1
|
Lu H, Zhang G, Wang C, Han T, Zhao R, Zhu D. Flashing light alleviates photoinhibition and promotes biomass concentration in purple non- sulfur bacteria wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 343:126107. [PMID: 34637910 DOI: 10.1016/j.biortech.2021.126107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
High light is beneficial for purple non-sulfur bacteria (PNSB) growth. However, excessive light causes photoinhibition. In this novel study, flashing light was used to alleviate photoinhibition and promote biomass growth in PNSB wastewater treatment. Results showed that flashing light effectively increased biomass production. The highest biomass concentration (2688.8 mg/L) and chemical oxygen demand removal (in 177 μmol/m2/s-0.75 duty cycle-1000 Hz group) were 41.5% and 28.4% higher than that in the constant stress light group (same incident light). This group also increased biomass concentration by 21.3% and reduced energy consumption by 26.2% compared with the constant normal light group (same energy input). The shortened single light provision time of flashing light increased the relative electron transportation rate by 116.6%, avoiding photoinhibition, promoting energy utilisation, and enhancing substance synthesis. Flashing light can be used as a light regulation strategy to enhance biomass accumulation and reduce energy consumption in PNSB-based industries.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, PR China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Changjie Wang
- College of Water Resource and Civil Engineering, China Agriculture University, Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, PR China
| | - Ting Han
- College of Water Resource and Civil Engineering, China Agriculture University, Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, PR China
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agriculture University, Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, PR China
| | - Da Zhu
- Nan Tong Ju Yi Cheng Guang Biotechnology Co. LTD., Nantong 226321, PR China
| |
Collapse
|
2
|
Selamoglu N, Önder Ö, Öztürk Y, Khalfaoui-Hassani B, Blaby-Haas CE, Garcia BA, Koch HG, Daldal F. Comparative differential cuproproteomes of Rhodobacter capsulatus reveal novel copper homeostasis related proteins. Metallomics 2020; 12:572-591. [PMID: 32149296 PMCID: PMC7192791 DOI: 10.1039/c9mt00314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential, but toxic, micronutrient for living organisms and cells have developed sophisticated response mechanisms towards both the lack and the excess of Cu in their environments. In this study, we achieved a global view of Cu-responsive changes in the prokaryotic model organism Rhodobacter capsulatus using label-free quantitative differential proteomics. Semi-aerobically grown cells under heterotrophic conditions in minimal medium (∼0.3 μM Cu) were compared with cells supplemented with either 5 μM Cu or with 5 mM of the Cu-chelator bathocuproine sulfonate. Mass spectrometry based bottom-up proteomics of unfractionated cell lysates identified 2430 of the 3632 putative proteins encoded by the genome, producing a robust proteome dataset for R. capsulatus. Use of biological and technical replicates for each growth condition yielded high reproducibility and reliable quantification for 1926 of the identified proteins. Comparison of cells grown under Cu-excess or Cu-depleted conditions to those grown under minimal Cu-sufficient conditions revealed that 75 proteins exhibited statistically significant (p < 0.05) abundance changes, ranging from 2- to 300-fold. A subset of the highly Cu-responsive proteins was orthogonally probed using molecular genetics, validating that several of them were indeed involved in cellular Cu homeostasis.
Collapse
Affiliation(s)
- Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Carreira C, Dos Santos MMC, Pauleta SR, Moura I. Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus - An electrochemical study. Bioelectrochemistry 2020; 133:107483. [PMID: 32120320 DOI: 10.1016/j.bioelechem.2020.107483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, "CuZ", which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal. http://docentes.fct.unl.pt/srp/
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
4
|
|
5
|
Bennett SP, Soriano-Laguna MJ, Bradley JM, Svistunenko DA, Richardson DJ, Gates AJ, Le Brun NE. NosL is a dedicated copper chaperone for assembly of the Cu Z center of nitrous oxide reductase. Chem Sci 2019; 10:4985-4993. [PMID: 31183047 PMCID: PMC6530538 DOI: 10.1039/c9sc01053j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the terminal enzyme of the denitrification pathway of soil bacteria that reduces the greenhouse gas nitrous oxide (N2O) to dinitrogen. In addition to a binuclear CuA site that functions in electron transfer, the active site of N2OR features a unique tetranuclear copper cluster bridged by inorganic sulfide, termed CuZ. In copper-limited environments, N2OR fails to function, resulting in truncation of denitrification and rising levels of N2O released by cells to the atmosphere, presenting a major environmental challenge. Here we report studies of nosL from Paracoccus denitrificans, which is part of the nos gene cluster, and encodes a putative copper binding protein. A Paracoccus denitrificans ΔnosL mutant strain had no denitrification phenotype under copper-sufficient conditions but failed to reduce N2O under copper-limited conditions. N2OR isolated from ΔnosL cells was found to be deficient in copper and to exhibit attenuated activity. UV-visible absorbance spectroscopy revealed that bands due to the CuA center were unaffected, while those corresponding to the CuZ center were significantly reduced in intensity. In vitro studies of a soluble form of NosL without its predicted membrane anchor showed that it binds one Cu(i) ion per protein with attomolar affinity, but does not bind Cu(ii). Together, the data demonstrate that NosL is a copper-binding protein specifically required for assembly of the CuZ center of N2OR, and thus represents the first characterised assembly factor for the CuZ active site of this key environmental enzyme, which is globally responsible for the destruction of a potent greenhouse gas.
Collapse
Affiliation(s)
- Sophie P Bennett
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Manuel J Soriano-Laguna
- Centre for Molecular and Structural Biochemistry , School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Dimitri A Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester CO4 3SQ , UK
| | - David J Richardson
- Centre for Molecular and Structural Biochemistry , School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry , School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| |
Collapse
|
6
|
Trasnea PI, Andrei A, Marckmann D, Utz M, Khalfaoui-Hassani B, Selamoglu N, Daldal F, Koch HG. A Copper Relay System Involving Two Periplasmic Chaperones Drives cbb 3-Type Cytochrome c Oxidase Biogenesis in Rhodobacter capsulatus. ACS Chem Biol 2018; 13:1388-1397. [PMID: 29613755 DOI: 10.1021/acschembio.8b00293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PccA and SenC are periplasmic copper chaperones required for the biogenesis of cbb3-type cytochrome c oxidase ( cbb3-Cox) in Rhodobacter capsulatus at physiological Cu concentrations. However, both proteins are dispensable for cbb3-Cox assembly when the external Cu concentration is high. PccA and SenC bind Cu using Met and His residues and Cys and His residues as ligands, respectively, and both proteins form a complex during cbb3-Cox biogenesis. SenC also interacts directly with cbb3-Cox, as shown by chemical cross-linking. Here we determined the periplasmic concentrations of both proteins in vivo and analyzed their Cu binding stoichiometries and their Cu(I) and Cu(II) binding affinity constants ( KD) in vitro. Our data show that both proteins bind a single Cu atom with high affinity. In vitro Cu transfer assays demonstrate Cu transfer both from PccA to SenC and from SenC to PccA at similar levels. We conclude that PccA and SenC constitute a Cu relay system that facilitates Cu delivery to cbb3-Cox.
Collapse
Affiliation(s)
- Petru-Iulian Trasnea
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Bahia Khalfaoui-Hassani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
7
|
Hira D, Kitamura R, Nakamura T, Yamagata Y, Furukawa K, Fujii T. Anammox Organism KSU-1 Expresses a Novel His/DOPA Ligated Cytochrome c. J Mol Biol 2018; 430:1189-1200. [DOI: 10.1016/j.jmb.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
|
8
|
The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification. J Inorg Biochem 2017; 177:423-434. [PMID: 28927704 DOI: 10.1016/j.jinorgbio.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023]
Abstract
The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species.
Collapse
|
9
|
Potential for aerobic NO 2- reduction and corresponding key enzyme genes involved in Alcaligenes faecalis strain NR. Arch Microbiol 2017; 200:147-158. [PMID: 28879417 DOI: 10.1007/s00203-017-1428-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The potential for aerobic NO2- removal by Alcaligenes faecalis strain NR was investigated. 35 mg/L of NO2--N was removed by strain NR under aerobic conditions in the presence of NH4+. 15N-labeling experiment demonstrated that N2O and N2 were possible products during the aerobic nitrite removal process by strain NR. The key enzyme genes of nirK, norB and nosZ, which regulate the aerobic nitrite denitrification process, were successfully amplified from strain NR. The gene sequence analysis indicates that copper-containing nitrite reductase (NIRK) and periplasmic nitrous oxide reductase (NOSZ) were both hydrophilic protein and the transmembrane structures were absent, while nitric oxide reductase large subunit (NORB) was a hydrophobic and transmembrane protein. According to the three-dimensional structure and binding site analysis, the bulky and hydrophobic methionine residue proximity to the nitrite binding sites of NIRK was speculated to be related to the oxygen tolerance of NIRK from strain NR.
Collapse
|
10
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
11
|
Schindel HS, Bauer CE. The RegA regulon exhibits variability in response to altered growth conditions and differs markedly between Rhodobacter species. Microb Genom 2016; 2:e000081. [PMID: 28348828 PMCID: PMC5359404 DOI: 10.1099/mgen.0.000081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The RegB/RegA two-component system from Rhodobacter capsulatus regulates global changes in gene expression in response to alterations in oxygen levels. Studies have shown that RegB/RegA controls many energy-generating and energy-utilizing systems such as photosynthesis, nitrogen fixation, carbon fixation, hydrogen utilization, respiration, electron transport and denitrification. In this report, we utilized RNA-seq and ChIP-seq to analyse the breadth of genes indirectly and directly regulated by RegA. A comparison of mRNA transcript levels in wild type cells relative to a RegA deletion strain shows that there are 257 differentially expressed genes under photosynthetic defined minimal growth medium conditions and 591 differentially expressed genes when grown photosynthetically in a complex rich medium. ChIP-seq analysis also identified 61 unique RegA binding sites with a well-conserved recognition sequence, 33 of which exhibit changes in neighbouring gene expression. These transcriptome results define new members of the RegA regulon including genes involved in iron transport and motility. These results also reveal that the set of genes that are regulated by RegA are growth medium specific. Similar analyses under dark aerobic conditions where RegA is thought not to be phosphorylated by RegB reveal 40 genes that are differentially expressed in minimal medium and 20 in rich medium. Finally, a comparison of the R. capsulatus RegA regulon with the orthologous PrrA regulon in Rhodobacter sphaeroides shows that the number of photosystem genes regulated by RegA and PrrA are similar but that the identity of genes regulated by RegA and PrrA beyond those involved in photosynthesis are quite distinct.
Collapse
Affiliation(s)
- Heidi S. Schindel
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| | - Carl E. Bauer
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| |
Collapse
|
12
|
Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol 2016; 18:2951-63. [PMID: 26568281 DOI: 10.1111/1462-2920.13128] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
Oxygen is known to repress denitrification at the transcriptional and metabolic levels. It has been a common notion that nitrous oxide reductase (N2 OR) is the most sensitive enzyme among the four N-oxide reductases involved in denitrification, potentially leading to increased N2 O production under suboxic or fluctuating oxygen conditions. We present detailed gas kinetics and transcription patterns from batch culture experiments with Paracoccus denitrificans, allowing in vivo estimation of e(-) -flow to O2 and N2 O under various O2 regimes. Transcription of nosZ took place concomitantly with that of narG under suboxic conditions, whereas transcription of nirS and norB was inhibited until O2 levels approached 0 μM in the liquid. Catalytically functional N2 OR was synthesized and active in aerobically raised cells transferred to vials with 7 vol% O2 in headspace, but N2 O reduction rates were 10 times higher when anaerobic pre-cultures were subjected to the same conditions. Upon oxygen exposure, there was an incomplete and transient inactivation of N2 OR that could be ascribed to its lower ability to compete for electrons compared with terminal oxidases. The demonstrated reduction of N2 O at high O2 partial pressure and low N2 O concentrations by a bacterium not known as a typical aerobic denitrifier may provide one clue to the understanding of why some soils appear to act as sinks rather than sources for atmospheric N2 O.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars R Bakken
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars Molstad
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Linda L Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
13
|
Song K, Suenaga T, Harper WF, Hori T, Riya S, Hosomi M, Terada A. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19562-19570. [PMID: 26268623 DOI: 10.1007/s11356-015-5129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Nitrous oxide (N2O) is emitted from a modified Ludzak-Ettinger (MLE) process, as a primary activated sludge system, which requires mitigation. The effects of aeration rates and internal recycle flow (IRF) ratios on N2O emission were investigated in an MLE process fed with glycerol. Reducing the aeration rate from 1.5 to 0.5 L/min increased gaseous the N2O concentration from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 54.4 and 53.4 %, respectively. During the period of higher aeration, the N2O-N conversion ratio was 0.9 % and the potential N2O reducers were predominantly Rhodobacter, which accounted for 21.8 % of the total population. Increasing the IRF ratio from 3.6 to 7.2 decreased the N2O emission rate from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 56 and 48 %, respectively. This study suggests effective N2O mitigation strategies for MLE systems.
Collapse
Affiliation(s)
- Kang Song
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Tomoyuki Hori
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
14
|
Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, Terada A. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J Biosci Bioeng 2014; 118:289-97. [DOI: 10.1016/j.jbiosc.2014.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/30/2014] [Accepted: 02/27/2014] [Indexed: 01/06/2023]
|
15
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1157] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
16
|
|
17
|
Dell'Acqua S, Pauleta SR, Moura I, Moura JJG. The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. J Biol Inorg Chem 2011; 16:183-94. [PMID: 21240533 DOI: 10.1007/s00775-011-0753-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/03/2011] [Indexed: 01/24/2023]
Abstract
This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | |
Collapse
|
18
|
Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I. Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome c552 from Pseudomonas nautica: Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry 2008; 47:10852-62. [DOI: 10.1021/bi801375q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Dell’Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Sofia R. Pauleta
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alice S. Pereira
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Casella
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Isabel Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
19
|
Zumft WG, Kroneck PMH. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 2006; 52:107-227. [PMID: 17027372 DOI: 10.1016/s0065-2911(06)52003-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of physiological traits and biochemically challenging metabolic modes or habitats, including halorespiration, diazotrophy, symbiosis, pathogenicity, psychrophily, thermophily, extreme halophily and the marine habitat down to the greatest depth. Components for N2O respiration cover topologically the periplasm and the inner and outer membranes. The Sec and Tat translocons share the task of exporting Nos components to their functional sites. Electron donation to N2OR follows pathways with modifications depending on the host organism. A short chronology of the field is also presented.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
20
|
Zumft WG. Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. J Mol Microbiol Biotechnol 2006; 10:154-66. [PMID: 16645312 DOI: 10.1159/000091562] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitrous oxide reductase (NosZ, EC 1.7.99.6) is the terminal oxidoreductase of a respiratory electron transfer chain that transforms nitrous oxide to dinitrogen. The enzyme carries six Cu atoms. Two are arranged in the mixed-valent binuclear CuA site, and four make up the mu4-sulfide-bridged Cu cluster, CuZ. The biogenesis of a catalytically active NosZ requires auxiliary functions for metal center assembly in the periplasm. Both Tat and Sec pathways share the task to transport the various Nos proteins to their functional sites. Biogenesis of NosZ requires an ABC transporter complex and the periplasmic Cu chaperone NosL. Sustaining whole-cell NosZ function depends on the periplasmic, FAD-containing protein NosX, and the membrane-bound iron-sulfur flavoprotein NosR. Most components with a biogenetic function are now amenable to structural studies.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
21
|
Rasmussen T, Brittain T, Berks BC, Watmough NJ, Thomson AJ. Formation of a cytochrome c–nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus. Dalton Trans 2005:3501-6. [PMID: 16234931 DOI: 10.1039/b501846c] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrous oxide reductase (N2OR) catalyses the final step of bacterial denitrification, the two-electron reduction of nitrous oxide (N2O) to dinitrogen (N2). N2OR contains two metal centers; a binuclear copper center, CuA, that serves to receive electrons from soluble donors, and a tetranuclear copper-sulfide center, CuZ, at the active site. Stopped flow experiments at low ionic strengths reveal rapid electron transfer (kobs=150 s-1) between reduced horse heart (HH) cytochrome c and the CuA center in fully oxidized N2OR. When fully reduced N2OR was mixed with oxidized cytochrome c, a similar rate of electron transfer was recorded for the reverse reaction, followed by a much slower internal electron transfer from CuZ to CuA(kobs=0.1-0.4 s-1). The internal electron transfer process is likely to represent the rate-determining step in the catalytic cycle. Remarkably, in the absence of cytochrome c, fully reduced N2OR is inert towards its substrate, even though sufficient electrons are stored to initiate a single turnover. However, in the presence of reduced cytochrome c and N2O, a single turnover occurs after a lag-phase. We propose that a conformational change in N2OR is induced by its specific interaction with cytochrome c that in turn either permits electron transfer between CuA and CuZ or controls the rate of N2O decomposition at the active site.
Collapse
Affiliation(s)
- Tim Rasmussen
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK NR4 7TJ
| | | | | | | | | |
Collapse
|
22
|
Heering HA, de Vries S. NO reductase from Bacillus azotoformans is a bifunctional enzyme accepting electrons from menaquinol and a specific endogenous membrane-bound cytochrome c551. Biochemistry 2004; 43:13487-95. [PMID: 15491156 DOI: 10.1021/bi0488101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus azotoformans is a Gram-positive denitrifying soil bacterium, which is capable of respiring nitrate, nitrite, nitric oxide, and nitrous oxide under anaerobic conditions. It contains a unique menaquinol-dependent nitric oxide reductase (qCu(A)NOR) with a Cu(A) center in its small subunit. The qCu(A)NOR exhibits menaquinol-dependent NO reductase activity, whereas reduced horse heart cytochrome c was inactive. Here we describe the purification of three membrane-bound c cytochromes from B. azotoformans. Their apparent molecular masses on SDS-PAGE are approximately 11 kDa. At neutral pH, these c cytochromes are negatively charged and the E(m) for all is close to 150 mV. Only one of these c cytochromes, which exhibits an alpha-band maximum at 551 nm, acts as a direct electron donor to qCu(A)NOR. Further investigation demonstrated that this cytochrome c(551) possesses two lipoyl moieties, which presumably function to anchor it to the membrane. Steady-state kinetic studies reveal that cytochrome c(551) is a noncompetitive inhibitor of NO reduction when menaquinol is used as an electron donor. This finding points to the presence of two different electron donation pathways in qCu(A)NOR. The ability of qCu(A)NOR to accept electrons from both menaquinol and cytochrome c(551) might be related to the regulation of the rate of NO reduction especially as a defense mechanism of B. azotoformans against the toxicity of NO. Growth experiments in batch culture indeed show that B. azotoformans is highly NO tolerant, in contrast to, for example, Paracoccus denitrificans that has a monofunctional cytochrome c-dependent NOR. We propose that the menaquinol pathway, which has a 4-fold greater maximal activity than the pathway via cytochrome c(551), is used for NO detoxification, whereas electron donation via the endogenous cytochrome c involves the cytochrome b(6)f complex serving the bioenergetic needs of the organism.
Collapse
|
23
|
Baymann F, Barlow NL, Aubert C, Schoepp-Cothenet B, Leroy G, Armstrong FA. Voltammetry of a "protein on a rope". FEBS Lett 2003; 539:91-4. [PMID: 12650932 DOI: 10.1016/s0014-5793(03)00206-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A periplasmic electron-transfer protein, cytochrome c(555)(m) from Aquifex aeolicus contains a 62-residue N-terminal extension by which it is anchored to the membrane--most probably via a thioester bond to its N-terminal cysteine. This linker can act as a "rope" to tether the protein close to its reaction partners. Mimicking this principle, a recombinant cytochrome c(555)(m), expressed in Escherichia coli, has been attached covalently to a gold electrode modified with 6-mercaptohexan-1-ol. The "tethered" cytochrome c(555)(m) displays remarkably fast electron-transfer kinetics, with an electrochemical exchange rate constant k(0) of 1.4 x 10(4) s(-1). The results show that fast electron transfer is associated with weak interactions: importantly, the tethered cytochrome can explore many different orientations without escaping into solution.
Collapse
Affiliation(s)
- Frauke Baymann
- Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
24
|
McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 2002; 44:1575-87. [PMID: 12067345 DOI: 10.1046/j.1365-2958.2002.02978.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum. Dimethyl sulphide dehydrogenase was shown to contain bis(molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdopterin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB, ddhD and ddhC. DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c2 mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Centre for Metals in Biology, Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, The University of Queensland, St Lucia 4072, Australia
| | | | | | | |
Collapse
|
25
|
Baymann F, Tron P, Schoepp-Cothenet B, Aubert C, Bianco P, Stetter KO, Nitschke W, Schütz M. Cytochromes c555 from the hyperthermophilic bacterium Aquifex aeolicus (VF5). 1. Characterization of two highly homologous, soluble and membranous, cytochromes c555. Biochemistry 2001; 40:13681-9. [PMID: 11695917 DOI: 10.1021/bi011201y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed.
Collapse
Affiliation(s)
- F Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UPR9036), CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sabaty M, Schwintner C, Cahors S, Richaud P, Verméglio A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 1999; 181:6028-32. [PMID: 10498715 PMCID: PMC103630 DOI: 10.1128/jb.181.19.6028-6032.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.
Collapse
Affiliation(s)
- M Sabaty
- Commissariat à l'Energie Atomique/Cadarache DSV, DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 St. Paul lez Durance Cedex, France.
| | | | | | | | | |
Collapse
|
27
|
Pemberton JM, Horne IM, McEwan AG. Regulation of photosynthetic gene expression in purple bacteria. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):267-278. [PMID: 9493364 DOI: 10.1099/00221287-144-2-267] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purple phototrophic bacteria have the ability to capture and use sunlight efficiently as an energy source. In these organisms, photosynthesis is carried out under anaerobic conditions. The introduction of oxygen into a culture growing phototrophically results in a rapid decrease in the synthesis of components of the photosynthetic apparatus and a change to an alternative source of energy, usually derived from the degradation of organic compounds under aerobic conditions (chemoheterotrophy). Switching back and forth between anaerobic (photosynthetic) and aerobic growth requires tight regulation of photosynthetic gene expression at the molecular level. Initial experiments by Cohen-Bazire et al. (1957) showed quite clearly that the regulation of photosynthetic gene expression was in response to two environmental stimuli. The most potent stimulus was oxygen; its presence shut down production of photosynthetic pigments very rapidly. To a lesser extent photosynthetic gene expression responded to light intensity. Low light intensity produced high levels of photosynthetic pigments; high light intensities caused a decrease, but the effect was less dramatic than that observed for oxygen. Since these initial observations were made in Rhodobacter sphaeroides some forty years ago, a great deal has been revealed as to the nature of the genes that encode the various components of the photosynthetic apparatus. Recent progress in the understanding of the regulation of expression of these genes in R. sphaeroides and Rhodobacter capsulatus is the subject of this review.
Collapse
Affiliation(s)
- John M Pemberton
- Department of Microbiology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Irene M Horne
- Department of Microbiology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Alastair G McEwan
- Department of Microbiology, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
28
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
29
|
Myllykallio H, Jenney FE, Moomaw CR, Slaughter CA, Daldal F. Cytochrome c(y) of Rhodobacter capsulatus is attached to the cytoplasmic membrane by an uncleaved signal sequence-like anchor. J Bacteriol 1997; 179:2623-31. [PMID: 9098061 PMCID: PMC179012 DOI: 10.1128/jb.179.8.2623-2631.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the photosynthetic growth of Rhodobacter capsulatus, electrons are conveyed from the cytochrome (cyt) bc1 complex to the photochemical reaction center by either the periplasmic cyt c2 or the membrane-bound cyt c(y). Cyt c(y) is a member of a recently established subclass of bipartite c-type cytochromes consisting of an amino (N)-terminal domain functioning as a membrane anchor and a carboxyl (C)-terminal domain homologous to cyt c of various sources. Structural homologs of cyt c(y) have now been found in several bacterial species, including Rhodobacter sphaeroides. In this work, a C-terminally epitope-tagged and functional derivative of R. capsulatus cyt c(y) was purified from intracytoplasmic membranes to homogeneity. Analyses of isolated cyt c(y) indicated that its spectral and thermodynamic properties are very similar to those of other c-type cytochromes, in particular to those from bacterial and plant mitochondrial sources. Amino acid sequence determination for purified cyt c(y) revealed that its signal sequence-like N-terminal portion is uncleaved; hence, it is anchored to the membrane. To demonstrate that the N-terminal domain of cyt c(y) is indeed its membrane anchor, this sequence was fused to the N terminus of cyt c2. The resulting hybrid cyt c (MA-c2) remained membrane bound and was able to support photosynthetic growth of R. capsulatus in the absence of the cyt c(y) and c2. Therefore, cyt c2 can support cyclic electron transfer during photosynthetic growth in either a freely diffusible or a membrane-anchored form. These findings should now allow for the first time the comparison of electron transfer properties of a given electron carrier when it is anchored to the membrane or is freely diffusible in the periplasm.
Collapse
Affiliation(s)
- H Myllykallio
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | | | | | | | |
Collapse
|
30
|
Dobbin PS, Warren LH, Cook NJ, McEwan AG, Powell AK, Richardson DJ. Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology (Reading) 1996; 142:765-774. [DOI: 10.1099/00221287-142-4-765] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic proteobacterium
Rhodobacter capsulatus
was shown to be capable of dissimilatory Fe(III) reduction. Activity was expressed during anaerobic phototrophic and microaerobic growth with malate as the carbon source, but not during equivalent aerobic growth. A variety of Fe(III) complexes were demonstrated to act as substrates for intact cells and membrane fractions of strain N22DNAR+ using a ferrozine assay for Fe(II) formation. Rates of reduction appeared to be influenced by the reduction potentials of the Fe(III) complexes. However, Fe(III) complexed by citrate, which is readily reduced by Shewanella putrefaciens, was a poor substrate for dissimilation by R. capsulatus. The Fe(III)-reducing activity of R. capsulatus was located solely in the membrane fraction. The reduction of Fe(III) complexes by intact cells was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), suggesting the involvement of ubiquinol: cytochrome c oxidoreductases in the electron transport chain. Lack of sensitivity to myxothiazol plus data from mutant strains implies that the cytochrome bc
1 complex and cytochrome c
2 are not obligatory for dissimilation of Fe(III)(maltol)3. Alternative pathways of electron transfer to Fe(III) must hence operate in R. capsulatus. Using strain N22DNAR+, the reduction rate of Fe(III) complexed by nitrilotriacetic acid (NTA) was elevated compared to that of Fe(III)(maltol)3, and moreover was sensitive to myxothiazol. However, these differences were not observed in the absence of the electron donor malate. The governing factor for the reduction rate of Fe(III)(maltol)3 thus appears to be the limited Fe(III)-reducing activity, whilst the reduction rate of Fe(III) complexed by NTA is controlled by the flux of electrons through the respiratory chain. The use of mutant strains confirmed that the role of the cytochrome bc
1 complex in Fe(III) reduction becomes apparent only with the superior substrate. The energy-conserving nature of Fe(III) reduction by R. capsulatus was demonstrated by electrochromic measurements, with the endogenous carotenoid pigments being employed as indicators of membrane potential generation in intact cells. Using Fe(III)EDTA as electron acceptor, periods of membrane potential generation were directly proportional to the quantity of complex added, and were extended in the presence of HQNO. Fe(III)-dependent carotenoid bandshifts were abolished by addition of the protonophoric uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone.
Collapse
Affiliation(s)
- Paul S. Dobbin
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Louise H. Warren
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicola J. Cook
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alastair G. McEwan
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Anne K. Powell
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - David J. Richardson
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
31
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 396] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
32
|
Sabaty M, Jappé J, Olive J, Verméglio A. Organization of electron transfer components in Rhodobacter sphaeroides forma sp. denitrificans whole cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Richardson DJ, Bell LC, Moir JW, Ferguson SJ. A denitrifying strain ofRhodobacter capsulatus. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07053.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
McEwan AG. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 1994; 66:151-64. [PMID: 7747929 DOI: 10.1007/bf00871637] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purple non-sulfur phototrophic bacteria, exemplified by Rhodobacter capsulatus and Rhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.
Collapse
Affiliation(s)
- A G McEwan
- Department of Microbiology, University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Abstract
Denitrification in bacteria comprises a series of four reduction reactions; for nitrate, nitrite, nitric oxide and nitrous oxide. Nitrogen gas is the final product. The nature of the enzymes catalysing these reactions is described along with the the properties of the underlying electron transport systems. The factors influencing the expression of the reductases for the four reactions are reviewed along with the effect of oxygen on the activities of the enzymes of denitrification. The main emphasis is on observations made with Paracoccus denitrificans and Pseudomonas stutzeri.
Collapse
Affiliation(s)
- S J Ferguson
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
36
|
The reaction of reduced cytochromes c with nitrous oxide reductase of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90153-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Berks BC, Baratta D, Richardson J, Ferguson SJ. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:467-76. [PMID: 8383047 DOI: 10.1111/j.1432-1033.1993.tb17683.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aerobic denitrifer Thiosphaera pantotropha is able to reduce simultaneously nitrous oxide and oxygen even after anaerobic growth [Bell, L. C. & Ferguson, S. J. (1991) Biochem J. 273, 423-427]. A nitrous oxide reductase was purified from anaerobically grown T. pantotropha cells. It is argued, on the basis of inhibitor sensitivities and from immunological evidence, that the same nitrous oxide reductase is involved in nitrous oxide reduction in aerobically grown cells. The purified nitrous oxide reductase was shown to have molecular properties very similar to nitrous oxide reductases previously isolated from anaerobically denitrifying bacteria. The visible absorption spectra of the T. pantotropha enzyme resemble those of the oxygen-affected form of nitrous oxide reductases from other organisms. It is thus concluded that the T. pantotropha nitrous oxide reductase is not peculiarly resistant to the structural changes caused by oxygen. The activity of the purified T. pantotropha nitrous oxide reductase was reconstituted in vitro using horse heart cytochrome c, T. pantotropha cytochrome c551 and T. pantotropha pseudoazurin as electron donors. It is suggested on this basis that either of the T. pantotropha electron-carrier proteins are possible physiological electron donors to T. pantotropha nitrous oxide reductase. Oxygen was shown not to inhibit the in-vitro reduction of nitrous oxide with horse heart ferrocytochrome c as electron donor to the reductase.
Collapse
Affiliation(s)
- B C Berks
- Department of Biochemistry, University of Oxford, England
| | | | | | | |
Collapse
|
38
|
Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 1993. [DOI: 10.1007/bf00250276] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Takamiya K, Shioi Y, Morita M, Arata H, Shimizu M, Doi M. Some properties and occurrence of cytochrome c-552 in the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 1993; 159:51-56. [PMID: 8381264 DOI: 10.1007/bf00244264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Characteristics and occurrence of cytochrome c-552 from an aerobic photosynthetic bacterium, Roseobacter denitrificans, were described. Relative molecular mass of the cytrochrome was 13.5 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 15,000 by gel filtration. This cytochrome was a acidic protein having a pI of 5.6 and Em was +215 mV at pH 7.0. Absorption peaks were at 278, 408 and 524 nm in the oxidized form and 416, 523 and 552 nm in the reduced form. Amino acid composition and N-terminal amino acid sequence of cytochrome c-552 determined for 24 residues had low similarities to those of cytochrome c-551 of this bacterium, which is homologous to cytochrome c2, although the physico-chemical properties of these two cytochromes were similar to each other. Cytochrome c-552 was maximally synthesized in the light under aerobic conditions but not in the dark. The synthesis also occurred in the presence of alternative acceptors such as trimethylamine N-oxide (TMAO) and nitrate under anaerobic conditions. Our results suggest that cytochrome c-552 is involved in TMAO respiration and denitrification in R. denitrificans, although the effect of light remains to be solved.
Collapse
Affiliation(s)
- K Takamiya
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | | | | | | | |
Collapse
|