1
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
3
|
Larson EM, Babasyan S, Wagner B. IgE-Binding Monocytes Have an Enhanced Ability to Produce IL-8 (CXCL8) in Animals with Naturally Occurring Allergy. THE JOURNAL OF IMMUNOLOGY 2021; 206:2312-2321. [PMID: 33952617 DOI: 10.4049/jimmunol.2001354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
IL-8 is a potent chemokine that recruits neutrophils and basophils to promote inflammation in many species. IL-8 is produced by many cell types, including monocytes. In this study, we report a novel role for IgE-binding monocytes, a rare peripheral immune cell type, to promote allergic inflammation through IL-8 production in a horse model of natural IgE-mediated allergy. We developed a mAb with confirmed specificity for both recombinant and native equine IL-8 for flow cytometric analysis. Equine IL-8 was produced by CD14+/MHC class II+/CD16- monocytes, including a subpopulation of IgE-binding monocytes, following stimulation with LPS. In addition, IgE cross-linking induced IL-8 production by both peripheral blood basophils and IgE-binding monocytes. IL-8 production was compared between healthy horses and those with a naturally occurring IgE-mediated skin allergy, Culicoides hypersensitivity. Allergic horses had significantly higher percentages of IL-8+ IgE-binding monocytes after IgE cross-linking. In contrast, frequencies of IL-8+ basophils after IgE cross-linking were similar in all horses, regardless of allergic disease, highlighting IgE-binding monocytes as a novel source of IL-8 during allergy. We concluded that IgE-binding monocytes from allergic individuals have an increased capacity for IL-8 production and likely contribute to the recruitment of innate immune cells during IgE-mediated allergy and promotion of inflammation during repeated allergen contact.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Shi F, Li Q, Liu S, Liu F, Wang J, Cui D, Hou X, Zhou S, Zhang Y, Li H. Porcine circovirus type 2 upregulates endothelial-derived IL-8 production in porcine iliac artery endothelial cells via the RIG-I/MDA-5/MAVS/JNK signaling pathway. BMC Vet Res 2020; 16:265. [PMID: 32727484 PMCID: PMC7392700 DOI: 10.1186/s12917-020-02486-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Dysfunction of endothelial cells and vascular system is one of the most important pathological changes of porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2). PCV2-infected endothelial cells can upregulate the production of endothelial-derived IL-8, which can inhibit the maturation of dendritic cells. Endothelial-derived IL-8 has different structural and biological characteristics compared with monocyte-derived IL-8. However, the mechanism of endothelial-derived IL-8 production is still unclear. Results Key molecules of RIG-I-like signaling pathway RIG-I, MDA-5, MAVS and a key molecule of JNK signaling pathway c-Jun in PCV2-infected porcine iliac artery endothelial cells (PIECs) were upregulated significantly detected with quantitative PCR, Western blot and fluorescence confocal microscopy, while no significant changes were found in NF-κB signaling pathway. Meanwhile, the expression of endothelial-derived IL-8 was downregulated after RIG-I, MDA-5, or MAVS genes in PIECs were knocked down and PIECs were treated by JNK inhibitor. Conclusions PCV2 can activate RIG-I/MDA-5/MAVS/JNK signaling pathway to induce the production of endothelial-derived IL-8 in PIECs, which provides an insight into the further study of endothelial dysfunction and vascular system disorder caused by PCV2.
Collapse
Affiliation(s)
- Fengyang Shi
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Qiuming Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Shiyu Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Fengying Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Jianfang Wang
- Beijing Key Laboratory of TCVM, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Defeng Cui
- Beijing Key Laboratory of TCVM, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Yonghong Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China.
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China.
| |
Collapse
|
5
|
Metzemaekers M, Vandendriessche S, Berghmans N, Gouwy M, Proost P. Truncation of CXCL8 to CXCL8(9-77) enhances actin polymerization and in vivo migration of neutrophils. J Leukoc Biol 2020; 107:1167-1173. [PMID: 32272490 DOI: 10.1002/jlb.3ab0220-470r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
CXCL8 is the principal human neutrophil-attracting chemokine and a major mediator of inflammation. The chemokine exerts its neutrophil-chemotactic and neutrophil-activating activities via interaction with glycosaminoglycans (GAGs) and activation of the G protein-coupled receptors (GPCRs) CXCR1 and CXCR2. Natural CXCL8 displays an exceptional degree of amino (NH2 )-terminal heterogeneity. Most CXCL8 forms result from proteolytic processing of authentic CXCL8(1-77). Here, we compared the potencies to activate and recruit neutrophils of the 3 most abundant natural CXCL8 forms: full-length 77 amino acid CXCL8 and the 2 major natural truncated forms lacking 5 or 8 NH2 -terminal amino acids. NH2 -terminal truncation hardly affected the capacity of CXCL8 to induce shedding of CD62L or to up-regulate the expression of the adhesion molecules CD11a, CD11b, or CD15 on human neutrophils. In addition, the potency of CXCL8 to induce neutrophil degranulation and its effect on phagocytosis remained unaltered upon removal of 5 or 8 NH2 -terminal residues. However, NH2 -terminal truncation strongly potentiated CXCL8-induced actin polymerization. CXCL8(6-77) and CXCL8(9-77) showed a comparable capacity to induce Ca2+ signaling in human neutrophils and to direct in vitro neutrophil migration. Strikingly, the ability of CXCL8(9-77) to recruit neutrophils into the peritoneal cavity of mice was significantly enhanced compared to CXCL8(6-77). These results suggest that NH2 -terminal truncation influences specific biological activities of CXCL8 and indicate that CXCL8(9-77) may be the most potent neutrophil-attracting CXCL8 form in vivo.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Doubleday PF, Fornelli L, Kelleher NL. Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. J Proteome Res 2020; 19:938-948. [PMID: 31940439 DOI: 10.1021/acs.jproteome.9b00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary diploid cells exit the cell cycle in response to exogenous stress or oncogene activation through a process known as cellular senescence. This cell-autonomous tumor-suppressive mechanism is also a major mechanism operative in organismal aging. To date, temporal aspects of senescence remain understudied. Therefore, we use quantitative proteomics to investigate changes following forced HRASG12V expression and induction of senescence across 1 week in normal diploid fibroblasts. We demonstrate that global intracellular proteomic changes correlate with the emergence of the senescence-associated secretory phenotype and the switch to robust cell cycle exit. The senescence secretome reinforces cell cycle exit, yet is largely detrimental to tissue homeostasis. Previous studies of secretomes rely on ELISA, bottom-up proteomics or RNA-seq. To date, no study to date has examined the proteoform complexity of secretomes to elucidate isoform-specific, post-translational modifications or regulated cleavage of signal peptides. Therefore, we use a quantitative top-down proteomics approach to define the molecular complexity of secreted proteins <30 kDa. We identify multiple forms of immune regulators with known activities and affinities such as distinct forms of interleukin-8, as well as GROα and HMGA1, and temporally resolve secreted proteoform dynamics. Together, our work demonstrates the complexity of the secretome past individual protein accessions and provides motivation for further proteoform-resolved measurements of the secretome.
Collapse
Affiliation(s)
- Peter F Doubleday
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Department of Biology , University of Oklahoma , 730 Van Vleet Oval , Norman , Oklahoma 73019 , United States
| | - Neil L Kelleher
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
7
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
8
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
9
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
10
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
11
|
Interleukin-8 enhances the effect of colchicine on cell death. Biochem Biophys Res Commun 2017; 485:89-94. [PMID: 28189686 DOI: 10.1016/j.bbrc.2017.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/11/2022]
Abstract
Pro-inflammatory cytokines are known to be generated in tumors and play important roles in angiogenesis, mitosis, and tumor progression. However, few studies have investigated the synergistic effects of pro-inflammatory cytokines and anticancer drugs on cell death. In the present study, we examined the combined effects of pro-inflammatory cytokines and colchicine on cell death of cancer cells. Colchicine induces G2/M arrest in the cell cycle by binding to tubulin, one of the main constituents of microtubules. SUIT-2 human pancreatic cancer cell line cells overexpressing pro-inflammatory cytokines, including interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α, were treated with colchicine. The effect of colchicine on cell death was enhanced in cells overexpressing IL-8. Moreover, the effect of colchicine on cell death was enhanced in cells overexpressing two IL-8 up-regulators, NF-κB and IL-6, but not in cells overexpressing an IL-8 down-regulator, splicing factor proline/glutamine-rich (SFPQ). Synergistic effects of IL-8 and colchicine were also observed in cells overexpressing IL-8 isoforms lacking the signal peptide. Therefore, IL-8 appeared to function as an enhancer of cell death in cancer cells treated with colchicine. The present results suggest a new role for IL-8 related to cell death of cancer cells.
Collapse
|
12
|
Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus Res 2016; 228:124-133. [PMID: 27923601 DOI: 10.1016/j.virusres.2016.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant cells in the context of innate immunity; they are one of the first cells to arrive at the site of viral infection constituting the first line of defense in response to invading pathogens. Indeed, neutrophils are provided with several defense mechanisms including release of cytokines, cytotoxic granules and the last recently described neutrophil extracellular traps (NETs). The main components of NETs are DNA, granular antimicrobial peptides, and nuclear and cytoplasmic proteins, that together play an important role in the innate immune response. While NETs were first described as a mechanism against bacteria and fungi, recently, several studies are beginning to elucidate how NETs are involved in the host antiviral response and the prominent characteristics of this new mechanism are discussed in the present review.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Fafutis-Morris Mary
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
13
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
14
|
Chakraborty M, McGreal EP, Williams A, Davies PL, Powell W, Abdulla S, Voitenok NN, Hogwood J, Gray E, Spiller B, Chambers RC, Kotecha S. Role of serine proteases in the regulation of interleukin-877 during the development of bronchopulmonary dysplasia in preterm ventilated infants. PLoS One 2014; 9:e114524. [PMID: 25474412 PMCID: PMC4256433 DOI: 10.1371/journal.pone.0114524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
RATIONALE The chemokine interleukin-8 is implicated in the development of bronchopulmonary dysplasia in preterm infants. The 77-amino acid isoform of interleukin-8 (interleukin-877) is a less potent chemoattractant than other shorter isoforms. Although interleukin-877 is abundant in the preterm circulation, its regulation in the preterm lung is unknown. OBJECTIVES To study expression and processing of pulmonary interleukin-877 in preterm infants who did and did not develop bronchopulmonary dysplasia. METHODS Total interleukin-8 and interleukin-877 were measured in bronchoalveolar lavage fluid from preterm infants by immunoassay. Neutrophil serine proteases were used to assess processing. Neutrophil chemotaxis assays and degranulation of neutrophil matrix metalloproteinase-9 were used to assess interleukin-8 function. MAIN RESULTS Peak total interleukin-8 and interleukin-877 concentrations were increased in infants who developed bronchopulmonary dysplasia compared to those who did not. Shorter forms of interleukin-8 predominated in the preterm lung (96.3% No-bronchopulmonary dysplasia vs 97.1% bronchopulmonary dysplasia, p>0.05). Preterm bronchoalveolar lavage fluid significantly converted exogenously added interleukin-877 to shorter isoforms (p<0.001). Conversion was greater in bronchopulmonary dysplasia infants (p<0.05). This conversion was inhibited by α-1 antitrypsin and antithrombin III (p<0.01). Purified neutrophil serine proteases efficiently converted interleukin-877 to shorter isoforms in a time- and dose-dependent fashion; shorter interleukin-8 isoforms were primarily responsible for neutrophil chemotaxis (p<0.001). Conversion by proteinase-3 resulted in significantly increased interleukin-8 activity in vitro (p<0.01). CONCLUSIONS Shorter, potent, isoforms interleukin-8 predominate in the preterm lung, and are increased in infants developing bronchopulmonary dysplasia, due to conversion of interleukin-877 by neutrophil serine proteases and thrombin. Processing of interleukin-8 provides an attractive therapeutic target to prevent development of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Mallinath Chakraborty
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eamon P. McGreal
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew Williams
- Centre for Inflammation and Tissue Repair, Rayne Institute, University College London, London, United Kingdom
| | - Philip L. Davies
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wendy Powell
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Salima Abdulla
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - John Hogwood
- Division of Haematology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Elaine Gray
- Division of Haematology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Brad Spiller
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rachel C. Chambers
- Centre for Inflammation and Tissue Repair, Rayne Institute, University College London, London, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Abstract
Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.
Collapse
|
16
|
Biological activity of CXCL8 forms generated by alternative cleavage of the signal peptide or by aminopeptidase-mediated truncation. PLoS One 2011; 6:e23913. [PMID: 21904597 PMCID: PMC3164136 DOI: 10.1371/journal.pone.0023913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Posttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH2-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others. Methodology/Principal Findings Aminopeptidase-cleaved CXCL8(2-77) and CXCL8(3-77), the product of alternative cleavage of the signal peptide CXCL8(-2-77) and the previously studied forms containing 77 and 72 amino acids, CXCL8(1-77) and CXCL8(6-77), were prepared by solid-phase peptide synthesis, purified and folded into active proteins. No differences in binding and calcium signaling potency were detected between CXCL8(1-77), CXCL8(-2-77), CXCL8(2-77) and CXCL8(3-77) on cells transfected with one of the human CXCL8 receptors, i.e. CXCR1 and CXCR2. However, CXCL8(-2-77) was more potent compared to CXCL8(1-77), CXCL8(2-77) and CXCL8(3-77) in signaling and in vitro chemotaxis of peripheral blood-derived human neutrophils. Moreover, CXCL8(-2-77) was less efficiently processed by plasmin into the more potent CXCL8(6-77). The truncated forms CXCL8(2-77) and CXCL8(3-77) had higher affinity for heparin than CXCL8(1-77), a property important for the presentation of CXCL8 on endothelial layers. Upon intraperitoneal injection in mice, elongated, truncated and intact CXCL8 were equally potent to recruit neutrophils to the peritoneal cavity. Conclusions In terms of their ability to induce neutrophil recruitment in vivo, the multiple CXCL8 forms may be divided in three groups. The first group includes CXCL8 proteins consisting of 75 to 79 amino acids, cleaved by aminopeptidases, with intermediate activity on neutrophils. The second group, generated through proteolytic cleavage (e.g. by Ser proteases), contains 69 to 72 amino acid forms which are highly potent neutrophil attractants in vivo. A third category is generated through the modification of the arginine in the NH2-terminal region into citrulline by peptidylarginine deiminases and has weak potency to induce neutrophil extravasation.
Collapse
|
17
|
Mortier A, Gouwy M, Van Damme J, Proost P. Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 2010; 317:642-54. [PMID: 21146523 DOI: 10.1016/j.yexcr.2010.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The CXC and CC chemokine gene clusters provide an abundant number of chemotactic factors selectively binding to shared G protein-coupled receptors (GPCR). Hence, chemokines function in a complex network to mediate migration of the various leukocyte subsets, expressing specific GPCRs during the immune response. Further fine-tuning of the chemokine system is reached through specific posttranslational modifications of the mature proteins. Indeed, enzymatic processing of chemokines during an early phase of inflammation leads to activation of precursor molecules or cleavage into even more active or receptor specific chemokine isoforms. At a further stage, proteolytic processing leads to loss of GPCR signaling, thereby providing natural chemokine receptor antagonists. Finally, further NH(2)-terminal cleavage results in complete inactivation to dampen the inflammatory response. During inflammatory responses, the two chemokines which exist in a membrane-bound form may be released by proteases from the cellular surface. In addition to proteolytic processing, citrullination and glycosylation of chemokines is also important for their biological activity. In particular, citrullination of arginine residues seems to reduce the inflammatory activity of chemokines in vivo. This goes along with other positive and negative regulatory mechanisms for leukocyte migration, such as chemokine synergy and scavenging by decoy receptors.
Collapse
Affiliation(s)
- Anneleen Mortier
- Laboratory of Molecular Immunology, Rega Institute, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
18
|
The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 2010; 22:1-18. [PMID: 21111666 DOI: 10.1016/j.cytogfr.2010.10.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 10/28/2010] [Indexed: 02/07/2023]
Abstract
Chemokines are chemotactic cytokines which recruit leukocytes to inflammatory sites. They also affect tumor development and metastasis by acting as growth factor, by attracting pro- or anti-tumoral leukocytes or by influencing angiogenesis. Platelet factor-4 (CXCL4/PF-4) was the first chemokine shown to inhibit angiogenesis. CXCL4L1/PF-4var, recently isolated from thrombin-stimulated platelets, differing from authentic CXCL4/PF-4 in three carboxy-terminally located amino acids, was found to be more potent than CXCL4/PF-4 in inhibiting angiogenesis and tumor growth. Both glycosaminoglycans (GAG) and CXCR3 are implicated in the activities of the PF-4 variants. This report reviews the current knowledge on the role of CXCL4/PF-4 and CXCL4L1/PF-4var in physiological and pathological processes. In particular, the role of CXCL4/PF-4 in cancer, heparin-induced thrombocytopenia and atherosclerosis is described.
Collapse
|
19
|
Michiels K, Schutyser E, Conings R, Lenaerts JP, Put W, Nuyts S, Delaere P, Jacobs R, Struyf S, Proost P, Van Damme J. Carcinoma cell-derived chemokines and their presence in oral fluid. Eur J Oral Sci 2009; 117:362-8. [DOI: 10.1111/j.1600-0722.2009.00644.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Gouwy M, Struyf S, Verbeke H, Put W, Proost P, Opdenakker G, Van Damme J. CC chemokine ligand-2 synergizes with the nonchemokine G protein-coupled receptor ligand fMLP in monocyte chemotaxis, and it cooperates with the TLR ligand LPS via induction of CXCL8. J Leukoc Biol 2009; 86:671-80. [PMID: 19451399 DOI: 10.1189/jlb.1008638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During inflammatory reactions, endogenously produced cytokines and chemokines act in a network and interact with hormones and neurotransmitters to regulate host immune responses. These signaling circuitries are even more interfaced during infections, when microbial agonists activate TLR, RLR, and NLR receptors. On the basis of the discovery of synergy between chemokines for neutrophil attraction, we extend here this phenomenon between the chemokine MCP-1/CCL2 and the GPCR ligand fMLP or the TLR4 agonist LPS on monocytes. In fact, the bacterial tripeptide fMLP, but not the cytokines IL-1beta or IFN-gamma, significantly and dose-dependently synergized with CCL2 in monocyte chemotaxis. Furthermore, LPS rapidly induced the expression of IL-8/CXCL8 but not of the CCL2 receptor CCR2 in monocytic cells. In turn, the induced CXCL8 synergized with CCL2 for mononuclear cell chemotaxis, and the chemotactic effect was mediated by CXCR1/CXCR2, because CXCL8 receptor antagonists or antibodies were capable of blocking the synergy, while keeping the responsiveness to CCL2 intact. These data recapitulate in vitro the complexity of innate immune regulation, provide a novel mechanism of enhancing monocyte chemotaxis during bacterial infections with gram-negative bacteria and demonstrate the importance of local contexts in inflammatory and infectious insults.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Chapter 1. Isolation, identification, and production of posttranslationally modified chemokines. Methods Enzymol 2009; 461:3-29. [PMID: 19480912 DOI: 10.1016/s0076-6879(09)05401-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemokines attract cells during the development of lymphoid tissues, leukocyte homing, and pathologic processes such as cancer and inflammation. Limited posttranslational modification of chemokines may significantly alter the glycosaminoglycan and/or receptor binding properties and signaling potency of these chemotactic proteins. To compare the in vitro and in vivo biologic activities of posttranslationally modified chemokine isoforms, considerable amounts of pure chemokine isoforms are required. This chapter describes a number of chromatographic techniques that are useful for the isolation of natural, posttranslationally modified chemokines from primary human cell cultures. In addition, combination of immunologic assays and biochemical techniques such as automated Edman degradation and mass spectrometry are used for the identification of modifications. Alternate methods for the generation of specific chemokine isoforms are discussed such as modification of chemokines by specific enzymes and total chemical syntheses and folding of chemokine isoforms. In particular, in vitro processing of chemokines by the protease aminopeptidase N/CD13 and citrullination or deamination of chemokines by peptidyl arginine deiminases (PAD) are described as methods for the confirmation or generation of posttranslationally modified chemokine isoforms.
Collapse
|
22
|
Abstract
We found exaggerated chemotaxis in plasma treated with EDTA and thought that the EDTA might itself be inhibiting a tonic inhibitor(s) of chemotaxis. Our plasma fractionations suggested that evidence should be sought for a lipid moiety carrying this activity, and on spectrometry (LC-MS-MS together with GC-MS analyses), the biologically active but not the inactive fraction contained oleic and arachidonic acids. Because fatty acids are largely protein bound, we flooded plasma preparations with delipidated albumin, reasoning that it would bind enough fatty acids, including inhibitory ones, to counter their tonic inhibition. Indeed, we observed dramatic increases in chemotaxis. Hence, adding delipidated albumin to plasma has a similar effect to that of adding EDTA--amplification of the chemotactic response. Oleic acid in physiologic concentrations diminishes the magnifying effects of both EDTA and of delipidated albumin, and in fact diminishes the chemotactic response even without the presence of the amplifiers of chemotaxis. In contrast, arachidonic acid amplifies further the effect of EDTA but not of delipidated albumin, and this augmentation appears to be caused by an EDTA-dependent enrichment of the chemotactic gradient with leukotriene B4 (LTB4). We conclude that oleic acid, the blood levels of which vary among individuals, is at least one tonic inhibitor of chemotaxis in plasma.
Collapse
|
23
|
Gouwy M, Struyf S, Noppen S, Schutyser E, Springael JY, Parmentier M, Proost P, Van Damme J. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol 2008; 74:485-95. [PMID: 18469140 DOI: 10.1124/mol.108.045146] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CC and CXC chemokines coinduced in fibroblasts and leukocytes by cytokines and microbial agents determine the number of phagocytes infiltrating into inflamed tissues. Interleukin-8/CXCL8 and stromal cell-derived factor-1/CXCL12 significantly and dose-dependently increased the migration of monocytes, expressing the corresponding CXC chemokine receptors CXCR2 and CXCR4, toward suboptimal concentrations of the monocyte chemotactic proteins CCL2 or CCL7. These findings were confirmed using different chemotaxis assays and monocytic THP-1 cells. In contrast, the combination of two CC chemokines (CCL2 plus CCL7) or two CXC chemokines (CXCL8 plus CXCL12) did not provide synergy in monocyte chemotaxis. These data show that chemokines competing for related receptors and using similar signaling pathways do not synergize. Receptor heterodimerization is probably not essential for chemokine synergy as shown in CXCR4/CCR2 cotransfectants. It is noteworthy that CCL2 mediated extracellular signal-regulated kinase 1/2 phosphorylation and calcium mobilization was significantly enhanced by CXCL8 in monocytes, indicating cooperative downstream signaling pathways during enhanced chemotaxis. Moreover, in contrast to intact CXCL12, truncated CXCL12(3-68), which has impaired receptor signaling capacity but can still desensitize CXCR4, was unable to synergize with CCL2 in monocytic cell migration. Furthermore, AMD3100 and RS102895, specific CXCR4 and CCR2 inhibitors, respectively, reduced the synergistic effect between CCL2 and CXCL12 significantly. These data indicate that for synergistic interaction between chemokines binding and signaling of the two chemokines via their proper receptors is necessary.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Proost P, Struyf S, Van Damme J. Natural post-translational modifications of chemokines. Biochem Soc Trans 2007; 34:997-1001. [PMID: 17073736 DOI: 10.1042/bst0340997] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemokines, adhesion molecules, cytokines and proteases regulate the extravasation of leucocytes during acute and chronic inflammation and leucocyte homing. Chemokines are produced after transcriptional activation by inflammatory mediators such as cytokines or microbial Toll-like receptor ligands and their effect depends on the expression of chemokine receptors on specific cell types. More and more evidence points towards a role for post-translational modifications in the fine-tuning of chemokine activity. Although both glycosylation and proteolytic processing of the C- and/or N-terminus of chemokines has been reported, mainly proteolytic processing of the N-terminus appears to affect the receptor specificity, chemotactic property and signalling potency of these low-molecular-mass proteins. N-terminal processing of chemokines by aminopeptidases or endoproteases may alter the receptor specificity and may result in up- or down-regulation of their chemotactic, antiviral or angiogenic activity.
Collapse
Affiliation(s)
- P Proost
- Laboratory of Molecular Immunology, Rega Institute, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
25
|
Moscova M, Marsh DJ, Baxter RC. Protein chip discovery of secreted proteins regulated by the phosphatidylinositol 3-kinase pathway in ovarian cancer cell lines. Cancer Res 2006; 66:1376-83. [PMID: 16452192 DOI: 10.1158/0008-5472.can-05-2666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ovarian cancer has the highest mortality among the gynecologic malignancies. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated, leading to increased cell survival. This study aimed to identify secreted proteins regulated by the PI3K pathway in ovarian cancer cell lines. Surface-enhanced laser desorption-ionization time-of-flight mass spectrometry with cation-exchange protein-chips was used to analyze secreted proteins from five ovarian cancer cell lines (SKOV-3, PE01, OVCAR-3, OV167, and OV207). To activate the PI3K pathway, cells were treated with 50 ng/mL epidermal growth factor (EGF) with or without 10 micromol/L LY294002, a PI3K inhibitor. Proteins induced by EGF and inhibited by LY294002, in the m/z range 7,500 to 9,500, were purified chromatographically, identified by peptide mass fingerprinting and NH(2)-terminal sequencing, and confirmed by immunodepletion. Two immunologically related proteins, m/z approximately 8,385 and 8,922, were identified as truncated and intact forms, respectively, of interleukin 8, a chemokine previously shown to be elevated in serum of ovarian cancer patients. Another protein, m/z 7,866, was identified as CXC chemokine ligand 1 (CXCL1) or GRO-alpha, a chemokine associated with melanoma formation and some epithelial cancers. EGF-stimulated CXCL1 levels were variably decreased by mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase and p38 MAPK inhibition in the five cell lines, but only LY294002 fully reversed the EGF effect in all cell lines. Immunoreactive CXCL1 levels in 160 conditioned media were highly correlated with corresponding peak intensities at m/z 7,866 by mass spectrometry, indicating the quantitative nature of these analyses. We conclude that proteomic analysis of cell models of human disease may facilitate the discovery of pathway-dependent proteins.
Collapse
Affiliation(s)
- Michelle Moscova
- Laboratory of Cellular and Diagnostic Proteomics, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | |
Collapse
|
26
|
Yount NY, Gank KD, Xiong YQ, Bayer AS, Pender T, Welch WH, Yeaman MR. Platelet microbicidal protein 1: structural themes of a multifunctional antimicrobial peptide. Antimicrob Agents Chemother 2004; 48:4395-404. [PMID: 15504869 PMCID: PMC525416 DOI: 10.1128/aac.48.11.4395-4404.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/01/2004] [Accepted: 06/14/2004] [Indexed: 11/20/2022] Open
Abstract
Mammalian platelets release platelet microbicidal proteins (PMPs) as components of their antimicrobial armamentarium. The present studies defined the structure of PMP-1 and examined its structure-activity relationships. Amino acid sequencing and mass spectroscopy demonstrated that distinct N-terminal polymorphism variants of PMP-1 isolated from nonstimulated or thrombin-stimulated platelets arise from a single PMP-1 propeptide. Sequence data (NH(2)-[S]D(1)DPKE(5)SEGDL(10)HCVCV(15)KTTSL(20) . . .) enabled cloning of PMP-1 from bone marrow and characterization of its full-length cDNA. PMP-1 is translated as a 106-amino-acid precursor and is processed to yield 73-residue (8,053 Da) and 72-residue (7,951-Da) variants. Searches with the BLAST program and sequence alignments demonstrated the homology of PMP-1 to members of the mammalian platelet factor 4 (PF-4) family of proteins. On the basis of phylogenetic relatedness, congruent sequence motifs, and predicted three-dimensional structures, PMP-1 shares the greatest homology with human PF-4 (hPF-4). By integration of its structural and antimicrobial properties, these results establish the identity of PMP-1 as a novel rabbit analogue of the microbicidal chemokine (kinocidin) hPF-4. These findings advance the hypothesis that stimuli in the setting of infection prompt platelets to release PF-4-class or related kinocidins, which have structures consistent with their likely multiple roles that bridge molecular and cellular mechanisms of antimicrobial host defense.
Collapse
Affiliation(s)
- Nannette Y Yount
- David Geffen School of Medicine at UCLA, Division of Infectious Diseases, St. John's Cardiovascular Research Center, Research & Education Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chu SC, Yang SF, Lue KH, Hsieh YS, Lin ZI, Lu KH. Clinical significance of gelatinases in septic arthritis of native and replaced knees. Clin Orthop Relat Res 2004:179-83. [PMID: 15552155 DOI: 10.1097/01.blo.0000136832.94824.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We hypothesized that more gelatinases appear in effusions of septic arthritis than aseptic arthritis. This study examined the laboratory variables of inflammation and the levels of gelatinase A and B (matrix metalloproteinases-2 and -9) in 75 effusions from the knees of 37 patients with inflammatory arthritis and compared them with effusions of septic and aseptic arthritis. Gelatin zymography revealed that the levels of the latent matrix metalloproteinase-9 were higher in 24 effusions of septic arthritis than in 51 effusions of aseptic arthritis. The latent matrix metalloproteinase-9 levels of septic arthritis also correlated with the neutrophil counts in effusions. Significantly more activated matrix metalloproteinases-2 and -9 appeared in effusions of septic arthritis in native and replaced knees than in effusions of aseptic arthritis. A high matrix metalloproteinase-9 level and the appearance of activated matrix metalloproteinases-2 and -9 may distinguish septic from aseptic arthritis, even in cases with a low neutrophil count in the replaced knee. Joint aspiration may not only reduce the bacteria counts, endotoxins, and proinflammatory cytokines, but also decrease the amount of matrix metalloproteinases in effusions that attack the extracellular matrix of native and artificial joints.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Chungtai Institute of Health Sciences and Technology, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol 2004; 76:185-94. [PMID: 15075362 DOI: 10.1189/jlb.1003479] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine dose and the time period during which the chemotactic gradient is established determine the number of leukocytes that infiltrate inflamed tissues. At suboptimal chemokine concentrations, neutrophils may require a priming agent or a second stimulus for full activation. An interesting mode of cooperative action to reach maximal migration is synergy between chemokines. This was first observed between the plasma CC chemokine regakine-1 and the tissue CXC chemokine ligand interleukin-8 (IL-8/CXCL8) in neutrophil chemotaxis. Addition of antibodies against IL-8 or regakine-1 in the Boyden microchamber assay abrogated this synergy. Other CC chemokines, such as CC chemokine ligand-2 monocyte chemotactic protein-1 (MCP-1/CCL2), MCP-2 (CCL8), and MCP-3 (CCL7) as well as the CXC chemokine receptor-4 (CXCR4) agonist stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), also dose-dependently enhanced neutrophil chemotaxis toward a suboptimal concentration of IL-8. These chemokines synergized equally well with the anaphylatoxin C5a in neutrophil chemotaxis. Alternatively, IL-8 and C5a did not synergize with an inactive precursor form of CXCL7, connective tissue-activating peptide-III/CXCL7, or the chemoattractant neutrophil-activating peptide-2/CXCL7. In the chemotaxis assay under agarose, MCP-3 dose-dependently increased the migration distance of neutrophils toward IL-8. In addition, the combination of IL-8 and MCP-3 resulted in enhanced neutrophil shape change. AMD3100, a specific CXCR4 inhibitor, reduced the synergistic effect between SDF-1alpha and IL-8 significantly. SDF-1alpha, but not MCP-1, synergized with IL-8 in chemotaxis with CXCR1-transfected, CXCR4-positive Jurkat cells. Thus, proinflammatory chemokines (IL-8, MCP-1), coinduced during infection in the tissue, synergize with each other or with constitutive chemokines (regakine-1, SDF-1alpha) to enhance the inflammatory response.
Collapse
Affiliation(s)
- Mieke Gouwy
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
29
|
Ohashi K, Naruto M, Nakaki T, Sano E. Identification of interleukin-8 converting enzyme as cathepsin L. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:30-9. [PMID: 12818188 DOI: 10.1016/s1570-9639(03)00152-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.
Collapse
Affiliation(s)
- Kensaku Ohashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 1111 Tebiro, Kanagawa Kamakura 248-8555, Japan.
| | | | | | | |
Collapse
|
30
|
Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2003; 284:L566-77. [PMID: 12618418 DOI: 10.1152/ajplung.00233.2002] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fifteen years have passed since the first description of interleukin (IL)-8/CXCL8 as a potent neutrophil chemotactic factor. Accumulating evidence has demonstrated that various types of cells can produce a large amount of IL-8/CXCL8 in response to a wide variety of stimuli, including proinflammatory cytokines, microbes and their products, and environmental changes such as hypoxia, reperfusion, and hyperoxia. Numerous observations have established IL-8/CXCL8 as a key mediator in neutrophil-mediated acute inflammation due to its potent actions on neutrophils. However, several lines of evidence indicate that IL-8/CXCL8 has a wide range of actions on various types of cells, including lymphocytes, monocytes, endothelial cells, and fibroblasts, besides neutrophils. The discovery of these biological functions suggests that IL-8/CXCL8 has crucial roles in various pathological conditions such as chronic inflammation and cancer. Here, an overview of its protein structure, mechanisms of production, and receptor system will be discussed as well as the pathophysiological roles of IL-8/CXCL8 in various types of lung pathologies.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Japan.
| |
Collapse
|
31
|
Struyf S, Proost P, Van Damme J. Regulation of the Immune Response by the Interaction of Chemokines and Proteases. Adv Immunol 2003; 81:1-44. [PMID: 14711052 DOI: 10.1016/s0065-2776(03)81001-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, University of Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
32
|
Schutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, Verhasselt B, Peperstraete L, Van de Putte I, Saccani A, Allavena P, Mantovani A, Van Damme J. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem 2002; 277:24584-93. [PMID: 11978786 DOI: 10.1074/jbc.m112275200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokines are important in leukocyte homeostasis, inflammation, angiogenesis, and metastasis. Here, the molecular diversity of chemokines present in ovarian carcinoma was studied by purifying the proteins to homogeneity from ascitic fluid. Biologically active intact CCL2 and processed CXCL8, CCL3, and CCL18 isoforms were recovered. CCL7 and CCL20 were also purified, but their levels were 10-fold lower compared with CXCL8, CCL2, and CCL3 and even 100-fold lower than the amounts of CCL18 isolated. In ascitic fluids from patients with ovarian carcinoma (n = 12), significantly higher levels of CXCL8 and CCL18 (2.0 versus 0.7 ng/ml (p = 0.01) and 120 versus 44 ng/ml (p = 0.0002), respectively) were detected compared with those in nonovarian carcinoma patients (n = 12). In contrast to CXCL8, CCL18 was not inducible in carcinoma cell lines. Immunostaining showed CCL18 expression in tumor-infiltrating cells with monocyte/macrophage morphology but not in the ovarian carcinoma cells. Our data demonstrate that biochemically heterogenous but biologically active forms of several chemokines are present at different concentrations in ovarian carcinoma ascitic fluid. This points to a delicate balance of chemokines in epithelial ovarian cancer and to a potentially major role for CXCL8 and CCL18 in this tumor.
Collapse
Affiliation(s)
- Evemie Schutyser
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Malawista SE, Van Damme J, Smallwood JI, de Boisfleury Chevance A. Chemotactic activity of human blood leukocytes in plasma treated with EDTA: chemoattraction of neutrophils about monocytes is mediated by the generation of NAP‐2. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.1.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Stephen E. Malawista
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jo Van Damme
- Rega Institute for Medical Research, University of Leuven, Belgium; and
| | - Joan I. Smallwood
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anne de Boisfleury Chevance
- Centre d’Ecologie Cellulaire, Institut National de la Santé et de la Recherche Médicale, Hôpital de la Salpétrière, Paris, France
| |
Collapse
|
34
|
Gouwy M, Struyf S, Mahieu F, Put W, Proost P, Van Damme J. The unique property of the CC chemokine regakine-1 to synergize with other plasma-derived inflammatory mediators in neutrophil chemotaxis does not reside in its NH2-terminal structure. Mol Pharmacol 2002; 62:173-80. [PMID: 12065768 DOI: 10.1124/mol.62.1.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recently discovered CC chemokine, regakine-1, is constitutively present in bovine serum and synergizes with the CXC chemokine interleukin-8 (IL-8) to chemoattract neutrophils. Here we show that regakine-1 cooperates with the CXC chemokine receptor 2 ligand neutrophil activating protein-2 (NAP-2) and the anaphylatoxin C5a, two other mediators of inflammation present in the circulation. Neutrophil chemotaxis was 3-fold enhanced when regakine-1 (100 ng/ml) and C5a (30 ng/ml) were combined at concentrations present in bovine or human plasma, respectively. This synergy was also observed when neutrophils were preincubated with regakine-1. Plasma chemokines such as NAP-2, beta-thromboglobulin, and hemofiltrate CC-chemokine-1 did not affect C5a chemotactic activity. The capability of regakine-1 to synergize with C5a, NAP-2, or N-formyl-methionyl-leucyl-phenylalanine (fMLP) was not observed for monocyte chemotactic protein-3 (MCP-3), another CC chemokine that weakly chemoattracts neutrophils. Regakine-1 also failed to cooperate with MCP-3 and macrophage inflammatory protein-1alpha in neutrophil chemotaxis. The receptor of regakine-1 is not known yet. Competition with labeled fMLP or C5a for binding to neutrophils or receptor transfected cell lines demonstrated that regakine-1 did not alter receptor recognition. The protein kinase inhibitors 2'-amino-3'-methoxyflavone (PD98059), wortmannin and staurosporin had no effect on the synergy between C5a and regakine-1. Although NH2-terminal truncation affects the chemotactic potency of most chemokines, it did not affect the synergistic capacity of regakine-1 with C5a on neutrophils. These findings indicate that the constitutive plasma chemokine regakine-1 is a stable enhancer of the inflammatory response and that its blockade might be beneficial in acute and systemic inflammatory disorders.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M, Pidard D, Arenzana-Seisdedos F. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277:15677-89. [PMID: 11867624 DOI: 10.1074/jbc.m111388200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of CXCR4 by the CXC chemokine stromal cell-derived factor-1 (SDF-1) requires interaction of the amino-terminal domains of both molecules. We report that proteinases released from either mononucleated blood cells or polymorphonuclear neutrophils degranulated by inflammatory stimuli generate an SDF-1 fragment that is deleted from amino-terminal residues Lys(1)-Pro(2)-Val(3), as characterized by mass spectrometry analysis. The proteolyzed chemokine fails to induce agonistic functions and is unable to prevent the fusogenic capacity of CXCR4-tropic human immunodeficiency viruses. Furthermore, we observed that exposure of CXCR4-expressing cells to leukocyte proteinases results in the proteolysis of the extracellular amino-terminal domain of the receptor, as assessed by flow cytometry analysis and electrophoretic separation of immunoprecipitated CXCR4. Blockade of SDF-1 and CXCR4 proteolysis by the specific leukocyte elastase inhibitor, N-methoxysuccinyl-alanine-alanine-proline-valine-chloromethyl ketone, identified elastase as the major enzyme among leukocyte-secreted proteinases that accounts for inactivation of both SDF-1 and CXCR4. Indeed, purified leukocyte elastase generated in either SDF-1 or CXCR4 a pattern of cleavage indistinguishable from that observed with leukocyte-secreted proteinases. Our findings suggest that elastase-mediated proteolysis of SDF-1/CXCR4 is part of a mechanism regulating their biological functions in both homeostatic and pathologic processes.
Collapse
|
36
|
Starckx S, Van den Steen PE, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B and chemokines in leukocytosis and stem cell mobilization. Leuk Lymphoma 2002; 43:233-41. [PMID: 11999552 DOI: 10.1080/10428190290005982] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Leukocytosis is a physiopathological mechanism primarily to combat infections, whereas stem cell mobilization is induced for therapeutical purposes. Both processes are dependent on the balance between leukocyte and stem cell retention and mobilization. The retention is mediated by the specific architecture of the bone marrow, adhesion molecules and the production of chemokines in the bone marrow, which attract escaped immature cells to the marrow. Mobilization is the effect of the action of "peripheral" chemokines, such as interleukin-8 (IL-8 or CXCL8) and the remodeling of the matrix and basement membranes by matrix enzymes, such as gelatinase B (MMP-9). Recent studies lead to the conclusion that neutrophils, IL-8/CXCL8 and gelatinase B/MMP-9 play control roles in leukocytosis and stem cell mobilization. Neutrophils are the predominant circulating leukocyte type and IL-8/CXCL8 is the major neutrophil chemoattractant in humans. Gelatinase B and no gelatinase A is rapidly released from prestored granules after activation of neutrophils by IL-8/CXCL8. Moreover, neutrophils do not produce TIMP-1 and can chemically activate latent progelatinase B. Activated gelatinase B catalyses the aminoterminal truncation of IL-8/CXCL8 into a tenfold more potent chemokine. This implies that, when IL-8/CXCL8 appears in the circulation, the bone marrow is instructed to release neutrophils and concomitantly stem cells. These studies suggest that IL-8/CXCL8 and gelatinase B/MMP-9 are targets for the modulation of stem cell mobilization.
Collapse
Affiliation(s)
- S Starckx
- Laboratory of Molecular Immunology, Rega Institute, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
37
|
Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 2000. [DOI: 10.1182/blood.v96.8.2673.h8002673_2673_2681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines are mediators in inflammatory and autoimmune disorders. Aminoterminal truncation of chemokines results in altered specific activities and receptor recognition patterns. Truncated forms of the CXC chemokine interleukin (IL)-8 are more active than full-length IL-8 (1-77), provided the Glu-Leu-Arg (ELR) motif remains intact. Here, a positive feedback loop is demonstrated between gelatinase B, a major secreted matrix metalloproteinase (MMP-9) from neutrophils, and IL-8, the prototype chemokine active on neutrophils. Natural human neutrophil progelatinase B was purified to homogeneity and activated by stromelysin-1. Gelatinase B truncated IL-8(1-77) into IL-8(7-77), resulting in a 10- to 27-fold higher potency in neutrophil activation, as measured by the increase in intracellular Ca++concentration, secretion of gelatinase B, and neutrophil chemotaxis. This potentiation correlated with enhanced binding to neutrophils and increased signaling through CXC chemokine receptor-1 (CXCR1), but it was significantly less pronounced on a CXCR2-expressing cell line. Three other CXC chemokines—connective tissue-activating peptide-III (CTAP-III), platelet factor-4 (PF-4), and GRO-α—were degraded by gelatinase B. In contrast, the CC chemokines RANTES and monocyte chemotactic protein-2 (MCP-2) were not digested by this enzyme. The observation of differing effects of neutrophil gelatinase B on the proteolysis of IL-8 versus other CXC chemokines and on CXC receptor usage by processed IL-8 yielded insights into the relative activities of chemokines. This led to a better understanding of regulator (IL-8) and effector molecules (gelatinase B) of neutrophils and of mechanisms underlying leukocytosis, shock syndromes, and stem cell mobilization by IL-8.
Collapse
|
38
|
Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 2000. [DOI: 10.1182/blood.v96.8.2673] [Citation(s) in RCA: 484] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractChemokines are mediators in inflammatory and autoimmune disorders. Aminoterminal truncation of chemokines results in altered specific activities and receptor recognition patterns. Truncated forms of the CXC chemokine interleukin (IL)-8 are more active than full-length IL-8 (1-77), provided the Glu-Leu-Arg (ELR) motif remains intact. Here, a positive feedback loop is demonstrated between gelatinase B, a major secreted matrix metalloproteinase (MMP-9) from neutrophils, and IL-8, the prototype chemokine active on neutrophils. Natural human neutrophil progelatinase B was purified to homogeneity and activated by stromelysin-1. Gelatinase B truncated IL-8(1-77) into IL-8(7-77), resulting in a 10- to 27-fold higher potency in neutrophil activation, as measured by the increase in intracellular Ca++concentration, secretion of gelatinase B, and neutrophil chemotaxis. This potentiation correlated with enhanced binding to neutrophils and increased signaling through CXC chemokine receptor-1 (CXCR1), but it was significantly less pronounced on a CXCR2-expressing cell line. Three other CXC chemokines—connective tissue-activating peptide-III (CTAP-III), platelet factor-4 (PF-4), and GRO-α—were degraded by gelatinase B. In contrast, the CC chemokines RANTES and monocyte chemotactic protein-2 (MCP-2) were not digested by this enzyme. The observation of differing effects of neutrophil gelatinase B on the proteolysis of IL-8 versus other CXC chemokines and on CXC receptor usage by processed IL-8 yielded insights into the relative activities of chemokines. This led to a better understanding of regulator (IL-8) and effector molecules (gelatinase B) of neutrophils and of mechanisms underlying leukocytosis, shock syndromes, and stem cell mobilization by IL-8.
Collapse
|
39
|
Wuyts A, D’Haese A, Cremers V, Menten P, Lenaerts JP, De Loof A, Heremans H, Proost P, Van Damme J. NH2- and COOH-Terminal Truncations of Murine Granulocyte Chemotactic Protein-2 Augment the In Vitro and In Vivo Neutrophil Chemotactic Potency. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Chemokines are important mediators of leukocyte migration during the inflammatory response. Post-translational modifications affect the biological potency of chemokines. In addition to previously identified NH2-terminally truncated forms, COOH-terminally truncated forms of the CXC chemokine murine granulocyte chemotactic protein-2 (GCP-2) were purified from conditioned medium of stimulated fibroblasts. The truncations generated 28 natural murine GCP-2 isoforms containing 69–92 residues, including most intermediate forms. Both NH2- and COOH-terminal truncations of GCP-2 resulted in enhanced chemotactic potency for human and murine neutrophils in vitro. The truncated isoform GCP-2(9–78) was 30-fold more potent than intact GCP-2(1–92)/LPS-induced CXC chemokine (LIX) at inducing an intracellular calcium increase in human neutrophils. After intradermal injection in mice, GCP-2(9–78) was also more effective than GCP-2(1–92)/LIX at inducing neutrophil infiltration. Similar to human IL-8 and GCP-2, murine GCP-2(9–78) and macrophage inflammatory protein-2 (MIP-2) induced calcium increases in both CXCR1 and CXCR2 transfectants. Murine GCP-2(9–78) could desensitize the calcium response induced by MIP-2 in human neutrophils and vice versa. Furthermore, MIP-2 and truncated GCP-2(9–78), but not intact GCP-2(1–92)/LIX, partially desensitized the calcium response to human IL-8 in human neutrophils. Taken together, these findings point to an important role of post-translationally modified GCP-2 to replace IL-8 in the mouse.
Collapse
Affiliation(s)
- Anja Wuyts
- *Molecular Immunology and
- Laboratories of
| | - Anne D’Haese
- †Immunobiology, Rega Institute for Medical Research, and
- Laboratories of
| | | | | | | | - Arnold De Loof
- ‡Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, University of Leuven, Leuven, Belgium
- Laboratories of
| | | | | | | |
Collapse
|
40
|
Laham N, Brennecke SP, Rice GE. Interleukin-8 release from human gestational tissue explants: effects of gestation, labor, and chorioamnionitis. Biol Reprod 1999; 61:823-7. [PMID: 10456863 DOI: 10.1095/biolreprod61.3.823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interleukin-8 (IL-8) is a chemotactic cytokine that has been implicated in the process of human parturition, including the processes of cervical ripening and rupture of fetal membranes. In this study, the in vitro release of IL-8 from human amnion, choriodecidua, and placenta tissues obtained before and after spontaneous labor onset both at term and preterm, was assessed. The effect of chorioamnionitis on IL-8 release was also established. All tissue explants examined released IL-8; however, IL-8 release from choriodecidual explants was significantly (p < 0.02) greater than that observed from amnion and placenta. Furthermore, choriodecidual IL-8 release was significantly (p < 0.001) greater from term tissues (850 +/- 134.4 ng/mg DNA, n = 18) than from preterm tissues (458 +/- 68.8 ng/mg DNA, n = 17). Spontaneous onset of labor, irrespective of the eventual mode of delivery, was not associated with any significant changes in IL-8 release from human gestational tissues compared to not-in-labor tissues, both at term and preterm. IL-8 release from gestational tissues was not significantly different in the absence or presence of chorioamnionitis. These data are in contrast to the previously reported stimulatory effects of bacterial endotoxin on IL-8 release from human gestational tissues. The data are consistent, however, with the suggestion that IL-8 release is an early event in chorioamnionitis that precedes the appearance of clinically overt symptoms.
Collapse
Affiliation(s)
- N Laham
- Perinatal Research Centre, Department of Perinatal Medicine, University of Melbourne, The Royal Women's Hospital, Carlton, Victoria, 3053, Australia
| | | | | |
Collapse
|
41
|
Abstract
Tumor cells are eradicated by several systems, including Fas ligand-Fas and tumor necrosis factor (TNF)-tumor necrosis factor receptor (TNFR). In the previous study, we purified an apoptosis-inducing factor (AIF) to homogeneity from a medium conditioned by PDBu-treated HL-60 cells. N-terminal sequence analysis showed that AIF is identical to endothelial interleukin-8 (IL-8). A novel apoptosis system, in which endothelial cells participate via endothelial IL-8 release, is identified here. Human umbilical vein cells (VE cells) produce and secrete IL-8 by stimulation of IL-1 and TNF-. Endothelial IL-8, which is secreted from VE cells by stimulation of IL-1 and TNF- , induces apoptosis in myelogenous leukemia cell line K562 cells. Monocyte-derived IL-8 could not induce apoptosis in K562 cells. Moreover, interaction between VE cells and K562 cells induces the release of endothelial IL-8 from VE cells, and the attached K562 cells undergo apoptosis. Moreover, interactions between VE cell and other cell lines, such as HL-60, U937, Jurkat, and Daudi, induce the secretion of endothelial IL-8 and the induction of apoptosis in cell lines. Endothelial IL-8 significantly inhibits tumor growth of intraperitoneal and subcutaneous tumor mass of K562 cells and induces apoptosis in their cells in vivo. Endothelial IL-8 plays an important role in apoptosis involving endothelial cells, which may provide us with a new therapy for hematological malignancies.© 1998 by The American Society of Hematology.
Collapse
|
42
|
Abstract
AbstractTumor cells are eradicated by several systems, including Fas ligand-Fas and tumor necrosis factor (TNF)-tumor necrosis factor receptor (TNFR). In the previous study, we purified an apoptosis-inducing factor (AIF) to homogeneity from a medium conditioned by PDBu-treated HL-60 cells. N-terminal sequence analysis showed that AIF is identical to endothelial interleukin-8 (IL-8). A novel apoptosis system, in which endothelial cells participate via endothelial IL-8 release, is identified here. Human umbilical vein cells (VE cells) produce and secrete IL-8 by stimulation of IL-1 and TNF-. Endothelial IL-8, which is secreted from VE cells by stimulation of IL-1 and TNF- , induces apoptosis in myelogenous leukemia cell line K562 cells. Monocyte-derived IL-8 could not induce apoptosis in K562 cells. Moreover, interaction between VE cells and K562 cells induces the release of endothelial IL-8 from VE cells, and the attached K562 cells undergo apoptosis. Moreover, interactions between VE cell and other cell lines, such as HL-60, U937, Jurkat, and Daudi, induce the secretion of endothelial IL-8 and the induction of apoptosis in cell lines. Endothelial IL-8 significantly inhibits tumor growth of intraperitoneal and subcutaneous tumor mass of K562 cells and induces apoptosis in their cells in vivo. Endothelial IL-8 plays an important role in apoptosis involving endothelial cells, which may provide us with a new therapy for hematological malignancies.© 1998 by The American Society of Hematology.
Collapse
|
43
|
Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP, De Clercq E, De Meester I, Van Damme J. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 1998; 432:73-6. [PMID: 9710254 DOI: 10.1016/s0014-5793(98)00830-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemokine stromal-cell-derived factor-1alpha (SDF-1alpha) chemoattracts lymphocytes and CD34+ haematopoietic progenitors and is the ligand for CXCR4 (CXC chemokine receptor 4), the main co-receptor for T-tropic HIV-1 strains. SDF-1alpha was NH2-terminally cleaved to SDF-1alpha(3-68) by dipeptidyl-peptidase IV (CD26/DPP IV), which is present in blood in soluble and membrane-bound form. SDF-1alpha(3-68) lost both lymphocyte chemotactic and CXCR4-signaling properties. However, SDF-1alpha(3-68) still desensitized the SDF-1alpha(1-68)-induced Ca2+ response. In contrast to CD26/DPP IV-processed RANTES(3-68), SDF-1alpha(3-68) had diminished potency to inhibit HIV-1 infection. Thus, CD26/DPP IV impairs the inflammatory and haematopoietic potency of chemokines but plays a dual role in AIDS.
Collapse
Affiliation(s)
- P Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dias-Baruffi M, Pereira-da-Silva G, Jamur MC, Roque-Barreira MC. Heparin potentiates in vivo neutrophil migration induced by IL-8. Glycoconj J 1998; 15:523-6. [PMID: 9881755 DOI: 10.1023/a:1006995222189] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemokine IL-8 attracts neutrophils by a haptotactic gradient, made possible by its interaction with proteoglycans of the extracellular matrix. Heparan sulfate, but not heparin, potentiates the attraction exerted in vitro by IL-8. In the present study we first confirmed this in vitro phenomenon, observing that IL-8 activity was potentiated 100% by heparan sulfate, but not by heparin. Then, we evaluated the interference of heparan sulfate or heparin on in vivo neutrophil migration induced by IL-8. The activity of rat IL-8 (3.5 microg/animal) preincubated with heparan sulfate (50 microg/animal) or heparin (77 microg/animal) was assayed on the rat dorsal air pouch. Contrary to in vitro experiments, heparin, but not heparan sulfate, potentiated the in vivo IL-8 activity two-fold. We investigated the relationship between this observation and that reported by others, that IL-8-induced migration depends on the presence of mast cells, which contain heparin-rich granules. We studied the neutrophil migration induced by IL-8 (3.5 microg/animal) into the rat peritoneal cavity depleted of mast cells. Neutrophil migration was reduced by 32% when compared to that observed in normal animals. The response of depleted rats was reconstituted by preincubation of IL-8 with heparin (77 microg/animal). These data suggest that heparin released from cytoplasmic granules may be the contribution of mast cells to IL-8-induced neutrophil migration.
Collapse
Affiliation(s)
- M Dias-Baruffi
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
45
|
Proost P, Struyf S, Couvreur M, Lenaerts JP, Conings R, Menten P, Verhaert P, Wuyts A, Damme JV. Posttranslational Modifications Affect the Activity of the Human Monocyte Chemotactic Proteins MCP-1 and MCP-2: Identification of MCP-2(6–76) as a Natural Chemokine Inhibitor. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.8.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Chemokines are important mediators in infection and inflammation. The monocyte chemotactic proteins (MCPs) form a subclass of structurally related C-C chemokines. MCPs select specific target cells due to binding to a distinct set of chemokine receptors. Recombinant and synthetic MCP-1 variants have been shown to function as chemokine antagonists. In this study, posttranslationally modified immunoreactive MCP-1 and MCP-2 were isolated from mononuclear cells. Natural forms of MCP-1 and MCP-2 were biochemically identified by Edman degradation and mass spectrometry and functionally characterized in chemotaxis and Ca2+-mobilization assays. Glycosylated MCP-1 (12 and 13.5 kDa) was found to be two- to threefold less chemotactic for monocytes and THP-1 cells than nonglycosylated MCP-1 (10 kDa). Natural, NH2-terminally truncated MCP-1(5–76) and MCP-1(6–76) were practically devoid of bioactivity, whereas COOH-terminally processed MCP-1(1–69) fully retained its chemotactic and Ca2+-inducing capacity. The capability of naturally modified MCP-1 forms to desensitize the Ca2+ response induced by intact MCP-1 in THP-1 cells correlated with their agonistic potency. In contrast, naturally modified MCP-2(6–76) was devoid of activity, but could completely block the chemotactic effect of intact MCP-2 as well as that of MCP-1, MCP-3, and RANTES. Carboxyl-terminally processed MCP-2(1–74) did retain its chemotactic potency. Although comparable as a chemoattractant, natural intact MCP-2 was found to be 10-fold less potent than MCP-1 in inducing an intracellular Ca2+ increase. It can be concluded that under physiologic or pathologic conditions, posttranslational modification affects chemokine potency and that natural MCP-2(6–76) is a functional C-C chemokine inhibitor that might be useful as an inhibitor of inflammation.
Collapse
Affiliation(s)
- Paul Proost
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | - Sofie Struyf
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | - Mikaël Couvreur
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | | | - René Conings
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | - Patricia Menten
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | - Peter Verhaert
- †Zoological Institute, University of Leuven, Leuven, Belgium
| | - Anja Wuyts
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| | - Jo Van Damme
- *Rega Institute for Medical Research, Laboratory of Molecular Immunology, and
| |
Collapse
|
46
|
Struyf S, De Meester I, Scharpé S, Lenaerts JP, Menten P, Wang JM, Proost P, Van Damme J. Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur J Immunol 1998; 28:1262-71. [PMID: 9565366 DOI: 10.1002/(sici)1521-4141(199804)28:04<1262::aid-immu1262>3.0.co;2-g] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective leukocyte trafficking towards sites of inflammation is mediated by chemokines. RANTES is a CC chemokine that attracts lymphocytes, monocytes, dendritic cells, eosinophils, basophils and NK cells. A natural form of human RANTES lacking two N-terminal residues was isolated from stimulated sarcoma cells, fibroblasts, and leukocytes. RANTES(3-68) showed a more than tenfold reduction in chemotactic potency for monocytes and eosinophils. To elucidate the mechanism involved, receptor recognition studies were performed. In cells transfected with the CC chemokine receptor (CCR) 5, the major co-receptor for macrophage-tropic HIV-1 strains, RANTES(3-68) mobilized calcium and desensitized RANTES(1-68)-induced calcium fluxes equally well as RANTES(1-68). However, RANTES(3-68) was ineffective on CCR1 and CCR3 transfectants. The reduced potency of natural RANTES(3-68) by selective loss of receptor-activating characteristics was confirmed with recombinant RANTES(3-68). In chemotaxis assays using monocytic cells, RANTES(3-68) inhibited RANTES(1-68), macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta or monocyte chemotactic protein-3 (MCP-3), but not MCP-1- or MCP-2-induced chemotaxis. Thus, a minor post-translational modification has a remarkable impact on the biological activities of RANTES and a pathophysiologically induced change in the relative amounts of intact and truncated RANTES might affect the outcome of inflammation or HIV infection.
Collapse
Affiliation(s)
- S Struyf
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, University of Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pal R, Garzino-Demo A, Markham PD, Burns J, Brown M, Gallo RC, DeVico AL. Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 1997; 278:695-8. [PMID: 9381181 DOI: 10.1126/science.278.5338.695] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CD8(+) T lymphocytes from individuals infected with human immunodeficiency virus-type 1 (HIV-1) secrete a soluble activity that suppresses infection by HIV-1. A protein associated with this activity was purified from the culture supernatant of an immortalized CD8(+) T cell clone and identified as the beta-chemokine macrophage-derived chemokine (MDC). MDC suppressed infection of CD8(+) cell-depleted peripheral blood mononuclear cells by primary non-syncytium-inducing and syncytium-inducing isolates of HIV-1 and the T cell line-adapted isolate HIV-1IIIB. MDC was expressed in activated, but not resting, peripheral blood mononuclear cells and binds a receptor on activated primary T cells. These observations indicate that beta-chemokines are responsible for a major proportion of HIV-1-specific suppressor activity produced by primary T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Antiviral Agents/immunology
- Blotting, Northern
- CD8-Positive T-Lymphocytes/immunology
- Calcium/blood
- Cell Line
- Cell Line, Transformed
- Cells, Cultured
- Chemokine CCL22
- Chemokines, CC/chemistry
- Chemokines, CC/immunology
- Chemokines, CC/isolation & purification
- Chemokines, CC/metabolism
- HIV Core Protein p24/biosynthesis
- HIV Infections/immunology
- HIV-1/immunology
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation
- Receptors, Chemokine/metabolism
- Receptors, HIV/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- R Pal
- Advanced BioScience Laboratories, 5510 Nicholson Lane, Kensington, MD 20895, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Malkowski MG, Lazar JB, Johnson PH, Edwards BF. The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. J Mol Biol 1997; 266:367-80. [PMID: 9047370 DOI: 10.1006/jmbi.1996.0796] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-Chemokines comprise a family of cytokines that are chemotactic for neutrophils and have a structure similar to platelet factor 4 (PF4), in which the first two cysteine residues are separated by one residue (Cys-X-Cys). The two alpha-chemokines, connective tissue activating peptide-III (CTAP-III) and neutrophil activating peptide-2 (NAP-2), are carboxyl-terminal fragments of platelet basic protein (PBP) that are generated by monocyte-derived proteases. NAP-2 strongly stimulates neutrophils that are present during inflammation whereas its precursors, PBP and CTAP-III, are inactive, although they also possess the highly conserved, amino-terminal sequence, Glu-Leu-Arg (ELR), that is critical for receptor binding. To resolve this conundrum, we have determined the crystal structure of recombinant Asp-CTAP, which has ten fewer amino-terminal residues than CTAP-III but five more than NAP-2. The space group is P2(1)with unit cell dimensions a = 43.8 A, b = 76.8 A, c = 43.8 A, and beta =97.0 degrees, and a tetramer in the asymmetric unit. The molecular replacement method, with the NAP-2 tetramer as a starting model, was used to determine the initial phase information. The final R-factor is 0.196 (Rfree = 0.251) for 2sigma data from 7.0 to 1.75 A resolution. This high-resolution model of Asp-CTAP is the longest defined structure of an alpha-chemokine to date. The electron density map shows an over-all structure for Asp-CTAP that is very similar to that of NAP-2, but with the additional five amino-terminal residues folding back through a type-II turn, thereby stabilizing the oligomeric "inactive" state, and masking the critical ELR receptor binding region that is exposed in the structure of NAP-2.
Collapse
Affiliation(s)
- M G Malkowski
- Department of Biochemistry, Wayne State University, Canfield, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|