairless mice (SKH-hr 1) were irradiated dorsally with increasing doses of UVB radiation (total, 4.8 J cm-2) for 10 weeks. The animals were then topically treated with 0.05% t-RA dissolved in a vehicle or with the vehicle alone three times a week for up to 10 weeks. Non-irradiated animals underwent the same treatment. In our experimental conditions, UVB irradiation alone induced no changes in type I, III and VI collagen mRNA levels in dorsal and ventral skin. The mRNA level of collagenase I was also unchanged. Topically applied t-RA increased the steady state levels of type I and III collagen mRNA in irradiated and non-irradiated dorsal skin. The mean increase was about 2.2- and 2.7-fold in non-irradiated skin and 2.4- and 2.5-fold in irradiated skin for type I and III collagen mRNA respectively. The increase in irradiated skin was partly due to the vehicle alone, which exerted a stimulating effect on the steady state levels of alpha 1(I) and alpha 1(III) mRNA. The mRNA level of type VI collagen was also significantly increased by t-RA, but only in irradiated skin. The mRNA level of collagenase was significantly decreased only in irradiated t-RA-treated skin. In addition, t-RA exerted a systemic effect because the mRNA levels of collagen were enhanced by factors of 1.9 and 2.5 for alpha 1(I) and 2.0 and 2.0 for alpha 1(III) in the ventral skin of irradiated and non-irradiated animals respectively. This study leads to the conclusion that topical t-RA exerts directly and/or indirect effects on the expression of collagen genes in irradiated and non-irradiated hairless mouse skin.
Collapse
Affiliation(s)
- B Chaqour
- Laboratoire de Biochimie, CNRS ERX084, Faculté de Médecine, Reims, France
| | | | | | | | | |
Collapse
|
40
|
Katagiri K, Takasaki S, Fujiwara S, Kayashima K, Ono T, Shinkai H. Purification and structural analysis of extracellular matrix of a skin tumor from a patient with juvenile hyaline fibromatosis. J Dermatol Sci 1996; 13:37-48. [PMID: 8902652 DOI: 10.1016/0923-1811(95)00492-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Juvenile hyaline fibromatosis is a rare mesenchymal dysplasia that is inherited in an autosomal recessive fashion. The histological features of the tumor-like lesions are characterized by the deposition of amorphous hyaline material in the extracellular spaces of the dermis and soft tissues. We have analyzed the hyaline substance in a specimen of a skin tumor obtained from a 4-year-old Japanese girl with juvenile hyaline fibromatosis. It was found to consist mainly of type VI collagen; a small amount of type I collagen was also present. These components were separated by DEAE-cellulose ion-exchange chromatography under reducing conditions. The ratio of the dry weights of type I and type VI collagen was 1:4. Of the three chains of type VI collagen (alpha 1(VI), alpha 2(VI) and alpha 3(VI)), alpha 3(VI) was the most abundant. Glycosaminoglycans in the tumor tissue comprised dermatan sulfate, chondroitin sulfate and hyaluronan, with dermatan sulfate predominating. In contrast, hyaluronan is the most abundant in normal skin.
Collapse
Affiliation(s)
- K Katagiri
- Department of Dermatology, Oita Medical University, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- E F Bernstein
- Department of Dermatology, Jefferson Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, USA
| | | |
Collapse
|
42
|
Saitta B, Chu ML. Characterization of the human alpha 1(VI) collagen promoter and its comparison with human alpha 2(VI) promoters. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:542-9. [PMID: 8536701 DOI: 10.1111/j.1432-1033.1995.542_b.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
From a human cosmid library, we isolated a clone (5B) with an insert of 32 kb, encoding the amino-terminal and the 5'-end flanking region of the alpha 1(VI) collagen gene. Exon 1 was found to be 194 bp and contain the 5' untranslated region plus 97 bp coding sequence. Exon 2 consists of 130 bp, a size that is conserved across the chicken and mouse species. S1-nuclease-protection assays and primer-extension analysis, using mRNA from human dermal fibroblasts, show the presence of multiple transcription start sites located in a region of approximately 20 nucleotides. Canonical TATA and CAAT boxes, as found in the chicken and mouse alpha 1 promoters, were absent in the human alpha 1(VI) promoter. The promoter region from positions -1 to -190, is a polypyrimidine/polypurine-rich region containing 12 CCCTCCCC (CT element consensus) sequences and has multiple potential binding sites for the Sp1, and AP2 transcription factors. These regulatory proteins bind to the alpha 2(VI) promoters [Saitta, B. & Chu, M.-L. (1994) Eur. J. Biochem. 223, 675-682]. To test the transcriptional activity of the alpha 1 promoter, transient transfection experiments of the DNA constructs were performed in human dermal fibroblasts and in human fibrosarcoma (HT1080) cell lines. The DNA constructs drive the expression of the chloramphenicol acetyl transferase (CAT) gene. The results show strong CAT activity for the constructs at positions -1700, -298 and -257, while low activity was found for the constructs at positions -4400, -142 and -5 when transfected in fibroblasts. The experiments also identified positive and negative regulatory regions in the alpha 1(VI) promoter CAT constructs when transfected in fibroblasts, but did not identify them in the fibrosarcoma cells.
Collapse
Affiliation(s)
- B Saitta
- Department of Biochemistry, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
43
|
Kuo HJ, Keene DR, Glanville RW. The Macromolecular Structure of Type-VI Collagen. Formation and Stability of Filaments. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20820.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Lacroix M, Bovy T, Nusgens BV, Lapière CM. Keratinocytes modulate the biosynthetic phenotype of dermal fibroblasts at a pretranslational level in a human skin equivalent. Arch Dermatol Res 1995; 287:659-64. [PMID: 8534130 DOI: 10.1007/bf00371739] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we investigated the influence of keratinocytes on the phenotype of fibroblasts in an in vitro human skin equivalent. Keratinocytes were seeded at the surface of fibroblast-populated mechanically restrained type I collagen gels (lattices). Lattices without keratinocytes were handled in parallel as controls. After 2 and 4 days in culture, the keratinocyte layer was removed and the steady-state level of the mRNA for the main extracellular matrix macromolecules and interstitial collagenase produced by the fibroblasts was measured by Northern and dot blot analysis. A 50% decrease in the amount of procollagen type I and type III mRNAs was observed after 2 and 4 days of coculture while collagenase gene expression was upregulated by 300% when compared with control lattices. No significant modulation of type IV and type VI collagen, elastin or laminin B1 mRNA levels was found. Fibronectin mRNA levels in fibroblasts were significantly increased only on day 4. All the observed changes could be reproduced using a conditioned medium collected from a lattice covered with keratinocytes added to a lattice containing fibroblasts alone. These results indicate that in an in vitro reconstituted skin, keratinocytes are able to modulate the biosynthetic phenotype of fibroblasts at a pretranslational level through a paracrine signalling pathway.
Collapse
Affiliation(s)
- M Lacroix
- Laboratory of Experimental Dermatology, CHU Sart-Tilman, Liège, Belgium
| | | | | | | |
Collapse
|
45
|
Zhang LQ, Laato M, Muona P, Penttinen R, Oikarinen A, Peltonen J. A fibroblast cell line cultured from a hypertrophic scar displays selective downregulation of collagen gene expression: barely detectable messenger RNA levels of the pro alpha 1(III) chain of type III collagen. Arch Dermatol Res 1995; 287:534-8. [PMID: 7487138 DOI: 10.1007/bf00374072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study was designed to investigate the expression of type I, III and VI collagens by a fibroblast cell line initiated from a hypertrophic scar. The same tissue has previously been demonstrated to display markedly elevated expression of type I and III collagen mRNAs in vivo. Unexpectedly, slot-blot and Northern hybridizations revealed a barely detectable steady-state level of pro alpha 1(III) collagen chain mRNA in cultured hypertrophic scar fibroblasts. The levels of pro alpha 1(I) and alpha 2(VI) collagen chain mRNAs were essentially the same in fibroblasts cultured from hypertrophic scar and in fibroblasts cultured from normal skin. However, Northern blot analyses indicated that the ratio of 5.8 kb to 4.8 kb species of pro alpha 1(I) collagen mRNA was slightly reduced in fibroblasts originating from the hypertrophic scar compared to that in normal fibroblasts. When normal fibroblasts were incubated in conditioned medium from hypertrophic scar cultures, the expression of pro alpha 1(III) collagen chain mRNA decreased to a markedly lower level. Our studies suggest that collagen synthesis by fibroblasts in hypertrophic scars is stimulated by humoral factors which are active only in vivo. Furthermore, the results suggest that fibroblasts cultured from hypertrophic scar display a selective downregulation of different collagen genes and that this downregulation is exerted through an autocrine mechanism.
Collapse
Affiliation(s)
- L Q Zhang
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Davies GE, Howard CM, Farrer MJ, Coleman MM, Bennett LB, Cullen LM, Wyse RK, Burn J, Williamson R, Kessling AM. Genetic variation in the COL6A1 region is associated with congenital heart defects in trisomy 21 (Down's syndrome). Ann Hum Genet 1995; 59:253-69. [PMID: 7486833 DOI: 10.1111/j.1469-1809.1995.tb00746.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genetic variation in the COL6A1-COL6A2 gene cluster on chromosome 21 was studied in 113 controls and 58 European families (including control and family subgroups of British/Irish origin) having a child with trisomy 21. There were statistically significant differences among subgroups of trisomic children with and without congenital heart defects (CHD) in distributions of definitive, 3-RFLP haplotype classes received from their nondisjoining and disjoining parents. Haplotypes received by trisomic children with CHD from their disjoining parents were not a random sample of controls' haplotypes. Analysis of parental single-RFLP genotypes and linkage disequilibrium patterns confirmed this parent subgroup differed from a random sample of controls. There were no significant differences in parent subgroup genotype distribution at any of nine control loci distributed along chromosome 21q. This sample showed an association between genetic variation in the COL6A1 gene region and congenital heart defects in trisomy 21.
Collapse
Affiliation(s)
- G E Davies
- Department of Biochemistry and Molecular Genetics, St Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Spiro MJ, He Q, D'Autilia ML. Effect of high glucose on formation of extracellular matrix components by cultured rat heart endothelial cells. Diabetologia 1995; 38:430-6. [PMID: 7796983 DOI: 10.1007/bf00410280] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In an attempt to define the basis for the microvascular changes observed in diabetic myocardium, a study was undertaken on the effect of elevated glucose on the synthesis by rat heart endothelial cells of the extracellular matrix components, types VI, IV and I collagen, as well as fibronectin. Confluent cultures of these cells, isolated by fluorescence-activated cell sorting after treatment with rhodamine-labelled acetylated low density lipoprotein, showed a three to fivefold enhancement in the synthesis of type VI collagen after exposure for 48 h to high glucose (20 to 30 mmol/l), as determined by immunoblot analysis. Increased production of type IV collagen and fibronectin was also observed, but the change was smaller and no effect on type I collagen was found. Measurement of mRNA levels by hybridization with cDNA probes indicated that 48-h exposure to high glucose significantly increased the level of transcripts for type VI and IV collagens but not for type I collagen. While glucose consumption by endothelial cells in high glucose doubled in the initial 24-h period, utilization returned to normal by 48 h, concomitant with a reduction in GLUT1 transcript levels, suggesting that signals for stimulation of collagen synthesis must be active during the initial period of exposure to elevated glucose levels.
Collapse
Affiliation(s)
- M J Spiro
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
48
|
Mori Y, Hatamochi A, Takeda K, Ueki H. Effects of tretinoin tocoferil on gene expression of the extracellular matrix components in human dermal fibroblasts in vitro. J Dermatol Sci 1994; 8:233-8. [PMID: 7865483 DOI: 10.1016/0923-1811(94)90060-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, it has been reported that tretinoin tocoferil (TT), a synthesized ester-bond compound of all-trans-retinoic acid and alpha-tocopherol, accelerates the formation of granuloma and is effective in promoting experimental open skin wound healing. To investigate whether TT affects the gene expression of extracellular matrix components of human dermal fibroblasts, we measured the mRNA levels of various extracellular matrix components of fibroblasts incubated with TT using specific cDNA probes. The mRNA levels of elastin increased up to 30% of the controls and those of collagen III and VI up to 60%. The mRNA levels of collagen I and fibronectin remarkably increased up to 90% of the controls. These results suggest that the stimulatory effect of TT on the gene expression of many extracellular matrix components might be one of the mechanisms of its promotion of wound healing.
Collapse
Affiliation(s)
- Y Mori
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | |
Collapse
|
49
|
Bathon JM, Hwang JJ, Shin LH, Precht PA, Towns MC, Horton WE. Type VI collagen-specific messenger RNA is expressed constitutively by cultured human synovial fibroblasts and is suppressed by interleukin-1. ARTHRITIS AND RHEUMATISM 1994; 37:1350-6. [PMID: 7945500 DOI: 10.1002/art.1780370913] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Type VI collagen is a prominent constituent of the synovial extracellular matrix. The cellular source of this matrix protein and the identity of local factor sin synovium that may regulate its expression have not been delineated, however. We examined the capacity of human fibroblast-like synovial cells to synthesize type VI collagen as well as the effect of interleukin-1 (IL-1) on this expression. METHODS RNA was extracted from cultured human synovial cells derived from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Northern blots were analyzed using sequence-specific probes, and steady-state messenger RNA (mRNA) levels of the 3 alpha (VI) procollagen chains were measured. The effect of IL-1 treatment on these levels was determined. RESULTS Abundant expression of 3 characteristic mRNA transcripts, corresponding to the alpha 1 (4.2-kb), alpha 2 (3.5-kb), and alpha 3 (8.5-kb) chains of type VI procollagen, was observed in untreated cells derived from RA and OA patients. IL-1 treatment consistently suppressed steady-state mRNA levels for all 3 alpha (VI) procollagen chains in a time- and dose-dependent manner. Tumor necrosis factor alpha induced a response similar to that of IL-1, while IL-2 was ineffective in this regard. Indomethacin partially restored alpha (VI) mRNA expression in IL-1--treated cells. CONCLUSION These studies provide novel data demonstrating abundant steady-state levels of mRNA transcripts coding for all 3 type VI procollagen polypeptides in human synovial fibroblast-like cells, as well as coordinated down-regulation of these transcripts by IL-1. Local production of IL-1 may thus constitute an important means in vivo of regulating the production of type VI collagen.
Collapse
Affiliation(s)
- J M Bathon
- Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
50
|
Saitta B, Chu ML. Two promoters control the transcription of the human alpha 2(VI) collagen gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:675-82. [PMID: 8055937 DOI: 10.1111/j.1432-1033.1994.tb19040.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our previous studies have demonstrated that the human alpha 2(VI) collagen gene produces four mRNA species with different 5'-untranslated regions [Saitta, B., Timpl, R. & Chu, M.-L. (1992) J. Biol. Chem. 267, 6188-6196]. The major mRNA species initiates from exon 1, located at the most 5' end, whereas three minor mRNAs start from an alternative exon, 1A, located 657 bp downstream of exon 1. In this study, we have investigated whether or not these different mRNAs are transcribed from two separate promoters. DNA fragments preceding exons 1 and 1A were fused with a reporter gene for chloramphenicol acetyl transferase (CAT) and transfected into human dermal fibroblasts and fibrosarcoma HT1080 cells. Strong CAT activity in both cell types was observed using a construct containing DNA from nucleotide -502 to + 115 preceding exon 1. The CAT activity of a construct containing nucleotide +514 to +894 preceding exon 1A was almost as high as that of the former construct, indicating the presence of two promoters, P1 and P2, preceding exons 1 and 1A, respectively. Transient transfection assays also identified positive and negative regulatory regions for the P1 promoter, located from nucleotide -2152 to -1384 and from nucleotide -1383 to -503, respectively. A negative regulatory region located at nucleotide +116 to +513 was found for the P2 promoter. This region strongly inhibits the P2 promoter in dermal fibroblasts, and thus may be responsible for the low expression of the endogenous exon-1A-containing mRNAs in these cells. Footprinting analysis of the two promoters with purified Sp1 protein and AP2 protein extract showed several sites of DNA-protein interaction. The specificity of these sites was confirmed by competition experiments using consensus Sp1 and AP2 oligonucleotides. The results thus demonstrate that the human alpha 2(VI) collagen gene contains two promoters, which are regulated by positive and negative cis-acting DNA elements and trans-acting factors.
Collapse
Affiliation(s)
- B Saitta
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|