1
|
Wang Y, Chong TH, Unarta IC, Xu X, Suarez GD, Wang J, Lis JT, Huang X, Cheung PPH. EmPC-seq: Accurate RNA-sequencing and Bioinformatics Platform to Map RNA Polymerases and Remove Background Error. Bio Protoc 2021; 11:e3921. [PMID: 33732808 PMCID: PMC7952946 DOI: 10.21769/bioprotoc.3921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/02/2022] Open
Abstract
Transcription errors can substantially affect metabolic processes in organisms by altering the epigenome and causing misincorporations in mRNA, which is translated into aberrant mutant proteins. Moreover, within eukaryotic genomes there are specific Transcription Error-Enriched genomic Loci (TEELs) which are transcribed by RNA polymerases with significantly higher error rates and hypothesized to have implications in cancer, aging, and diseases such as Down syndrome and Alzheimer's. Therefore, research into transcription errors is of growing importance within the field of genetics. Nevertheless, methodological barriers limit the progress in accurately identifying transcription errors. Pro-Seq and NET-Seq can purify nascent RNA and map RNA polymerases along the genome but cannot be used to identify transcriptional mutations. Here we present background Error Model-coupled Precision nuclear run-on Circular-sequencing (EmPC-seq), a method combining a nuclear run-on assay and circular sequencing with a background error model to precisely detect nascent transcription errors and effectively discern TEELs within the genome.
Collapse
Affiliation(s)
- Yuqing Wang
- The Hong Kong University of Science and Technology -Shenzhen Research Institute, Shenzhen, China
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Tin Hang Chong
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Ilona Christy Unarta
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Xinzhou Xu
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Gianmarco D. Suarez
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Jiguang Wang
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
- The HKUST Jockey Club Institute for Advanced Study (IAS), The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Xuhui Huang
- The Hong Kong University of Science and Technology -Shenzhen Research Institute, Shenzhen, China
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR
| | - Peter Pak-Hang Cheung
- The Hong Kong University of Science and Technology -Shenzhen Research Institute, Shenzhen, China
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
2
|
Labib BA, Minhas BK, Chigbu DI. Management of Adenoviral Keratoconjunctivitis: Challenges and Solutions. Clin Ophthalmol 2020; 14:837-852. [PMID: 32256043 PMCID: PMC7094151 DOI: 10.2147/opth.s207976] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human adenovirus (HAdV) is the most common cause of infectious conjunctivitis, accounting for up to 75% of all conjunctivitis cases and affecting people of all ages and demographics. In addition to ocular complications, it can cause systemic infections in the form of gastroenteritis, respiratory disease, and dissemination in immunocompromised individuals. HAdV causes lytic infection of the mucoepithelial cells of the conjunctiva and cornea, as well as latent infection of lymphoid and adenoid cells. Epidemic keratoconjunctivitis (EKC) is the most severe ocular manifestation of HAdV infection, in which the presence of subepithelial infiltrates (SEIs) in the cornea is a hallmark feature of corneal involvement. SEIs have the tendency to recur and may lead to long-term visual disability. HAdV persistence and dissemination are linked to sporadic outbreaks of adenoviral keratoconjunctivitis. There is no FDA-approved antiviral for treating adenoviral keratoconjunctivitis, and as such, solutions should be proffered to handle the challenges associated with viral persistence and dissemination. Several treatment modalities have been investigated, both systemically and locally, to not only mitigate symptoms but reduce the course of the infection and prevent the risk of long-term complications. These options include systemic and topical antivirals, in-office povidone-iodine irrigation (PVI), immunoglobulin-based therapy, anti-inflammatory therapy, and immunotherapy. More recently, combination PVI/dexamethasone ophthalmic formulations have shown favorable outcomes and were well tolerated in clinical trials for the treatment of EKC. Possible, future treatment considerations include sialic acid analogs, cold atmospheric plasma, N-chlorotaurine, and benzalkonium chloride. Continued investigation and evaluation of treatment are warranted to reduce the economic burden and potential long-term visual debilitation in affected patients. This review will focus on how persistence and dissemination of HAdV pose a significant challenge to the management of adenoviral keratoconjunctivitis. Furthermore, current and future trends in prophylactic and therapeutic modalities for adenoviral keratoconjunctivitis will be discussed.
Collapse
Affiliation(s)
- Bisant A Labib
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - Bhawanjot K Minhas
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - DeGaulle I Chigbu
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| |
Collapse
|
3
|
Marasco M, Li W, Lynch M, Pikaard CS. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination. Nucleic Acids Res 2017; 45:11315-11326. [PMID: 28977461 PMCID: PMC5737373 DOI: 10.1093/nar/gkx794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023] Open
Abstract
All eukaryotes have three essential nuclear multisubunit RNA polymerases, abbreviated as Pol I, Pol II and Pol III. Plants are remarkable in having two additional multisubunit RNA polymerases, Pol IV and Pol V, which synthesize noncoding RNAs that coordinate RNA-directed DNA methylation for silencing of transposons and a subset of genes. Based on their subunit compositions, Pols IV and V clearly evolved as specialized forms of Pol II, but their catalytic properties remain undefined. Here, we show that Pols IV and V differ from one another, and Pol II, in nucleotide incorporation rate, transcriptional accuracy and the ability to discriminate between ribonucleotides and deoxyribonucleotides. Pol IV transcription is considerably more error-prone than Pols II or V, which may be tolerable in its synthesis of short RNAs that serve as precursors for siRNAs targeting non-identical members of transposon families. By contrast, Pol V exhibits high fidelity transcription, similar to Pol II, suggesting a need for Pol V transcripts to faithfully reflect the DNA sequence of target loci to which siRNA–Argonaute silencing complexes are recruited.
Collapse
Affiliation(s)
- Michelle Marasco
- Department of Biology, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Weiyi Li
- Department of Biology, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Michael Lynch
- Department of Biology, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Gout JF, Li W, Fritsch C, Li A, Haroon S, Singh L, Hua D, Fazelinia H, Smith Z, Seeholzer S, Thomas K, Lynch M, Vermulst M. The landscape of transcription errors in eukaryotic cells. SCIENCE ADVANCES 2017; 3:e1701484. [PMID: 29062891 PMCID: PMC5650487 DOI: 10.1126/sciadv.1701484] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/21/2017] [Indexed: 05/09/2023]
Abstract
Accurate transcription is required for the faithful expression of genetic information. To understand the molecular mechanisms that control the fidelity of transcription, we used novel sequencing technology to provide the first comprehensive analysis of the fidelity of transcription in eukaryotic cells. Our results demonstrate that transcription errors can occur in any gene, at any location, and affect every aspect of protein structure and function. In addition, we show that multiple proteins safeguard the fidelity of transcription and provide evidence suggesting that errors that evade these layers of RNA quality control profoundly affect the physiology of living cells. Together, these observations demonstrate that there is an inherent limit to the faithful expression of the genome and suggest that the impact of mutagenesis on cellular health and fitness is substantially greater than currently appreciated.
Collapse
Affiliation(s)
| | - Weiyi Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clark Fritsch
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
- Department of Cellular and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annie Li
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Suraiya Haroon
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Larry Singh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Ding Hua
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Zach Smith
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Steven Seeholzer
- Protein and Proteomics Core, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
| | - Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Corresponding author. (M.V.); (M.L.)
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19102, USA
- Corresponding author. (M.V.); (M.L.)
| |
Collapse
|
5
|
Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation. PLoS Pathog 2016; 12:e1005646. [PMID: 27186986 PMCID: PMC4871359 DOI: 10.1371/journal.ppat.1005646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
6
|
Carey LB. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits. eLife 2015; 4. [PMID: 26652005 PMCID: PMC4868539 DOI: 10.7554/elife.09945] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells.
Collapse
Affiliation(s)
- Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Park J, Kang M, Kim M. Unraveling the mechanistic features of RNA polymerase II termination by the 5'-3' exoribonuclease Rat1. Nucleic Acids Res 2015; 43:2625-37. [PMID: 25722373 PMCID: PMC4357727 DOI: 10.1093/nar/gkv133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within a complex with Rai1, the 5′-3′ exoribonuclease Rat1 promotes termination of RNA polymerase II (RNAPII) on protein-coding genes, but its underlying molecular mechanism is still poorly understood. Using in vitro transcription termination assays, we have found that RNAPII is prone to more effective termination by Rat1/Rai1 when its catalytic site is disrupted due to NTP misincorporation, implying that paused RNAPII, which is often found in vivo near termination sites, could adopt a similar configuration to Rat1/Rai1 and trigger termination. Intriguingly, yeast Rat1/Rai1 does not terminate Escherichia coli RNAP, implying that a specific interaction between Rat1/Rai1 and RNAPII may be required for termination. Furthermore, the efficiency of termination increases as the RNA transcript undergoing degradation by Rat1 gets longer, which suggests that Rat1 may generate a driving force for dissociating RNAPII from the template while degrading the nascent transcripts to catch up to the polymerase. These results indicate that multiple mechanistic features contribute to Rat1-mediated termination of RNAPII.
Collapse
Affiliation(s)
- Jieun Park
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Myungjin Kang
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| | - Minkyu Kim
- Center for RNA Research, Institute for Basic Science and Department of Biophysics and Chemical Biology, Seoul National University, 1 Gwanak-Ro, Gwanakgu, Seoul, 151-742, South Korea
| |
Collapse
|
8
|
Abstract
Accurate transmission and expression of genetic information are crucial for the survival of all living organisms. Recently, the coupling of mutation accumulation experiments and next-generation sequencing has greatly expanded our knowledge of the genomic mutation rate in both prokaryotes and eukaryotes. However, because of their transient nature, transcription errors have proven extremely difficult to quantify, and current estimates of transcription fidelity are derived from artificial constructs applied to just a few organisms. Here we report a unique cDNA library preparation technique that allows error detection in natural transcripts at the transcriptome-wide level. Application of this method to the model organism Caenorhabditis elegans revealed a base misincorporation rate in mRNAs of ~4 × 10(-6) per site, with a very biased molecular spectrum. Because the proposed method is readily applicable to other organisms, this innovation provides unique opportunities for studying the incidence of transcription errors across the tree of life.
Collapse
|
9
|
Knippa K, Peterson DO. Fidelity of RNA Polymerase II Transcription: Role of Rbp9 in Error Detection and Proofreading. Biochemistry 2013; 52:7807-17. [DOI: 10.1021/bi4009566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Knippa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David O. Peterson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| |
Collapse
|
10
|
Intermittent Transcription Dynamics for the Rapid Production of Long Transcripts of High Fidelity. Cell Rep 2013; 5:521-30. [DOI: 10.1016/j.celrep.2013.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/01/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022] Open
|
11
|
Loverdo C, Park M, Schreiber SJ, Lloyd-Smith JO. INFLUENCE OF VIRAL REPLICATION MECHANISMS ON WITHIN-HOST EVOLUTIONARY DYNAMICS. Evolution 2012; 66:3462-71. [DOI: 10.1111/j.1558-5646.2012.01687.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J Biol Chem 2012; 287:6562-72. [PMID: 22235136 DOI: 10.1074/jbc.m111.318410] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through the barrier of nucleoproteins and site-specific DNA-binding proteins on their own or with the aid of accessory factors. Proteins are often covalently trapped on DNA by DNA damaging agents, forming DNA-protein cross-links (DPCs). However, little is known about how immobilized proteins affect transcription. To elucidate the effect of DPCs on transcription, we constructed DNA templates containing site-specific DPCs and performed in vitro transcription reactions using phage T7 RNAP. We show here that DPCs constitute strong but not absolute blocks to in vitro transcription catalyzed by T7 RNAP. More importantly, sequence analysis of transcripts shows that RNAPs roadblocked not only by DPCs but also by the stalled leading RNAP become highly error prone and generate mutations in the upstream intact template regions. This contrasts with the transcriptional mutations induced by conventional DNA lesions, which are delivered to the active site or its proximal position in RNAPs and cause direct misincorporation. Our data also indicate that the trailing RNAP stimulates forward translocation of the stalled leading RNAP, promoting the translesion bypass of DPCs. The present results provide new insights into the transcriptional fidelity and mutual interactions of RNAPs that encounter persistent roadblocks.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The predominate form of DNA diagnostics remains nucleic acid sequencing in the research and clinical setting. While DNA sequencing allows a mutation to be correctly identified, only RNA sequencing can confirm the effect of that mutation on the resulting mRNA transcript. In the absence of RNA sequencing, predictions are reliant on either experimental studies or bioinformatic modelling. While each of these approaches provides insights into cellular splicing choices, of which exon skipping is but one, both possess inherent weaknesses. A method which is able to integrate and appropriately weigh the various factors influencing cellular splicing choices into an accurate, comprehensive modelling tool still remains elusive.In this overview chapter, the current methods utilised for DNA diagnostics and the impact of the emerging next-generation sequencing techniques are considered. We explore why RNA remains a problematic medium with which to work. To understand how exon skipping can be predicted from a DNA sequence, the key cis-acting elements influencing splicing are reviewed. Finally, the current methods used to predict exon skipping including RNA-based studies, experimental studies, and bioinformatic modelling approaches are outlined.
Collapse
|
14
|
Cusack BP, Arndt PF, Duret L, Roest Crollius H. Preventing dangerous nonsense: selection for robustness to transcriptional error in human genes. PLoS Genet 2011; 7:e1002276. [PMID: 22022272 PMCID: PMC3192821 DOI: 10.1371/journal.pgen.1002276] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Nonsense Mediated Decay (NMD) degrades transcripts that contain a premature STOP codon resulting from mistranscription or missplicing. However NMD's surveillance of gene expression varies in efficiency both among and within human genes. Previous work has shown that the intron content of human genes is influenced by missplicing events invisible to NMD. Given the high rate of transcriptional errors in eukaryotes, we hypothesized that natural selection has promoted a dual strategy of “prevention and cure” to alleviate the problem of nonsense transcriptional errors. A prediction of this hypothesis is that NMD's inefficiency should leave a signature of “transcriptional robustness” in human gene sequences that reduces the frequency of nonsense transcriptional errors. For human genes we determined the usage of “fragile” codons, prone to mistranscription into STOP codons, relative to the usage of “robust” codons that do not generate nonsense errors. We observe that single-exon genes have evolved to become robust to mistranscription, because they show a significant tendency to avoid fragile codons relative to robust codons when compared to multi-exon genes. A similar depletion is evident in last exons of multi-exon genes. Histone genes are particularly depleted of fragile codons and thus highly robust to transcriptional errors. Finally, the protein products of single-exon genes show a strong tendency to avoid those amino acids that can only be encoded using fragile codons. Each of these observations can be attributed to NMD deficiency. Thus, in the human genome, wherever the “cure” for nonsense (i.e. NMD) is inefficient, there is increased reliance on the strategy of nonsense “prevention” (i.e. transcriptional robustness). This study shows that human genes are exposed to the deleterious influence of transcriptional errors. Moreover, it suggests that gene expression errors are an underestimated phenomenon, in molecular evolution in general and in selection for genomic robustness in particular. In biological systems mistakes are made constantly because the cellular machinery is complex and error-prone. Mistakes are made in copying DNA for transmission to offspring (“genetic mutations”) but are much more frequent in the day-to-day task of gene expression. Genetic mutations are heritable and therefore have long been the almost exclusive focus of evolutionary genetics research. In contrast, gene expression errors are not inherited and have tended to be disregarded in evolutionary studies. Here we show how human genes have evolved a mechanism to reduce the occurrence of a specific type of gene expression error—transcriptional errors that create premature STOP codons (so-called “nonsense errors”). Nonsense errors are potentially highly toxic for the cell, so natural selection has evolved a strategy called Nonsense Mediated Decay (NMD) to “cure” such errors. However this cure is inefficient. Here we describe how a preventative strategy of “transcriptional robustness” has evolved to decrease the frequency of nonsense errors. Moreover, these “prevention and cure” strategies are used interchangeably—the most transcriptionally robust genes are those for which NMD is most inefficient. Our work implies that gene expression errors play an important role as supporting actors to genetic mutations in molecular evolution, particularly in the evolution of robustness.
Collapse
Affiliation(s)
- Brian P Cusack
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
Fidelity in archaeal information processing. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20871851 PMCID: PMC2943090 DOI: 10.1155/2010/960298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 07/12/2010] [Indexed: 12/30/2022]
Abstract
A key element during the flow of genetic information in living systems is fidelity. The accuracy of DNA replication influences the genome size as well as the rate of genome evolution. The large amount of energy invested in gene expression implies that fidelity plays a major role in fitness. On the other hand, an increase in fidelity generally coincides with a decrease in velocity. Hence, an important determinant of the evolution of life has been the establishment of a delicate balance between fidelity and variability. This paper reviews the current knowledge on quality control in archaeal information processing. While the majority of these processes are homologous in Archaea, Bacteria, and Eukaryotes, examples are provided of nonorthologous factors and processes operating in the archaeal domain. In some instances, evidence for the existence of certain fidelity mechanisms has been provided, but the factors involved still remain to be identified.
Collapse
|
16
|
Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol 2010; 84:9864-78. [PMID: 20660205 DOI: 10.1128/jvi.00915-10] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There is considerable HIV-1 variation in patients. The extent of the variation is due to the high rate of viral replication, the high viral load, and the errors made during viral replication. Mutations can arise from errors made either by host DNA-dependent RNA polymerase II or by HIV-1 reverse transcriptase (RT), but the relative contributions of these two enzymes to the mutation rate are unknown. In addition, mutations in RT can affect its fidelity, but the effect of mutations in RT on the nature of the mutations that arise in vivo is poorly understood. We have developed an efficient system, based on existing technology, to analyze the mutations that arise in an HIV-1 vector in a single cycle of replication. A lacZalpha reporter gene is used to identify viral DNAs that contain mutations which are analyzed by DNA sequencing. The forward mutation rate in this system is 1.4 x 10(-5) mutations/bp/cycle, equivalent to the retroviral average. This rate is about 3-fold lower than previously reported for HIV-1 in vivo and is much lower than what has been reported for purified HIV-1 RT in vitro. Although the mutation rate was not affected by the orientation of lacZalpha, the sites favored for mutations (hot spots) in lacZalpha depended on which strand of lacZalpha was present in the viral RNA. The pattern of hot spots seen in lacZalpha in vivo did not match any of the published data obtained when purified RT was used to copy lacZalpha in vitro.
Collapse
|
17
|
Evolution of the mutation rate. Trends Genet 2010; 26:345-52. [PMID: 20594608 DOI: 10.1016/j.tig.2010.05.003] [Citation(s) in RCA: 671] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/16/2010] [Accepted: 05/21/2010] [Indexed: 11/20/2022]
Abstract
Understanding the mechanisms of evolution requires information on the rate of appearance of new mutations and their effects at the molecular and phenotypic levels. Although procuring such data has been technically challenging, high-throughput genome sequencing is rapidly expanding knowledge in this area. With information on spontaneous mutations now available in a variety of organisms, general patterns have emerged for the scaling of mutation rate with genome size and for the likely mechanisms that drive this pattern. Support is presented for the hypothesis that natural selection pushes mutation rates down to a lower limit set by the power of random genetic drift rather than by intrinsic physiological limitations, and that this has resulted in reduced levels of replication, transcription, and translation fidelity in eukaryotes relative to prokaryotes.
Collapse
|
18
|
Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 2010; 107:11301-6. [PMID: 20534440 DOI: 10.1073/pnas.1000681107] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative elongation factor (NELF) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) are involved in pausing RNA Polymerase II (Pol II) in the promoter-proximal region of the hsp70 gene in Drosophila, before heat shock induction. Such blocks in elongation are widespread in the Drosophila genome. However, the mechanism by which DSIF and NELF participate in setting up the paused Pol II remains unclear. We analyzed the interactions among DSIF, NELF, and a reconstituted Drosophila Pol II elongation complex to gain insight into the mechanism of pausing. Our results show that DSIF and NELF require a nascent transcript longer than 18 nt to stably associate with the Pol II elongation complex. Protein-RNA cross-linking reveals that Spt5, the largest subunit of DSIF, contacts the nascent RNA as the RNA emerges from the elongation complex. Taken together, these results provide a possible model by which DSIF binds the elongation complex via association with the nascent transcript and subsequently recruits NELF. Although DSIF and NELF were both required for inhibition of transcription, we did not detect a NELF-RNA contact when the nascent transcript was between 22 and 31 nt long, which encompasses the region where promoter-proximal pausing occurs on many genes in Drosophila. This raises the possibility that RNA binding by NELF is not necessary in promoter-proximal pausing.
Collapse
|
19
|
Menéndez-Arias L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 2009; 1:1137-65. [PMID: 21994586 PMCID: PMC3185545 DOI: 10.3390/v1031137] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022] Open
Abstract
Retroviruses are RNA viruses that replicate through a DNA intermediate, in a process catalyzed by the viral reverse transcriptase (RT). Although cellular polymerases and host factors contribute to retroviral mutagenesis, the RT errors play a major role in retroviral mutation. RT mutations that affect the accuracy of the viral polymerase have been identified by in vitro analysis of the fidelity of DNA synthesis, by using enzymological (gel-based) and genetic assays (e.g., M13mp2 lacZ forward mutation assays). For several amino acid substitutions, these observations have been confirmed in cell culture using viral vectors. This review provides an update on studies leading to the identification of the major components of the fidelity center in retroviral RTs.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" [Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid], Campus de Cantoblanco, 28049 Madrid, Spain; E-Mail: ; Tel.: +34 91 196 4494
| |
Collapse
|
20
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
21
|
Abstract
RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
22
|
Nesser NK, Peterson DO, Hawley DK. RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. Proc Natl Acad Sci U S A 2006; 103:3268-73. [PMID: 16492753 PMCID: PMC1413937 DOI: 10.1073/pnas.0511330103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fidelity of yeast RNA polymerase II (Pol II) was assessed in vivo with an assay in which errors in transcription of can1-100, a nonsense allele of CAN1, result in enhanced sensitivity to the toxic arginine analog canavanine. The Pol II accessory factor TFIIS has been proposed to play a role in transcript editing by stimulating the intrinsic nuclease activity of the RNA polymerase. However, deletion of DST1, the gene encoding the yeast homolog of TFIIS, had only a small effect on transcriptional fidelity, as determined by this assay. In contrast, strains containing a deletion of RPB9, which encodes a small core subunit of Pol II, were found to engage in error-prone transcription. rpb9Delta strains also had increased steady-state levels of can1-100 mRNA, consistent with transcriptional errors that decrease the normal sensitivity of the can1-100 transcript to nonsense-mediated decay, a pathway that degrades mRNAs with premature stop codons. Sequences of cDNAs from rpb9Delta strains confirmed a significantly increased occurrence of transcriptional substitutions and insertions. These results suggest that Rpb9 plays an important role in maintaining transcriptional fidelity, whereas TFIIS may serve a different primary purpose.
Collapse
Affiliation(s)
- Nicole K. Nesser
- *Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229; and
| | - David O. Peterson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Diane K. Hawley
- *Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Abstract
HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication may place retroviruses and other RNA viruses near the threshold of "error catastrophe" or extinction due to an intolerable load of deleterious mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we review the concept of extinguishing HIV infection by "lethal mutagenesis" and consider the utility of this new approach in combination with conventional antiretroviral strategies.
Collapse
Affiliation(s)
- Robert A Smith
- Department of Pathology, University of Washington, Seattle, WA 18195, USA.
| | | | | |
Collapse
|
24
|
Enjuanes L, Sola I, Alonso S, Escors D, Zúñiga S. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 2005; 287:161-97. [PMID: 15609512 PMCID: PMC7120368 DOI: 10.1007/3-540-26765-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 microg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Benson KF, Person RE, Li FQ, Williams K, Horwitz M. Paradoxical homozygous expression from heterozygotes and heterozygous expression from homozygotes as a consequence of transcriptional infidelity through a polyadenine tract in the AP3B1 gene responsible for canine cyclic neutropenia. Nucleic Acids Res 2004; 32:6327-33. [PMID: 15576359 PMCID: PMC535682 DOI: 10.1093/nar/gkh974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 11/13/2022] Open
Abstract
Canine cyclic neutropenia is an autosomal recessive disease in which the number of neutrophils, the primary blood phagocyte, oscillates between almost zero and normal values with two week frequency. We previously found that the causative mutation is an insertion of an extra adenine residue within a tract of nine A's in exon 21 of the 27 exon canine AP3B1 gene. In the course of identifying the mutation, however, we observed an unusual phenomenon: heterozygous carrier dogs, who have one normal allele and one mutant allele, produce a homogeneous population of normal AP3B1 transcripts (containing nine A's), but homozygous affected dogs, who have two mutant alleles, produce a heterogeneous population of AP3B1 mRNA containing mutant transcripts with ten A's and, unexpectedly, wild-type transcripts with nine A's. By RT-PCR subclone analysis and use of an in vitro reporter assay, we show that there is a high frequency of errors made during the transcription of homopolymeric adenine sequences, such that the A tract in the mRNA is frequently shortened or lengthened by an extra residue. Out of frame transcripts are degraded, accounting for this paradox through the preferential accumulation of normal message from mutant alleles.
Collapse
Affiliation(s)
- Kathleen F Benson
- Division of Medical Genetics/Department of Medicine, University of Washington School of Medicine, Box 357720, 1705 NE Pacific Street, HSB-K236B, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Zhang J. Host RNA polymerase II makes minimal contributions to retroviral frame-shift mutations. J Gen Virol 2004; 85:2389-2395. [PMID: 15269381 DOI: 10.1099/vir.0.80081-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rate of mutation during retrovirus replication is high. Mutations can occur during transcription of the viral genomic RNA from the integrated provirus or during reverse transcription from viral RNA to form viral DNA or during replication of the proviral DNA as the host cell is dividing. Therefore, three polymerases may all contribute to retroviral evolution: host RNA polymerase II, viral reverse transcriptases and host DNA polymerases, respectively. Since the rate of mutation for host DNA polymerase is very low, mutations are more likely to be caused by the host RNA polymerase II and/or the viral reverse transcriptase. A system was established to detect the frequency of frame-shift mutations caused by cellular RNA polymerase II, as well as the rate of retroviral mutation during a single cycle of replication in vivo. In this study, it was determined that RNA polymerase II contributes less than 3 % to frame-shift mutations that occur during retrovirus replication. Therefore, the majority of frame-shift mutations detected within the viral genome are the result of errors during reverse transcription.
Collapse
Affiliation(s)
- Jiayou Zhang
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, 206 Combs Research Bldg, 800 Rose Street, Lexington, KY 40536-0096, USA
| |
Collapse
|
27
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
28
|
Enjuanes L, Sola I, Almazan F, Izeta A, Gonzalez JM, Alonso S. Coronavirus derived expression systems. Progress and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:309-21. [PMID: 11774485 DOI: 10.1007/978-1-4615-1325-4_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L Enjuanes
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Alonso S, Sola I, Teifke JP, Reimann I, Izeta A, Balasch M, Plana-Durán J, Moormann RJM, Enjuanes L. In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. J Gen Virol 2002; 83:567-579. [PMID: 11842252 DOI: 10.1099/0022-1317-83-3-567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3.9 kb (M39). Expression of the reporter gene beta-glucuronidase (GUS) (2-8 microg per 10(6) cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1-2 microg per 10(6) cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by in situ hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Jens P Teifke
- Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany2
| | - Ilona Reimann
- Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany2
| | - Ander Izeta
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | | | | | - Rob J M Moormann
- Institute for Animal Science and Health, Lelystad, The Netherlands4
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
30
|
Enjuanes L, Sola I, Almazan F, Ortego J, Izeta A, Gonzalez JM, Alonso S, Sanchez JM, Escors D, Calvo E, Riquelme C, Sanchez C. Coronavirus derived expression systems. J Biotechnol 2001; 88:183-204. [PMID: 11434966 PMCID: PMC7126887 DOI: 10.1016/s0168-1656(01)00281-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Revised: 04/12/2001] [Accepted: 04/23/2001] [Indexed: 11/18/2022]
Abstract
Both helper dependent expression systems, based on two components, and single genomes constructed by targeted recombination, or by using infectious cDNA clones, have been developed. The sequences that regulate transcription have been characterized mainly using helper dependent expression systems and it will now be possible to validate them using single genomes. The genome of coronaviruses has been engineered by modification of the infectious cDNA leading to an efficient (>20 microg ml(-1)) and stable (>20 passages) expression of the foreign gene. The possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, increases the potential of coronaviruses as vectors. Thus, coronaviruses are promising virus vectors for vaccine development and, possibly, for gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Agapov EV, Frolov I, Lindenbach BD, Prágai BM, Schlesinger S, Rice CM. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 1998; 95:12989-94. [PMID: 9789028 PMCID: PMC23682 DOI: 10.1073/pnas.95.22.12989] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins.
Collapse
Affiliation(s)
- E V Agapov
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yu H, Jetzt AE, Dougherty JP. Use of single-cycle analysis to study rates and mechanisms of retroviral mutation. Methods 1997; 12:325-36. [PMID: 9245613 DOI: 10.1006/meth.1997.0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retroviruses evolve at rapid rates. This allows them to escape immune surveillance, thwarts vaccine development, and leads to rapid emergence of drug-resistant virus. Information regarding the retroviral mutation rates and the underlying mechanisms of mutagenesis will undoubtedly expedite the development of strategies to combat retroviral-mediated diseases. In this review, we discuss how the unique retroviral life cycle can be adapted such that retroviral variation can be studied in a single cycle of replication. By limiting replication to a single cycle, retroviral mutation rates can be directly measured, and the consequences of mutations can be observed. In addition, retroviral recombination rates as well as the nature of primer strand transfer during reverse transcription can be studied using this system. Molecular analysis of the spectrum of mutations arising during a single cycle of virus replication also sheds light on the mechanisms of mutagenesis and retroviral replication.
Collapse
Affiliation(s)
- H Yu
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
33
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- B D Preston
- Department of Biochemistry, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
35
|
Mansky LM. Forward mutation rate of human immunodeficiency virus type 1 in a T lymphoid cell line. AIDS Res Hum Retroviruses 1996; 12:307-14. [PMID: 8906991 DOI: 10.1089/aid.1996.12.307] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An in vivo assay was previously developed for detecting forward mutations in human immunodeficiency virus type 1 (HIV-1) in a single cycle of replication. This system uses the lacZalpha peptide gene as a reporter for mutations, and allows for the rates and types of mutations that occur to be determined. The forward mutation rate for HIV-1 in HeLa cells was found to be 3 x 10(-5) mutations per target base pair per cycle. To test whether the mutation rate was influenced by cell type, the mutation rate of HIV-1 in CEM-A cells, a T lymphoid cell line, was determined. The mutation rate of HIV-1 reverse transcription in CEM-A cells was found to be 4 x 10(-5) mutations per target base pair per cycle. The number and types of mutations observed were similar to that in HeLa cells. Specifically, base substitution mutations predominated, and G-to-A transition mutations were the most common base substitution. G-to-A hypermutants were also characterized. The difference in HIV-1 mutation rate between HeLa and CEM-A cells was not significant, indicating that the accuracy of HIV-1 reverse transcription is comparable in both the HeLa and CEM-A cell lines.
Collapse
Affiliation(s)
- L M Mansky
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
36
|
Abstract
Retroviruses, like other RNA viruses, mutate at very high rates (0.05-1 mutations per genome per replication cycle) and exist as complex genetically heterogeneous populations ('quasispecies') that are ever changing. De novo mutations are generated by inherently error-prone steps in the retroviral life cycle that introduce base substitutions, frame shifts, genetic rearrangements and hypermutations.
Collapse
Affiliation(s)
- B D Preston
- Dept of Biochemistry, University of Utah, Salt Lake City 84112, USA.
| | | |
Collapse
|