1
|
Seow ES, Doran EC, Schroeder JH, Rogers ME, Raynes JG. C-reactive protein binds to short phosphoglycan repeats of Leishmania secreted proteophosphoglycans and activates complement. Front Immunol 2023; 14:1256205. [PMID: 37720216 PMCID: PMC10500826 DOI: 10.3389/fimmu.2023.1256205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Human C-reactive protein (CRP) binds to lipophosphoglycan (LPG), a virulence factor of Leishmania spp., through the repeating phosphodisaccharide region. We report here that both major components of promastigote secretory gel (PSG), the filamentous proteophosphoglycan (fPPG) and the secreted acid phosphatase (ScAP), are also ligands. CRP binding was mainly associated with the flagellar pocket when LPG deficient Leishmania mexicana parasites were examined by fluorescent microscopy, consistent with binding to secreted material. ScAP is a major ligand in purified fPPG from parasite culture as demonstrated by much reduced binding to a ScAP deficient mutant fPPG in plate binding assays and ligand blotting. Nevertheless, in sandfly derived PSG fPPG is a major component and the major CRP binding component. Previously we showed high avidity of CRP for LPG ligand required multiple disaccharide repeats. ScAP and fPPG only have short repeats but they retain high avidity for CRP revealed by surface plasmon resonance because they are found in multiple copies on the phosphoglycan. The fPPG from many species such as L. donovani and L. mexicana bound CRP strongly but L. tropica and L. amazonensis had low amounts of binding. The extent of side chain substitution of [-PO4-6Galβ1-4Manα1-] disaccharides correlates inversely with binding of CRP. The ligand for the CRP on different species all had similar binding avidity as the half maximal binding concentration was similar. Since the PSG is injected with the parasites into host blood pools and phosphoglycans (PG) are known to deplete complement, we showed that CRP makes a significant contribution to the activation of complement by PSG using serum from naive donors.
Collapse
Affiliation(s)
| | | | | | | | - John G. Raynes
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
3
|
Al Kufi SGJH, Emmerson J, Rosenqvist H, Garcia CMM, Rios-Szwed DO, Wiese M. Absence of DEATH kinesin is fatal for Leishmania mexicana amastigotes. Sci Rep 2022; 12:3266. [PMID: 35228627 PMCID: PMC8885694 DOI: 10.1038/s41598-022-07412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
AbstractKinesins are motor proteins present in organisms from protists to mammals playing important roles in cell division, intracellular organisation and flagellum formation and maintenance. Leishmania mexicana is a protozoan parasite of the order Kinetoplastida causing human cutaneous leishmaniasis. Kinetoplastida genome sequence analyses revealed a large number of kinesins showing sequence and structure homology to eukaryotic kinesins. Here, we investigate the L. mexicana kinesin LmxKIN29 (LmxM.29.0350), also called DEATH kinesin. The activated MAP kinase LmxMPK3, a kinase affecting flagellum length in Leishmania, is able to phosphorylate recombinant full length LmxKIN29 at serine 554. Insect promastigote LmxKIN29 Leishmania null mutants showed no obvious phenotype. However, in mouse infection experiments, the null mutants were unable to cause the disease, whereas LmxKIN29 add-backs and single allele knockouts caused footpad lesions. Localisation using promastigotes expressing GFP-tagged LmxKIN29 revealed that the kinesin is predominantly found in between the nucleus and the flagellar pocket, while in dividing cells the GFP-fusion protein was found at the anterior and posterior ends of the cells indicating a role in cytokinesis. The inability to cause lesions in infected animals and the amino acid sequence divergence from mammalian kinesins suggests that LmxKIN29 is a potential drug target against leishmaniasis.
Collapse
|
4
|
Leishmania flagellum attachment zone is critical for flagellar pocket shape, development in the sand fly, and pathogenicity in the host. Proc Natl Acad Sci U S A 2019; 116:6351-6360. [PMID: 30850532 PMCID: PMC6442623 DOI: 10.1073/pnas.1812462116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leishmania alternates between an insect vector and human host; in these different environments, the parasite adopts different forms. There are important commonalities between these different forms, particularly the flagellar pocket (FP) and associated flagellum attachment zone (FAZ). We show that the FAZ is important in different forms of Leishmania for FP shape and function, which are altered in mutants lacking a FAZ protein, FAZ5. FAZ5 deletion did not affect parasite proliferation and differentiation in culture; however, it dramatically reduced parasite proliferation in the sand fly and mouse. These results demonstrate the importance of the FAZ for FP function and architecture, and show that deletion of one FAZ protein can have a dramatic effect on Leishmania development and pathogenicity. Leishmania kinetoplastid parasites infect millions of people worldwide and have a distinct cellular architecture depending on location in the host or vector and specific pathogenicity functions. An invagination of the cell body membrane at the base of the flagellum, the flagellar pocket (FP), is an iconic kinetoplastid feature, and is central to processes that are critical for Leishmania pathogenicity. The Leishmania FP has a bulbous region posterior to the FP collar and a distal neck region where the FP membrane surrounds the flagellum more closely. The flagellum is attached to one side of the FP neck by the short flagellum attachment zone (FAZ). We addressed whether targeting the FAZ affects FP shape and its function as a platform for host–parasite interactions. Deletion of the FAZ protein, FAZ5, clearly altered FP architecture and had a modest effect in endocytosis but did not compromise cell proliferation in culture. However, FAZ5 deletion had a dramatic impact in vivo: Mutants were unable to develop late-stage infections in sand flies, and parasite burdens in mice were reduced by >97%. Our work demonstrates the importance of the FAZ for FP function and architecture. Moreover, we show that deletion of a single FAZ protein can have a large impact on parasite development and pathogenicity.
Collapse
|
5
|
Nogueira PM, Guimarães AC, Assis RR, Sadlova J, Myskova J, Pruzinova K, Hlavackova J, Turco SJ, Torrecilhas AC, Volf P, Soares RP. Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis. Parasit Vectors 2017; 10:608. [PMID: 29246180 PMCID: PMC5732482 DOI: 10.1186/s13071-017-2568-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. Results Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. Conclusions LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.
Collapse
Affiliation(s)
- Paula M Nogueira
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, MG, Brazil. .,Departamento de Parasitologia, UFMG, Belo Horizonte, MG, Brazil.
| | | | - Rafael R Assis
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Pruzinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Salvatore J Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, KY, USA
| | - Ana C Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Farmácia, UNIFESP, São Paulo, SP, Brazil
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | |
Collapse
|
6
|
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170095. [PMID: 28573017 PMCID: PMC5451818 DOI: 10.1098/rsos.170095] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 05/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major, Leishmania mexicana and bloodstream form Trypanosoma brucei; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Gluenz
- Author for correspondence: Eva Gluenz e-mail:
| |
Collapse
|
7
|
Abstract
Leishmaniasis is a neglected tropical disease spread by an arthropod vector. It remains a significant health problem with an incidence of 0.2–0.4 million visceral leishmaniasis and 0.7–1.2 million cutaneous leishmaniasis cases each year. There are limitations associated with the current therapeutic regimens for leishmaniasis and the fact that after recovery from infection the host becomes immune to subsequent infection therefore, these factors force the feasibility of a vaccine for leishmaniasis. Publication of the genome sequence of Leishmania has paved a new way to understand the pathogenesis and host immunological status therefore providing a deep insight in the field of vaccine research. This review is an effort to study the antigenic targets in Leishmania to develop an anti-leishmanial vaccine.
Collapse
|
8
|
Anish C, Martin CE, Wahlbrink A, Bogdan C, Ntais P, Antoniou M, Seeberger PH. Immunogenicity and diagnostic potential of synthetic antigenic cell surface glycans of Leishmania. ACS Chem Biol 2013; 8:2412-22. [PMID: 24004239 DOI: 10.1021/cb400602k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Detection and quantification of pathogen-derived antigenic structures is a key method for the initial diagnosis and follow-up of various infectious diseases. Complex parasitic diseases such as leishmaniasis require highly sensitive and specific tests prior to treatment with potentially toxic drugs. To investigate the diagnostic potential of cell surface glycans found on Leishmania parasites, we identified diagnostically relevant glycan epitopes and used synthetic glycan microarrays to screen sera from infected humans and dogs. On the basis of the screening results, we selected a tetrasaccharide to generate anti-glycan antibodies. The corresponding tetrasaccharide-carrier protein conjugate was immunogenic in mice, and sera obtained from immunized mice specifically detected the Leishmania parasite. These results demonstrate how synthetic glycan arrays, in combination with immunological methods, help to identify promising carbohydrate antigens for pathogen detection.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christopher E. Martin
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annette Wahlbrink
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christian Bogdan
- Mikrobiologisches
Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum
Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pantelis Ntais
- Laboratory
of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine,
Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria Antoniou
- Laboratory
of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine,
Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Peter H. Seeberger
- Max-Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
9
|
Sádlová J, Price HP, Smith BA, Votýpka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol 2011; 12:1765-79. [PMID: 20636473 PMCID: PMC3015063 DOI: 10.1111/j.1462-5822.2010.01507.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stage-regulated HASPB and SHERP proteins of Leishmania major are predominantly expressed in cultured metacyclic parasites that are competent for macrophage uptake and survival. The role of these proteins in parasite development in the sand fly vector has not been explored, however. Here, we confirm that expression of HASPB is detected only in vector metacyclic stages, correlating with the expression of metacyclic-specific lipophosphoglycan and providing the first definitive protein marker for this infective sand fly stage. Similarly, SHERP is expressed in vector metacyclics but is also detected at low levels in the preceding short promastigote stage. Using genetically modified parasites lacking or complemented for the LmcDNA16 locus on chromosome 23 that contains the HASP and SHERP genes, we further show that the presence of this locus is essential for parasite differentiation to the metacyclic stage in Phlebotomus papatasi. While wild-type and complemented parasites transform normally in late-stage infections, generating metacyclic promastigotes and colonizing the sand fly stomodeal valve, null parasites accumulate at the earlier elongated nectomonad stage of development within the abdominal and thoracic midgut of the sand fly. Complementation with HASPB or SHERP alone suggests that HASPB is the dominant effector molecule in this process.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague CZ 128 44, Czech Republic
| | | | | | | | | | | |
Collapse
|
10
|
Lamerz AC, Damerow S, Kleczka B, Wiese M, van Zandbergen G, Lamerz J, Wenzel A, Hsu FF, Turk J, Beverley SM, Routier FH. Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology 2010; 20:872-82. [PMID: 20335578 DOI: 10.1093/glycob/cwq045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nucleotide sugar UDP-galactose (UDP-Gal) is essential for the biosynthesis of several abundant glycoconjugates forming the surface glycocalyx of the protozoan parasite Leishmania major. Current data suggest that UDP-Gal could arise de novo by epimerization of UDP-glucose (UDP-Glc) or by a salvage pathway involving phosphorylation of Gal and the action of UDP-glucose:alpha-D-galactose-1-phosphate uridylyltransferase as described by Leloir. Since both pathways require UDP-Glc, inactivation of the UDP-glucose pyrophosphorylase (UGP) catalyzing activation of glucose-1 phosphate to UDP-Glc was expected to deprive parasites of UDP-Gal required for Leishmania glycocalyx formation. Targeted deletion of the gene encoding UGP, however, only partially affected the synthesis of the Gal-rich phosphoglycans. Moreover, no alteration in the abundant Gal-containing glycoinositolphospholipids was found in the deletion mutant. Consistent with these findings, the virulence of the UGP-deficient mutant was only modestly affected. These data suggest that Leishmania elaborates a UDP-Glc independent salvage pathway for UDP-Gal biosynthesis.
Collapse
|
11
|
Leishmania adaptor protein-1 subunits are required for normal lysosome traffic, flagellum biogenesis, lipid homeostasis, and adaptation to temperatures encountered in the mammalian host. EUKARYOTIC CELL 2008; 7:1256-67. [PMID: 18515754 DOI: 10.1128/ec.00090-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 mu1 and sigma1 subunits are not required for growth at 27 degrees C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The mu1 and sigma1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.
Collapse
|
12
|
Rodríguez-Contreras D, Landfear SM. Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence. J Biol Chem 2006; 281:20068-76. [PMID: 16707495 DOI: 10.1074/jbc.m603265200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania mexicana are parasitic protozoa that express a variety of glycoconjugates that play important roles in their biology as well as the storage carbohydrate beta-mannan, which is an essential virulence factor for survival of intracellular amastigote forms in the mammalian host. Glucose transporter null mutants, which are viable as insect form promastigotes but not as amastigotes, do not take up glucose and other hexoses but are still able to synthesize these glycoconjugates and beta-mannan, although at reduced levels. Synthesis of these carbohydrate-containing macromolecules could be accounted for by incorporation of non-carbohydrate precursors into carbohydrates by gluconeogenesis. However, the significantly reduced level of the virulence factor beta-mannan in the glucose transporter null mutants compared with wild-type parasites may contribute to the non-viability of these null mutants in the disease-causing amastigote stage of the life cycle.
Collapse
Affiliation(s)
- Dayana Rodríguez-Contreras
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
13
|
Cody SH, Xiang SD, Layton MJ, Handman E, Lam MHC, Layton JE, Nice EC, Heath JK. A simple method allowing DIC imaging in conjunction with confocal microscopy. J Microsc 2005; 217:265-74. [PMID: 15725130 DOI: 10.1111/j.1365-2818.2005.01452.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Current optical methods to collect Nomarski differential interference contrast (DIC) or phase images with a transmitted light detector (TLD) in conjunction with confocal laser scanning microscopy (CLSM) can be technically challenging and inefficient. We describe for the first time a simple method that combines the use of the commercial product QPm (Iatia, Melbourne Australia) with brightfield images collected with the TLD of a CLSM, generating DIC, phase, Zernike phase, dark-field or Hoffman modulation contrast images. The brightfield images may be collected at the same time as the confocal images. This method also allows the calculation of contrast-enhanced images from archival data. The technique described here allows for the creation of contrast-enhanced images such as DIC or phase, without compromising the intensity or quality of confocal images collected simultaneously. Provided the confocal microscope is equipped with a motorized z-drive and a TLD, no hardware or optical modifications are required. The contrast-enhanced images are calculated with software using the quantitative phase-amplitude microscopy technique (Barone-Nugent et al., 2002). This technique, being far simpler during image collection, allows the microscopist to concentrate on their confocal imaging and experimental procedures. Unlike conventional DIC, this technique may be used to calculate DIC images when cells are imaged through plastic, and without the use of expensive strain-free objective lenses.
Collapse
Affiliation(s)
- S H Cody
- Ludwig Institute for Cancer Research, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rose K, Curtis J, Baldwin T, Mathis A, Kumar B, Sakthianandeswaren A, Spurck T, Low Choy J, Handman E. Cutaneous leishmaniasis in red kangaroos: isolation and characterisation of the causative organisms. Int J Parasitol 2004; 34:655-64. [PMID: 15111087 DOI: 10.1016/j.ijpara.2004.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
This is the first report of cutaneous leishmaniasis in kangaroos where infection was acquired within Australia. The diagnosis is based on the clinical criteria used for humans, the lesion histopathology, the detection and isolation of parasites from the lesions, and the analysis of the small subunit ribosomal RNA genes using the polymerase chain reaction. Despite a clear indication that the parasites belong to the genus Leishmania, no assignation to a known Leishmania species could be made using these or other less conserved genetic loci such as the non-transcribed spacer of the mini-exon repeat. As is the case in humans, some but not all animals harbouring lesions had antibodies to the isolated parasites or to several other Leishmania species. The isolated parasites displayed two well characterised Leishmania glycoconjugates, the lipophosphoglycan and proteophosphoglycan. They were infectious for mouse macrophages in vitro and established long-term infection at 33 degrees C but not at 37 degrees C. Our findings raise the possibility of transmission to humans, which may be unrecognised and suggest the possibility that imported species of Leishmania could become endemic in Australia.
Collapse
Affiliation(s)
- K Rose
- Australian Registry of Wildlife Health, Zoological Parks Board of NSW, Mosman, NSW 2087, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 2004; 430:463-7. [PMID: 15269771 PMCID: PMC2835460 DOI: 10.1038/nature02675] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/18/2004] [Indexed: 11/09/2022]
Abstract
Sand flies are the exclusive vectors of the protozoan parasite Leishmania, but the mechanism of transmission by fly bite has not been determined nor incorporated into experimental models of infection. In sand flies with mature Leishmania infections the anterior midgut is blocked by a gel of parasite origin, the promastigote secretory gel. Here we analyse the inocula from Leishmania mexicana-infected Lutzomyia longipalpis sand flies. Analysis revealed the size of the infectious dose, the underlying mechanism of parasite delivery by regurgitation, and the novel contribution made to infection by filamentous proteophosphoglycan (fPPG), a component of promastigote secretory gel found to accompany the parasites during transmission. Collectively these results have important implications for understanding the relationship between the parasite and its vector, the pathology of cutaneous leishmaniasis in humans and also the development of effective vaccines and drugs. These findings emphasize that to fully understand transmission of vector-borne diseases the interaction between the parasite, its vector and the mammalian host must be considered together.
Collapse
Affiliation(s)
- Matthew E Rogers
- Liverpool School of Tropical Medicine, University of Liverpool, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | |
Collapse
|
16
|
Chaves CS, Soares DC, Da Silva RP, Saraiva EM. Characterization of the species- and stage-specificity of two monoclonal antibodies against Leishmania amazonensis. Exp Parasitol 2003; 103:152-9. [PMID: 12880592 DOI: 10.1016/s0014-4894(03)00098-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Leishmania metacyclogenesis is associated with changes in morphology, gene expression, and structural alterations of the lipophosphoglycan (LPG), the promastigote most abundant surface glycolipid. Purification of metacyclics is accomplished using lectins or monoclonal antibodies (MAbs) that exploit stage-specific differences in the LPG. Besides, LPG displays extensive interspecies polymorphisms and is synthesized by promastigotes of all species investigated to date. In this work we studied the species- and stage-specificity of two MAbs (3A1-La and LuCa-D5) used to purify metacyclics of Leishmania amazonensis. Their ability to recognize different members of the Trypanosomatidae family was tested by direct agglutination, indirect immunofluorescence, and dot-blot analysis of LPG. We found that both MAbs were highly selective for L. amazonensis: 3A1-La recognized only promastigotes and LuCa-D5 labeled amastigote and promastigote stages of this species. These MAbs might be useful for Leishmania typing.
Collapse
Affiliation(s)
- C S Chaves
- Departamento de Imunologia, Instituto de Microbiologia-UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
17
|
Montgomery J, Curtis J, Handman E. Genetic and structural heterogeneity of proteophosphoglycans in Leishmania. Mol Biochem Parasitol 2002; 121:75-85. [PMID: 11985864 DOI: 10.1016/s0166-6851(02)00024-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteophosphoglycans (PPG) are a large family of extensively glycosylated proteins with some unusual and unique features. The ppg gene family is conserved in at least three Leishmania species and localises to chromosome 35. Previous studies using standard discontinuous SDS-PAGE have been incapable of resolving PPG heterogeneity with most material failing to enter the resolving gel. We have exploited a continuous electrophoretic system, which allows for the first time the separation and characterisation of a low molecular weight population of PPG polypeptides. We provide evidence of surface expressed and developmentally regulated forms. Among those, we identify for the first time the previously described membrane-bound PPG and a form of filamentous fPPG, which is altered, or absent in two of the three L. major isolates examined.
Collapse
Affiliation(s)
- Jacqui Montgomery
- The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Vic., Australia
| | | | | |
Collapse
|
18
|
Garami A, Mehlert A, Ilg T. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 2001; 21:8168-83. [PMID: 11689705 PMCID: PMC99981 DOI: 10.1128/mcb.21.23.8168-8183.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites synthesize an abundance of mannose (Man)-containing glycoconjugates thought to be essential for virulence to the mammalian host and for viability. These glycoconjugates include lipophosphoglycan (LPG), proteophosphoglycans (PPGs), glycosylphosphatidylinositol (GPI)-anchored proteins, glycoinositolphospholipids (GIPLs), and N-glycans. A prerequisite for their biosynthesis is an ample supply of the Man donors GDP-Man and dolicholphosphate-Man. We have cloned from Leishmania mexicana the gene encoding the enzyme phosphomannomutase (PMM) and the previously described dolicholphosphate-Man synthase gene (DPMS) that are involved in Man activation. Surprisingly, gene deletion experiments resulted in viable parasite lines lacking the respective open reading frames (DeltaPMM and DeltaDPMS), a result against expectation and in contrast to the lethal phenotype observed in gene deletion experiments with fungi. L. mexicana DeltaDPMS exhibits a selective defect in LPG, protein GPI anchor, and GIPL biosynthesis, but despite the absence of these structures, which have been implicated in parasite virulence and viability, the mutant remains infectious to macrophages and mice. By contrast, L. mexicana DeltaPMM are largely devoid of all known Man-containing glycoconjugates and are unable to establish an infection in mouse macrophages or the living animal. Our results define Man activation leading to GDP-Man as a virulence pathway in Leishmania.
Collapse
Affiliation(s)
- A Garami
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, 72076 Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
19
|
Garami A, Ilg T. Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 2001; 20:3657-66. [PMID: 11447107 PMCID: PMC125538 DOI: 10.1093/emboj/20.14.3657] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the enzyme GDP-mannose pyrophosphorylase (GDPMP) is essential for the formation of GDP-mannose, the central activated mannose donor in glycosylation reactions. Deletion of its gene is lethal in fungi, most likely as a consequence of disrupted glycoconjugate biosynthesis. Furthermore, absence of GDPMP enzyme activity and the expected loss of all mannose-containing glycoconjugates have so far not been observed in any eukaryotic organism. In this study we have cloned and characterized the gene encoding GDPMP from the eukaryotic protozoan parasite Leishmania mexicana. We report the generation of GDPMP gene deletion mutants of this human pathogen that are devoid of detectable GDPMP activity and completely lack mannose-containing glycoproteins and glycolipids, such as lipophosphoglycan, proteophosphoglycans, glycosylphosphatidylinositol protein membrane anchors, glycoinositolphospholipids and N-glycans. The loss of GDPMP renders the parasites unable to infect macrophages or mice, while gene addback restores virulence. Our study demonstrates that GDP-mannose biosynthesis is not essential for Leishmania viability in culture, but constitutes a virulence pathway in these human pathogens.
Collapse
Affiliation(s)
| | - Thomas Ilg
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, 72076 Tübingen, Germany
Corresponding author e-mail:
| |
Collapse
|
20
|
Garami A, Ilg T. The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J Biol Chem 2001; 276:6566-75. [PMID: 11084042 DOI: 10.1074/jbc.m009226200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of fructose 6-phosphate and mannose 6-phosphate, which is the first step in the biosynthesis of activated mannose donors required for the biosynthesis of various glycoconjugates. Leishmania species synthesize copious amounts of mannose-containing glycolipids and glycoproteins, which are involved in virulence of these parasitic protozoa. To investigate the role of PMI for parasite glycoconjugate synthesis, we have cloned the PMI gene (lmexpmi) from Leishmania mexicana, generated gene deletion mutants (Delta lmexpmi), and analyzed their phenotype. Delta lmexpmi mutants lack completely the high PMI activity found in wild type parasites, but are, in contrast to fungi, able to grow in media deficient for free mannose. The mutants are unable to synthesize phosphoglycan repeats [-6-Gal beta 1-4Man alpha 1-PO(4)-] and mannose-containing glycoinositolphospholipids, and the surface expression of the glycosylphosphatidylinositol-anchored dominant surface glycoprotein leishmanolysin is strongly decreased, unless the parasite growth medium is supplemented with mannose. The Delta lmexpmi mutant is attenuated in infections of macrophages in vitro and of mice, suggesting that PMI may be a target for anti-Leishmania drug development. L. mexicana Delta lmexpmi provides the first conditional mannose-controlled system for parasite glycoconjugate assembly with potential applications for the investigation of their biosynthesis, intracellular sorting, and function.
Collapse
Affiliation(s)
- A Garami
- Max-Planck-Institut für Biologie, Corrensstrasse 38, Tübingen 72076, Federal Republic of Germany
| | | |
Collapse
|
21
|
Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem 2001; 276:4988-97. [PMID: 11071892 DOI: 10.1074/jbc.m008030200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human pathogen Leishmania synthesizes phosphoglycans (PGs) formed by variably modified phosphodisaccharide [6-Galbeta1-4Manalpha1-PO(4)] repeats and mannooligosaccharide phosphate [(Manalpha1-2)(0-5)Manalpha1-PO(4)] caps that occur lipid-bound on lipophosphoglycan, protein-bound on proteophosphoglycans, and as an unlinked form. PG repeat synthesis has been described as essential for survival and development of Leishmania throughout their life cycle, including for virulence to the mammalian host. In this study, this proposal was investigated in Leishmania mexicana using a spontaneous mutant that was fortuitously isolated from an infected mouse, and by generating a lmexlpg2 gene deletion mutant (Deltalmexlpg2), that lacks a Golgi GDP-Man transporter. The spontaneous mutant lacks PG repeats but synthesizes normal levels of mannooligosaccharide phosphate caps, whereas the Deltalmexlpg2 mutant is deficient in PG repeat synthesis and down-regulates cap expression. In contrast to expectations, both L. mexicana mutants not only retain their ability to bind to macrophages, but are also indistinguishable from wild type parasites with respect to colonization of and multiplication within host cells. Moreover, in mouse infection studies, the spontaneous L. mexicana repeat-deficient mutant and the Deltalmexlpg2 mutant showed no significant difference to a wild type strain with respect to the severity of disease caused by these parasites. Therefore, at least in Leishmania mexicana, PG repeat synthesis is not an absolute requirement for virulence.
Collapse
Affiliation(s)
- T Ilg
- Max-Planck-Institut für Biologie, Corrensstrasse 38, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
22
|
Weise F, Stierhof YD, Kühn C, Wiese M, Overath P. Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 2000; 113 Pt 24:4587-603. [PMID: 11082051 DOI: 10.1242/jcs.113.24.4587] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular distribution of two glycosyl-phosphatidylinositol (GPI)-anchored proteins and a trans-membrane protein and the compartments involved in their trafficking were investigated in the insect stage of Leishmania mexicana, which belongs to the phylogenetically old protozoan family Trypanosomatidae. Electron microscopy of sections from high-pressure frozen and freeze-substituted cells allowed a detailed description of exo- and endocytic structures located in the vesicle-rich, densely packed anterior part of the spindle-shaped cell. A complex of tubular clusters/translucent vesicles is the prominent structure between the trans-side of the single Golgi apparatus and the flagellar pocket, the only site of endo- and exocytosis. A tubulovesicular compartment lined by one or two distinct microtubules and extending along the length of the cell is proposed to be a post-Golgi and probably late endosomal/lysosomal compartment. Using biotinylation experiments, FACS analysis and quantitative immunoelectron microscopy it was found that, at comparable expression levels, 73–75% of the two GPI-anchored proteins but only 13% of the trans-membrane protein are located on the cell surface. The tubulovesicular compartment contains 46%, the ER 5%, the Golgi complex 1.9% and the tubular cluster/translucent vesicle complex 3.6% of the intracellular fraction of the GPI-anchored protease, GP63. The density of GP63 was found to be 23-fold higher on the plasma/flagellar pocket membrane than on the ER and about tenfold higher than on membranes of the Golgi complex or of endo- or exocytic vesicles. These results indicate that there is a considerable concentration gradient of GPI-anchored proteins between the plasma/flagellar pocket membrane and the ER as well as structures involved in exo- or endocytosis. Possible mechanisms how this concentration gradient is established are discussed.
Collapse
Affiliation(s)
- F Weise
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Proteophosphoglycans are an expanding family of highly glycosylated Leishmania proteins with many unusual and some unique structural features. The novel protein-glycan linkage in proteophosphoglycans - phosphoglycosylation of Ser by lipophosphoglycan-like structures - emerges as a major form of protein glycosylation in Leishmania. Here, Thomas Ilg reviews the chemical structure, the ultrastructure, the genes and the potential functions of different members of this novel family of parasite glycoproteins.
Collapse
Affiliation(s)
- T Ilg
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Späth GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ, Beverley SM. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A 2000; 97:9258-63. [PMID: 10908670 PMCID: PMC16855 DOI: 10.1073/pnas.160257897] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protozoan parasites of the genus Leishmania undergo a complex life cycle involving transmission by biting sand flies and replication within mammalian macrophage phagolysosomes. A major component of the Leishmania surface coat is the glycosylphosphatidylinositol (GPI)-anchored polysaccharide called lipophosphoglycan (LPG). LPG has been proposed to play many roles in the infectious cycle, including protection against complement and oxidants, serving as the major ligand for macrophage adhesion, and as a key factor mitigating host responses by deactivation of macrophage signaling pathways. However, all structural domains of LPG are shared by other major surface or secretory products, providing a biochemical redundancy that compromises the ability of in vitro tests to establish whether LPG itself is a virulence factor. To study truly lpg(-) parasites, we generated Leishmania major lacking the gene LPG1 [encoding a putative galactofuranosyl (Gal(f)) transferase] by targeted gene disruption. The lpg1(-) parasites lacked LPG but contained normal levels of related glycoconjugates and GPI-anchored proteins. Infections of susceptible mice and macrophages in vitro showed that these lpg(-) Leishmania were highly attenuated. Significantly and in contrast to previous LPG mutants, reintroduction of LPG1 into the lpg(-) parasites restored virulence. Thus, genetic approaches allow dissection of the roles of this complex family of interrelated parasite virulence factors, and definitively establish the role of LPG itself as a parasite virulence factor. Because the lpg1(-) mutant continue to synthesize bulk GPI-anchored Gal(f)-containing glycolipids other than LPG, a second pathway distinct from the Golgi-associated LPG synthetic compartment must exist.
Collapse
Affiliation(s)
- G F Späth
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cuvillier A, Redon F, Antoine JC, Chardin P, DeVos T, Merlin G. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity. J Cell Sci 2000; 113 ( Pt 11):2065-74. [PMID: 10806117 DOI: 10.1242/jcs.113.11.2065] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small G protein-encoding LdARL-3A gene, a homologue of the human ARL-3 gene, was isolated from Leishmania donovani, and its protein product characterised. It is unique in the Leishmania genome and expressed only in the extracellular promastigote insect form, but not in the intracellular amastigote mammalian form, as shown by northern blots and western blots developed with a specific anti-C terminus immune serum. Indirect immunofluorescence microscopy revealed distinct labelled spots regularly distributed on the plasma membrane, including the part lining the flagellum and the flagellar pocket. By transfection experiments, it was found that wild-type LdARL-3A-overexpressing promastigotes reached higher densities in culture, but released significantly less secreted acid phosphatase in the extracellular medium than the parental strain. When LdARL-3A blocked under the GDP-bound ‘inactive’ form or with an inactivated potential myristoylation site was overexpressed, the cells displayed an apparent wild-type phenotype, but died earlier in the stationary phase; in contrast to parental cells, they showed a diffuse pattern of fluorescence labelling in the cytoplasm and on the cell membrane. Strikingly, when a constitutively ‘active’ form of LdARL-3A (blocked under the GTP-bound form) was overexpressed, the promastigotes were immobile with a very short flagellum, a slow growth rate and a low level of acid phosphatase secretion; the length of the flagellum was inversely proportional to mutant protein expression. We concluded that LdARL-3A could be an essential gene involved in flagellum biogenesis; it may provide new approaches for control of the parasite at the insect stage.
Collapse
Affiliation(s)
- A Cuvillier
- UMR CNRS 5016, Université Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L. mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host.
Collapse
Affiliation(s)
- T Ilg
- Max-Planck-Institut für Biologie, Corrensstrasse 38, D-72076 Tübingen, Germany.
| |
Collapse
|
27
|
Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 2000; 48:265-9. [PMID: 11227767 DOI: 10.1016/s1383-5769(99)00020-3] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A quantitative colorimetric assay using the oxidation-reduction indicator Alamar Blue was developed to measure cytotoxicity of compounds against the protozoan parasite Leishmania. Absorbance increased linearly with the plating density of promastigotes of L. major MRHO/IR/76 vaccine strain up to at least 2.5 x 10(6) cells/ml when parasites were incubated for 72 h in the presence of 10% Alamar Blue. The 50% effective dose values of common drugs (amphotericin B, pentostam and paromomycin) obtained by this assay were in the same range as previously determined by other methods. The Alamar Blue assay permits a simple, reproducible and reliable method for screening antileishmanial drugs.
Collapse
Affiliation(s)
- J Mikus
- Abteilung Parasitologie, Hygiene-Institut der Ruprecht-Karls-Universität, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
28
|
Klein C, Göpfert U, Goehring N, Stierhof YD, Ilg T. Proteophosphoglycans of Leishmania mexicana. Identification, purification, structural and ultrastructural characterization of the secreted promastigote proteophosphoglycan pPPG2, a stage-specific glycoisoform of amastigote aPPG. Biochem J 1999; 344 Pt 3:775-86. [PMID: 10585864 PMCID: PMC1220699 DOI: 10.1042/bj3440775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protozoan parasites of the genus Leishmania secrete a range of proteophosphoglycans that appear to be important for successful colonization of the sandfly and for virulence in the mammalian host. A hallmark of these molecules is extensive phosphoglycosylation by phosphoglycan chains via the unusual linkage Manalpha1-PO(4)-Ser. In this study we have identified and purified to apparent homogeneity a novel proteophosphoglycan (pPPG2) which is secreted by Leishmania mexicana promastigotes (sandfly stage). Amino acid analysis and immunoblots using polypeptide-specific antisera suggest that pPPG2 shares a common protein backbone with a proteophosphoglycan (aPPG) secreted by Leishmania mexicana amastigotes (mammalian stage). Both pPPG2 and aPPG show a similar degree of Ser phosphoglycosylation (50. 5 mol% vs. 44.6 mol%), but the structure of their phosphoglycan chains is developmentally regulated: in contrast to aPPG which displays unique, complex and highly branched glycan chains [Ilg, Craik, Currie, Multhaup, and Bacic (1998) J. Biol. Chem. 273, 13509-13523], pPPG2 contains short unbranched structures consisting of >60 mol% neutral glycans, most likely (Manalpha1-2)(0-5)Man and Galbeta1-4Man, as well as about 40 mol% monophosphorylated glycans of the proposed structures PO(4)-6Galbeta1-4Man and PO(4)-6(Glcbeta1-3)Galbeta1-4Man. The major differences between pPPG2 and aPPG with respect to their apparent molecular mass, their ultrastructure and their proteinase sensitivity are most likely a consequence of this stage-specific glycosylation of their common protein backbone.
Collapse
Affiliation(s)
- C Klein
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie Corrensstrasse 38, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Ilg T, Montgomery J, Stierhof YD, Handman E. Molecular cloning and characterization of a novel repeat-containing Leishmania major gene, ppg1, that encodes a membrane-associated form of proteophosphoglycan with a putative glycosylphosphatidylinositol anchor. J Biol Chem 1999; 274:31410-20. [PMID: 10531342 DOI: 10.1074/jbc.274.44.31410] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites secrete a variety of proteins that are modified by phosphoglycan chains structurally similar to those of the cell surface glycolipid lipophosphoglycan. These proteins are collectively called proteophosphoglycans. We report here the cloning and sequencing of a novel Leishmania major proteophosphoglycan gene, ppg1. It encodes a large polypeptide of approximately 2300 amino acids. The N-terminal domain of approximately 70 kDa exhibits 11 imperfect amino acid repeats that show some homology to promastigote surface glycoproteins of the psa2/gp46 complex. The large central domain apparently consists exclusively of approximately 100 repetitive peptides of the sequence APSASSSSA(P/S)SSSSS(+/-S). Gene fusion experiments demonstrate that these peptide repeats are the targets of phosphoglycosylation in Leishmania and that they form extended filamentous structures reminiscent of mammalian mucins. The C-terminal domain contains a functional glycosylphosphatidylinositol anchor addition signal sequence, which confers cell surface localization to a normally secreted Leishmania acid phosphatase, when fused to its C terminus. Antibody binding studies show that the ppg1 gene product is phosphoglycosylated by phosphoglycan repeats and cap oligosaccharides. In contrast to previously characterized proteophosphoglycans, the ppg1 gene product is predominantly membrane-associated and it is expressed on the promastigote cell surface. Therefore this membrane-bound proteophosphoglycan may be important for direct host-parasite interactions.
Collapse
Affiliation(s)
- T Ilg
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
30
|
Aebischer T, Harbecke D, Ilg T. Proteophosphoglycan, a major secreted product of intracellular Leishmania mexicana amastigotes, is a poor B-cell antigen and does not elicit a specific conventional CD4+ T-cell response. Infect Immun 1999; 67:5379-85. [PMID: 10496920 PMCID: PMC96895 DOI: 10.1128/iai.67.10.5379-5385.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secreted and surface-exposed antigens of intracellular pathogens are thought to provide target structures for detection by the host immune system. The major secreted product of intracellular Leishmania mexicana amastigotes, a proteophosphoglycan (aPPG), is known to contribute to the establishment of the parasitophorous vacuole and is able to activate complement. aPPG belongs to a novel class of serine- and threonine-rich Leishmania proteins that are extensively modified by phosphodiester-linked phosphooligosaccharides and terminal mannooligosaccharides. Here we show that mice chronically infected with L. mexicana generally do not produce antibodies or Th cells specific for aPPG. Similarly, antibody titers are very low in mice vaccinated with aPPG, and specific CD4+ T cells are undetectable. Comparative analyses of other Leishmania glycoconjugates indicate that L. mexicana-specific carbohydrate structures are poorly immunogenic in mice and that the proteophosphoglycan aPPG behaved immunologically like a carbohydrate. The latter observation is explained by the lack of induction of aPPG-specific CD4+ T cells. In contrast, recombinant aPPG peptides stimulate CD4+ T-cell responses and high titers of specific antibodies are found in the sera of mice vaccinated with these peptides. Native aPPG is highly resistant to proteinases and apparently cannot be degraded by macrophages. It is concluded that conventional CD4+ T cells against the polypeptide backbone of aPPG are not induced because the molecule resists antigen processing due to its extensive and complex carbohydrate modification. The complex glycan chains of aPPG, which exhibit important biological functions for the parasite, may therefore also have evolved to evade detection by the immune system of the host organism.
Collapse
Affiliation(s)
- T Aebischer
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
31
|
Stierhof YD, Bates PA, Jacobson RL, Rogers ME, Schlein Y, Handman E, Ilg T. Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur J Cell Biol 1999; 78:675-89. [PMID: 10569240 DOI: 10.1016/s0171-9335(99)80036-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of Leishmania parasites in the digestive tract of their sandfly vectors involves several morphological transformations from the intracellular mammalian amastigote via a succession of free and gut wall-attached promastigote stages to the infective metacyclic promastigotes. At the foregut midgut transition of Leishmania-infected sandflies a gel-like plug of unknown origin and composition is formed, which contains high numbers of parasites, that occludes the gut lumen and which may be responsible for the often observed inability of infected sandflies to draw blood. This "blocked fly" phenotype has been linked to efficient transmission of infectious metacyclic promastigotes from the vector to the mammalian host. We show by immunofluorescence and immunoelectron microscopy on two Leishmania/sandfly vector combinations (Leishmania mexicana/Lutzomyia longipalpis and L. major/Phlebotomus papatasi) that the gel-like mass is formed mainly by a parasite-derived mucin-like filamentous proteophosphoglycan (fPPG) whereas the Leishmania polymeric secreted acid phosphatase (SAP) is not a major component of this plug. fPPG forms a dense three-dimensional network of filaments which engulf the promastigote cell bodies in a gel-like mass. We propose that the continuous secretion of fPPG by promastigotes in the sandfly gut, that causes plug formation, is an important factor for the efficient transmission to the mammalian host.
Collapse
Affiliation(s)
- Y D Stierhof
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen/Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Wiese M, Görcke I, Overath P. Expression and species-specific glycosylation of Leishmania mexicana secreted acid phosphatase in Leishmania major. Mol Biochem Parasitol 1999; 102:325-9. [PMID: 10498187 DOI: 10.1016/s0166-6851(99)00095-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M Wiese
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany.
| | | | | |
Collapse
|
33
|
Piani A, Ilg T, Elefanty AG, Curtis J, Handman E. Leishmania major proteophosphoglycan is expressed by amastigotes and has an immunomodulatory effect on macrophage function. Microbes Infect 1999; 1:589-99. [PMID: 10611735 DOI: 10.1016/s1286-4579(99)80058-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteophosphoglycan (PPG) is a newly described mucin-like glycoprotein found on the surface of Leishmania major promastigotes and secreted in the culture supernatant. We show here that antigenically similar PPGs are present in several Leishmania species. PPG could also be detected on the surface of amastigotes and in small, parasite-free vesicles in infected macrophages. Because of the similarity of its carbohydrate chains to lipophosphoglycan, a parasite receptor for host macrophages, PPG was tested for binding to macrophages. PPG bound to macrophages and was internalized in a time-dependent manner. PPG inhibited the production of tumor necrosis factor-alpha and synergized with interferon-gamma to stimulate the production of nitric oxide by macrophages. PPG may contribute to the binding of Leishmania to host cells and may play a role in modulating the biology of the infected macrophage at the early stage of infection.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Protozoan/pharmacology
- Cells, Cultured
- Drug Synergism
- Endocytosis
- Fluorescent Antibody Technique
- Glycosphingolipids/chemistry
- Interferon-gamma/pharmacology
- Kinetics
- Leishmania donovani/chemistry
- Leishmania donovani/immunology
- Leishmania major/chemistry
- Leishmania major/growth & development
- Leishmania major/immunology
- Leishmania major/metabolism
- Leishmania mexicana/chemistry
- Leishmania mexicana/immunology
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Lysosomes/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/parasitology
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/pharmacology
- Mice
- Mice, Inbred C3H
- Nitric Oxide/biosynthesis
- Nitric Oxide/metabolism
- Proteoglycans/chemistry
- Proteoglycans/immunology
- Proteoglycans/metabolism
- Proteoglycans/pharmacology
- Protozoan Proteins
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- A Piani
- The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
34
|
Moss JM, Reid GE, Mullin KA, Zawadzki JL, Simpson RJ, McConville MJ. Characterization of a novel GDP-mannose:Serine-protein mannose-1-phosphotransferase from Leishmania mexicana. J Biol Chem 1999; 274:6678-88. [PMID: 10037765 DOI: 10.1074/jbc.274.10.6678] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protozoan parasites of the genus Leishmania secrete a number of glycoproteins and mucin-like proteoglycans that appear to be important parasite virulence factors. We have previously proposed that the polypeptide backbones of these molecules are extensively modified with a complex array of phosphoglycan chains that are linked to Ser/Thr-rich domains via a common Manalpha1-PO4-Ser linkage (Ilg, T., Overath, P., Ferguson, M. A. J., Rutherford, T., Campbell, D. G., and McConville, M. J. (1994) J. Biol. Chem. 269, 24073-24081). In this study, we show that Leishmania mexicana promastigotes contain a peptide-specific mannose-1-phosphotransferase (pep-MPT) activity that adds Manalpha1-P to serine residues in a range of defined peptides. The presence and location of the Manalpha1-PO4-Ser linkage in these peptides were determined by electrospray ionization mass spectrometry and chemical and enzymatic treatments. The pep-MPT activity was solubilized in non-ionic detergents, was dependent on Mn2+, utilized GDP-Man as the mannose donor, and was expressed in all developmental stages of the parasite. The pep-MPT activity was maximal against peptides containing Ser/Thr-rich domains of the endogenous acceptors and, based on competition assays with oligosaccharide acceptors, was distinct from other leishmanial MPTs involved in the initiation and elongation of lipid-linked phosphoglycan chains. In subcellular fractionation experiments, pep-MPT was resolved from the endoplasmic reticulum marker BiP, but had an overlapping distribution with the cis-Golgi marker Rab1. Although Man-PO4 residues in the mature secreted glycoproteins are extensively modified with mannose oligosaccharides and phosphoglycan chains, similar modifications were not added to peptide-linked Man-PO4 residues in the in vitro assays. Similarly, Man-PO4 residues on endogenous polypeptide acceptors were also poorly extended, although the elongating enzymes were still active, suggesting that the pep-MPT activity and elongating enzymes may be present in separate subcellular compartments.
Collapse
Affiliation(s)
- J M Moss
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Leishmaniasis occurs not only in American travelers and military personnel alike but infects a significant portion of the world's population. The US military has made major contributions to the understanding of the complicated epidemiology of this parasite, the development of rapid reliable diagnostic tests, and to the development of safe, more efficient, and more effective treatment of leishmaniasis.
Collapse
Affiliation(s)
- J R Kenner
- Dermatology Service, Walter Reed Army Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
36
|
Stierhof YD, Wiese M, Ilg T, Overath P, Häner M, Aebi U. Structure of a filamentous phosphoglycoprotein polymer: the secreted acid phosphatase of Leishmania mexicana. J Mol Biol 1998; 282:137-48. [PMID: 9733646 DOI: 10.1006/jmbi.1998.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insect stage of the protozoan parasite Leishmania mexicana secretes a filamentous acid phosphatase (secreted acid phosphatase, SAP), a polymeric phosphoglycoprotein. The wild-type (wt) SAP filament is a copolymer composed of two related gene products SAP1 and SAP2, which are identical in the enzymatically active NH2-terminal domain and the COOH-terminal domain, but differ in the length of a highly glycosylated Ser/Thr-rich repeat region (32 amino acids and 383 amino acids, respectively) which is located between these domains. When expressed separately, full length SAP1, SAP2, or the NH2-terminal domain alone, are able to assemble into filaments. The Ser/Thr-rich region is the exclusive target for a novel type of O-glycosylation via phosphoserines. By using glycerol spraying/low-angle rotary metal shadowing and labelling with monoclonal antibodies it is demonstrated that the repetitive region adopts an extended conformation forming side arms which project radially from the filament core and terminate with the COOH-terminal domain. The length of the side arms of SAP1 and SAP2 (20 nm and 90 nm, respectively) corresponds to the predicted length of the Ser/Thr-rich repeat region of SAP1 and SAP2. Mass determination by scanning electron microscopy (STEM) shows that one morphologically defined globular particle of the filament core is a polypeptide dimer. We propose a model for the filament core, in which the globular NH2-terminal SAP domains form one strand composed of polypeptide dimers or two tightly associated strands of monomers which may twist into a double helix, similar to actin filaments. The highly O-glycosylated side arms project from the filament core conferring an overall bottle-brush-like appearance. The L. mexicana SAP is compared to SAPs secreted by the closely related species L. amazonensis and L. donovani.
Collapse
Affiliation(s)
- Y D Stierhof
- Abteilung Membranbiochemie, Max-Planck-Institut für Biologie, Corrensstrasse 38, Tübingen, D-72076, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Descoteaux A, Mengeling BJ, Beverley SM, Turco SJ. Leishmania donovani has distinct mannosylphosphoryltransferases for the initiation and elongation phases of lipophosphoglycan repeating unit biosynthesis. Mol Biochem Parasitol 1998; 94:27-40. [PMID: 9719508 DOI: 10.1016/s0166-6851(98)00047-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipophosphoglycan (LPG) is the predominant surface glycoconjugate of Leishmania promastigotes and plays several roles in the infectious cycle of this protozoan parasite. The salient feature of LPG is the presence of 15-30 copies of a disaccharide-phosphate repeating unit Gal(beta1,4)Man(alpha1-PO4), which is also found on many other secreted molecules (secretory acid phosphatase, phosphoglycan, proteophosphoglycan). This structural diversity suggests that a multiplicity of enzymes mediating repeating unit addition may exist, especially for the mannosylphosphoryltransferases (MPTs), which initiate repeating unit synthesis. This work has taken a combined biochemical-genetic approach to resolve this issue. An lpg- mutant of Leishmania donovani, JEDI, was obtained by antibody selection against cells expressing a repeating unit epitope of LPG. Metabolic and surface labeling experiments revealed that JEDI cells accumulated a truncated form of LPG bearing only a single repeating unit: [Gal(beta 1,4)Man(alpha1-PO4)][Gal(alpha1,6)Gal(alpha1,3)Gal(f)(beta1,3)[Glc(alpha 1-PO4)]Man(alpha1,3)Man(alpha1,4)GlcN(alpha1,6)]-PI. Enzymatic assays of microsomal preparations showed that JEDI lacked MPT activity when tested with a repeating unit acceptor but retained wild-type levels of the MPT activity with an LPG glycan core acceptor. These data indicate that at least two distinct MPT activities are required for LPG repeating unit synthesis: one involved in the 'initiation' of repeating unit synthesis on the LPG core (iMPT), and a second (lacking in JEDI) participating in the 'elongation' phase of repeating unit addition (eMPT), leading to the mature full-length LPG.
Collapse
Affiliation(s)
- A Descoteaux
- Department of Biochemistry, University of Kentucky Medical Center, Lexington 40536, USA
| | | | | | | |
Collapse
|
38
|
Ellis SL, Shakarian AM, Dwyer DM. Leishmania: amastigotes synthesize conserved secretory acid phosphatases during human infection. Exp Parasitol 1998; 89:161-8. [PMID: 9635439 DOI: 10.1006/expr.1998.4298] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leishmania donovani is the major causative agent of Old World human visceral leishmaniasis (VL). In vitro, both promastigotes and axenic amastigotes of L. donovani constitutively secrete soluble acid phosphatases (SAcPs), which contain conserved antigenic epitopes. These SAcPs are the most abundant and best characterized secretory proteins of this parasite. The aim of this study was to determine whether this enzyme was produced by intracellular amastigotes during the course of human infection. To that end, sera from acutely infected leishmaniasis patients were tested for anti-SAcP antibodies using L. donovani promastigote culture supernatants. Our results showed that VL patient sera from different endemic foci immunoprecipitated parasite SAcP enzyme activity. Further, these VL patient sera recognized the 110- and 130-kDa SAcPs in both Western blots and radioimmunoprecipitation assays. Results of tunicamycin experiments demonstrated that VL patient anti-SAcP antibodies were directed against the polypeptide backbone of the parasite SAcPs. In addition, both radiolabeled L. donovani SAcPs and native enzyme activities were immunoprecipitated by sera from patients with various forms of cutaneous leishmaniasis. Together, these studies demonstrate that Leishmania amastigotes produce SAcPs during the course of human infections.
Collapse
Affiliation(s)
- S L Ellis
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
39
|
Ilg T, Craik D, Currie G, Multhaup G, Bacic A. Stage-specific proteophosphoglycan from Leishmania mexicana amastigotes. Structural characterization of novel mono-, di-, and triphosphorylated phosphodiester-linked oligosaccharides. J Biol Chem 1998; 273:13509-23. [PMID: 9593686 DOI: 10.1074/jbc.273.22.13509] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as 1H and 31P NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase. However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glcbeta1-3]1-2Galbeta1-4Man, Galbeta1-3Galbeta1-4Man, Galbeta1-3Glcbeta1-3Galbeta1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta1-4Man) but carrying stage-specific modifications (R = Galbeta1-, [Glcbeta1-3]1-2Glcbeta1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glcbeta1-3Galbeta1-4Man, PO4-6-Glcbeta1-3Glcbeta1-3Galbeta1-4Man, PO4-6-Galbeta1-3Glcbeta1-3Galbeta1-4Man). In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glcbeta1-3Glcbeta1-3[PO4-6-Gal]beta1-4Man, PO4-6-Galbeta1-3Glcbeta1-3[PO4-6-Gal]beta1-4Man, PO4-6-Galbeta1-3Glcbeta1-3Glcbeta1-3[PO4-6-Gal]beta1-+ ++4Man, PO4-6-Glcbeta1-3[PO4-6-Glc]beta1-3[PO4-6-Gal]beta1-4Man, PO4-6-Galbeta1-3[PO4-6-Glc]beta1-3Glcbeta1-3[PO4-6-Gal]beta1 -4Man, and PO4-6-Glcbeta1-3[PO4-6-Glc]beta1-3Glcbeta1-3[PO4-6-Gal]beta1 -4Man. These glycans are linked together by the conserved phosphodiester R-Manalpha1-PO4-6-Gal-R or the novel phosphodiester R-Manalpha1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Manalpha1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.
Collapse
Affiliation(s)
- T Ilg
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
40
|
Wiese M. A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J 1998; 17:2619-28. [PMID: 9564044 PMCID: PMC1170603 DOI: 10.1093/emboj/17.9.2619] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The parasitic protozoon Leishmania mexicana undergoes two major developmental stages in its life cycle exhibiting profound physiological and morphological differences, the promastigotes in the insect vector and the amastigotes in mammalian macrophages. A deletion mutant, Deltalmsap1/2, for the secreted acid phosphatase (SAP) gene locus, comprising the two SAP genes separated by an intergenic region of approximately 11.5 kb, lost its ability to cause a progressive disease in Balb/c mice. While in vitro growth of promastigotes, invasion of host cells and differentiation from promastigotes to amastigotes was indistinguishable from the wild-type, the mutant parasites ceased to proliferate when transformed to amastigotes in infected macrophages or in a macrophage-free in vitro differentiation system, suggesting a stage-specific growth arrest. This phenotype could be reverted by complementation with 6 kb of the intergenic region of the SAP gene locus. Sequence analysis identified two open reading frames, both encoding single copy genes; one gene product shows high homology to mitogen-activated protein (MAP) kinases. Complementation experiments revealed that the MAP kinase homologue, designated LMPK, is required and is sufficient to restore the infectivity of the Deltalmsap1/2 mutant. Therefore, LMPK is a kinase that is essential for the survival of L.mexicana in the infected host by affecting the cell division of the amastigotes.
Collapse
Affiliation(s)
- M Wiese
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, D-72076 Tübingen, Germany.
| |
Collapse
|
41
|
Abstract
There are a number of different glycoproteins that have been identified relatively recently which contain oligosaccharides linked to serine or threonine in a peptide backbone via phosphodiesters. It is possible that these glycoproteins may form an alternative structural class of glycosylation. This modification has been referred to as phosphoglycosylation (Mehta et al., 1996; J. Biol. Chem., 271, 10897-10903), and has been reported in slime molds and several unicellular parasites. In this review, examples of phosphoglycosylation from different biological sources are discussed. Those which are well characterized have been found to be highly variable with respect to the glycan moiety, while sharing some common features. An experimental approach detailing how to determine whether a protein is phosphoglycosylated is also presented.
Collapse
Affiliation(s)
- P A Haynes
- Department of Molecular Biotechnology, Box 357730, University of Washington, Seattle, WA 98195-7730, USA
| |
Collapse
|
42
|
Peters C, Kawakami M, Kaul M, Ilg T, Overath P, Aebischer T. Secreted proteophosphoglycan of Leishmania mexicana amastigotes activates complement by triggering the mannan binding lectin pathway. Eur J Immunol 1997; 27:2666-72. [PMID: 9368624 DOI: 10.1002/eji.1830271028] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cutaneous lesions induced by infection of mice with the protozoan parasite, Leishmania mexicana, contain abundant amounts of a high molecular mass proteophosphoglycan (PPG), which is secreted by the amastigote stage residing in phagolysosomes of macrophages and can then be released into the tissue upon rupture of the infected cells. Amastigote PPG forms sausage-shaped but soluble particles and belongs to a novel class of serine-rich proteins that are extensively O-glycosylated by phosphooligosaccharides capped by mannooligosaccharides. The purified molecule is shown here to efficiently activate complement (C) and deplete hemolytic activity of normal serum and may prevent the opsonization of L. mexicana amastigotes. Complement activation is Ca2+ dependent but does not depend on antibodies or the complement component C1. PPG binds to serum mannan binding protein (MBP), thus activating the MBP-associated serine protease, P100. Subsequently, the C cascade is triggered through C4 leading to covalent modification probably of carbohydrate hydroxyls of PPG by C3 fragments. Thus, PPG is able to activate C via the mannan binding lectin pathway which is unusual for secreted, soluble products of microbial origin. The proteophosphoglycan-induced complement activation is postulated to contribute to the lesion development and pathology caused by the parasite.
Collapse
Affiliation(s)
- C Peters
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Ilg T, Stierhof YD, Craik D, Simpson R, Handman E, Bacic A. Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites. J Biol Chem 1996; 271:21583-96. [PMID: 8702946 DOI: 10.1074/jbc.271.35.21583] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Parasitic protozoa of the genus Leishmania secrete a filamentous macromolecule that forms networks and appears to be associated with cell aggregation. We report here the purification of this parasite antigen from Leishmania major culture supernatant and its compositional (75.6% carbohydrate, 20% phosphate, 4.4% amino acids, w/w), structural, and ultrastructural characterization as a highly unusual proteophosphoglycan (PPG). Mild acid hydrolysis, which cleaves preferentially hexose 1-phosphate bonds, releases the PPG glycans. Their structures are Galbeta1-4Man, Manalpha1-2Man, Galbeta1-3Galbeta1-4Man, PO4-6(Galbeta1-3)0-2Galbeta1-4Man, and PO4-6(Arabeta1-2Galbeta1-3)Galbeta1-4Man. These glycans are also components of the parasite glycolipid lipophosphoglycan, but their relative abundance and structural organization in PPG are different. Some of them represent novel forms of protein glycosylation. 31P NMR on native PPG demonstrates that phosphate is exclusively in phosphodiester bonds and that the basic structure R-Manalpha1-PO4-6-Gal-R connects the glycans. A phosphodiester linkage to phosphoserine (most likely R-Manalpha1-PO4-Ser) anchors the PPG oligosaccharides to the polypeptide. PPG has a unique amino acid composition; glycosylated phosphoserine (>43 mol %), serine, alanine, and proline account for more than 87 mol % and appear to be clustered in large proteinase-resistant domains. Electron microscopy of purified PPG reveals cable-like, flexible, long (to 6 microm), and unbranched filaments. The overall structure of PPG shows many similarities to mammalian mucins. Potential functions of this novel mucin-like molecule for the parasites are discussed.
Collapse
Affiliation(s)
- T Ilg
- Walter and Eliza Hall Institute of Medical Research, P. O. Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Descoteaux A, Luo Y, Turco SJ, Beverley SM. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 1995; 269:1869-72. [PMID: 7569927 DOI: 10.1126/science.7569927] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For virulence and transmission, the protozoan parasite Leishmania must assemble a complex glycolipid on the cell surface, the lipophosphoglycan (LPG). Functional complementation identified the gene LPG2, which encodes an integral Golgi membrane protein implicated in intracellular compartmentalization of LPG biosynthesis. Ipg2- mutants lack only characteristic disaccharide-phosphate repeats, normally present on both LPG and other surface or secreted molecules considered critical for infectivity. In contrast, a related yeast gene, VAN2/VRG4, is essential and required for general Golgi function. These results suggest that LPG2 participates in a specialized virulence pathway, which may offer an attractive target for chemotherapy.
Collapse
Affiliation(s)
- A Descoteaux
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
McConville MJ, Schnur LF, Jaffe C, Schneider P. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J 1995; 310 ( Pt 3):807-18. [PMID: 7575413 PMCID: PMC1135969 DOI: 10.1042/bj3100807] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The most abundant surface macromolecule on the promastigote stage of leishmanial parasites is a polymorphic lipophosphoglycan (LPG). We have elucidated the structures of two new LPGs, from Leishmania tropica (LRC-L36) and L. aethiopica (LRC-L495), and investigated the nature of intra-specific polymorphism in the previously characterized LPG of L. major (LRC-L456 and -L580). These molecules contain a phosphoglycan chain, made up of repeating PO4-6Gal beta 1-4Man units and a conserved hexaglycosyl-phosphatidylinositol membrane anchor. Extensive polymorphism occurs in the extent to which the LPG repeat units are substituted with different glycan side chains. The L. tropica LPG is the most complex LPG characterized to date, as most of the repeat units are substituted with more than 19 different glycan side chains. All of these side chains, including the novel major glycans, Arap beta 1-3Glc beta 1- and +/- Arap beta 1-2Glc beta 1-4[+/- Arap beta 1-2]Glc beta 1-, are linked to the C-3 position of the backbone disaccharide galactose. In contrast, the L. aethiopica LPG repeat units are partially substituted (35%) with single alpha-mannose residues that are linked, unusually, to the C-2 position of the mannose in the backbone disaccharide. Polymorphism is also evident in the spectrum of alpha-mannose-containing oligosaccharides that cap the non-reducing terminus of the phosphoglycan chains of these LPGs. Finally, analysis of the L. major LPGs showed that, while some strains contain LPGs which are highly substituted with side chains of beta Gal, Gal beta 1-3Gal beta 1- and Arap beta 1-2Gal beta 1-3Gal beta 1-, the LPGs of other strains (i.e L. major LRC-L456) are essentially unsubstituted. Recent studies have shown that the LPG side chains and cap structures can mediate promastigote attachment to a number of different receptors along the midgut of the sandfly vector. The possible significance of LPG polymorphism on the ability of these parasites to infect a number of different sandfly vectors is discussed.
Collapse
|
46
|
Jacobson RL. Leishmania, LPG and the Sandfly connection. PARASITOLOGY TODAY (PERSONAL ED.) 1995; 11:203-4. [PMID: 15275340 DOI: 10.1016/0169-4758(95)80075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- R L Jacobson
- Department of Parasitology, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
47
|
Schneider P, Schnur LF, Jaffe CL, Ferguson MA, McConville MJ. Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochem J 1994; 304 ( Pt 2):603-9. [PMID: 7998997 PMCID: PMC1137534 DOI: 10.1042/bj3040603] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycoinositol-phospholipids (GIPLs) are the major glycolipid class and prominant surface antigens of leishmanial parasites. The GIPLs from four serologically distinct Old World strains of Leishmania were characterized to determine inter- and intra-specific differences in these glycolipids. These studies showed that: (1) the major GIPLs of Leishmania topica (LRC-L36) and Leishmania aethiopica (LRC-L495) belong to the alpha-mannose-terminating GIPL series (iM2, iM3 and iM4) that are structurally related to the glycosyl-phosphatidylinositol anchors of both the surface proteins and the abundant lipophosphoglycan (LPG). In contrast, the GIPLs from two Leishmania major strains (LRC-L456 and LRC-L580) belong to the alpha-galactose-terminating GIPL series (GIPL-1, -2 and -3) that are more structurally related to the LPG anchor; (2) the GIPL profiles of the L. major strains differed in that a significant proportion of the GIPL-2 and -3 species (approximately 40% and 80%, respectively) in LRC-L580 are substituted with a glucose-1-PO4 residue, while this type of substitution was not detected in LRC-L456; and (3) all the GIPLs contained either an alkylacyl- or a lysoalkyl-phosphatidylinositol lipid moiety. However, the alkyl chain compositions of different GIPLs within the same strain was variable. In L. major, the major GIPL species contained alkylacylglycerols with predominantly C18:0 and C24:0 alkyl chains, whereas the glucose-1-PO4-substituted GIPLs contained exclusively lysoalkylglycerols with C24:0 alkyl chains. In L. tropica, the major GIPL, iM2, contained predominantly C24:0 alkyl chains whereas the structurally related iM3 and iM4 GIPLs in this strain contained predominantly C18:0 alkyl chains. In L. aethiopica all the GIPLs (iM2, iM3, iM4) contained C18:0 alkyl chains. These data suggest that the synthesis of the GIPLs may occur in more than one subcellular compartment. The possibility that species-specific differences in the predominantly surface glycan structures may modulate the interaction of the parasite with the insect and mammalian hosts is discussed.
Collapse
Affiliation(s)
- P Schneider
- Department of Biochemistry, University of Dundee, U.K
| | | | | | | | | |
Collapse
|
48
|
O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51049-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Stierhof YD, Ilg T, Russell DG, Hohenberg H, Overath P. Characterization of polymer release from the flagellar pocket of Leishmania mexicana promastigotes. J Biophys Biochem Cytol 1994; 125:321-31. [PMID: 8163549 PMCID: PMC2120037 DOI: 10.1083/jcb.125.2.321] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Trypanosomatids contain a unique compartment, the flagellar pocket, formed by an invagination of the plasma membrane at the base of the flagellum, which is considered to be the sole cellular site for endocytosis and exocytosis of macromolecules. The culture supernatant of Leishmania mexicana promastigotes, the insect stage of this protozoan parasite, contains two types of polymers: a filamentous acid phosphatase (sAP) composed of a 100-kD phosphoglycoprotein with non-covalently associated proteo high molecular weight phosphoglycan (proteo-HMWPG) and fibrous material termed network consisting of complex phosphoglycans. Secretion of both polymers is investigated using mAbs and a combination of light and electron microscopic techniques. Long filaments of sAP are detectable in the lumen of the flagellar pocket. Both sAP filaments and network material emerge from the ostium of the flagellar pocket. While sAP filaments detach from the cells, the fibrous network frequently remains associated with the anterior end of the parasites and can be found in the center of cell aggregates. The related species L. major forms similar networks. Since polymeric structures cannot be detected in intracellular compartments, it is proposed that monomeric or, possibly, oligomeric subunits synthesized in the cells are secreted into the flagellar pocket. Polymer formation from subunits is suggested to occur in the lumen of the pocket before release into the culture medium or, naturally, into the gut of infected sandflies.
Collapse
Affiliation(s)
- Y D Stierhof
- Max-Planck-Institute für Biologie, Tübingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
50
|
Ilg T, Stierhof YD, Wiese M, McConville MJ, Overath P. Characterization of phosphoglycan-containing secretory products of Leishmania. Parasitology 1994; 108 Suppl:S63-71. [PMID: 8084657 DOI: 10.1017/s0031182000075739] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article presents an overview on phosphoglycan-containing components secreted by the insect and mammalian stages of several species of Leishmania, the causative agents of leishmaniasis in the Old and New World. Firstly, promastigotes of all three species considered, L. mexicana, L. donovani and L. major, shed lipophosphoglycan (LPG) into the culture medium possibly by release of micelles from the cell surface. Like the cell-associated LPG, culture supernatant LPG is amphiphilic and composed of a lysoalkylphosphatidylinositol-phosphosaccharide core connected to species-specific phosphosaccharide repeats and oligosaccharide caps. Secondly, all three species release hydrophilic phosphoglycan. Thirdly, all three species appear to secrete proteins covalently modified by phosphosaccharide repeats and oligosaccharide caps. In the case of promastigotes of L. mexicana, these components are organized as two filamentous polymers released from the flagellar pocket: the secreted acid phosphatase (sAP) composed of a 100 kDa phosphoglycoprotein and a protein-containing high-molecular-weight-phosphoglycan (proteo-HMWPG) and fibrous networks likewise composed of phosphoglycan possibly linked to protein. Structural analyses and gene cloning suggest that the parasites can covalently modify protein regions rich in serine and threonine residues by the attachment of phosphosaccharide repeats capped by oligosaccharides. We propose that the networks formed in vitro correspond to fibrous material previously demonstrated in the digestive tract of infected sandflies. In the case of L. donovani, the sAP is also modified by phosphoglycans but contains neither proteo-HMWPG nor does it aggregate to filaments. Finally, L. mexicana amastigotes release proteo-HMWPG via the flagellar pocket into the parasitophorous vacuole of infected macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Ilg
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | | | | | | | |
Collapse
|