1
|
Rey-Millet M, Bystricky K. The genome in space and time comes of age. Nucleus 2024; 15:2307665. [PMID: 38302443 PMCID: PMC10841031 DOI: 10.1080/19491034.2024.2307665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
DNA sequencing is not enough to grasp the complexity of genome organization and function. The four-dimensional (three in space, one in time) configuration of the eukaryotic nucleus varies with cell types, during development and in diseased tissues, and has to be taken into account to decipher genome function. To study, discuss, and advance in such direction, the International Nucleome Consortium COST Action, funded by the European Union, held its concluding symposium 'The Genome in Space and Time' at the Ionian University in Corfu, Greece, on September 10-13, 2023.
Collapse
Affiliation(s)
- Martin Rey-Millet
- Molecular, Cellular and Developmental biology unit (MCD), Center for Integrative Biology (CBI), Université Paul Sabatier (UPS), CNRS, Toulouse, France
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental biology unit (MCD), Center for Integrative Biology (CBI), Université Paul Sabatier (UPS), CNRS, Toulouse, France
| | - the International Nucleome Consortium
- Molecular, Cellular and Developmental biology unit (MCD), Center for Integrative Biology (CBI), Université Paul Sabatier (UPS), CNRS, Toulouse, France
| |
Collapse
|
2
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Wang J, Zhang Y, Gao J, Feng G, Liu C, Li X, Li P, Liu Z, Lu F, Wang L, Li W, Zhou Q, Liu Y. Alternative splicing of CARM1 regulated by LincGET-guided paraspeckles biases the first cell fate in mammalian early embryos. Nat Struct Mol Biol 2024; 31:1341-1354. [PMID: 38658621 PMCID: PMC11402786 DOI: 10.1038/s41594-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaze Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xueke Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
4
|
Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Heß S, Elsner C, Marschalek R, Santiago ML, Esser S, Sutter K, Dittmer U, Widera M. The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting. J Virol 2024; 98:e0053424. [PMID: 38899932 PMCID: PMC11265465 DOI: 10.1128/jvi.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Fabian Roesmann
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katleen Klaassen
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Delia Heininger
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Stefanie Heß
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Dermatology, HPSTD Outpatient Clinic, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| |
Collapse
|
5
|
Jiang ZZ, Chu M, Yan LN, Zhang WK, Li B, Xu J, Zhao ZX, Han HJ, Zhou CM, Yu XJ. SFTSV nucleoprotein mediates DNA sensor cGAS degradation to suppress cGAS-dependent antiviral responses. Microbiol Spectr 2024; 12:e0379623. [PMID: 38712963 PMCID: PMC11237745 DOI: 10.1128/spectrum.03796-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.
Collapse
Affiliation(s)
- Ze-zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Li-na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Wen-kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Jiao Xu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Zhong-xin Zhao
- Department of Laboratory Medicine, Linyi People’s Hospital, Linyi, Shandong, China
| | - Hui-Ju Han
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan-min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kletzien OA, Wuttke DS, Batey RT. The RNA-Binding Domain of hnRNP U Extends beyond the RGG/RG Motifs. Biochemistry 2024. [PMID: 38329035 PMCID: PMC11449452 DOI: 10.1021/acs.biochem.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein U (hnRNP U) is a ubiquitously expressed protein that regulates chromatin architecture through its interactions with numerous DNA, protein, and RNA partners. The RNA-binding domain (RBD) of hnRNP U was previously mapped to an RGG/RG motif within its disordered C-terminal region, but little is understood about its binding mode and potential for selective RNA recognition. Analysis of publicly available hnRNP U enhanced UV cross-linking and immunoprecipitation (eCLIP) data identified high-confidence binding sites within human RNAs. We synthesized a set of diverse RNAs encompassing 11 of these identified cross-link sites for biochemical characterization using a combination of fluorescence anisotropy and electrophoretic mobility shift assays. These in vitro binding experiments with a rationally designed set of RNAs and hnRNP U domains revealed that the RGG/RG motif is a small part of a more expansive RBD that encompasses most of the disordered C-terminal region. This RBD contains a second, previously experimentally uncharacterized RGG/RG motif with RNA-binding properties comparable to those of the canonical RGG/RG motif. These RGG/RG motifs serve redundant functions, with neither serving as the primary RBD. While in isolation, each RGG/RG motif has modest affinity for RNA, together they significantly enhance the association of hnRNP U with RNA, enabling the binding of most of the designed RNA set with low to midnanomolar binding affinities. Identification and characterization of the complete hnRNP U RBD highlight the perils of a reductionist approach to defining biochemical activities in this system and pave the way for a detailed investigation of its RNA-binding specificity.
Collapse
Affiliation(s)
- Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309-0596, United States
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309-0596, United States
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
7
|
Kletzien OA, Wuttke DS, Batey RT. The RNA-binding domain of hnRNP U extends beyond the RGG/RG motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558674. [PMID: 37786719 PMCID: PMC10541603 DOI: 10.1101/2023.09.20.558674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein U (hnRNP U) is a ubiquitously expressed protein that regulates chromatin architecture through its interactions with numerous DNA, protein, and RNA partners. The RNA-binding domain (RBD) of hnRNP U was previously mapped to an RGG/RG element within its disordered C-terminal region, but little is understood about its binding mode and potential for selective RNA recognition. Analysis of publicly available hnRNP U enhanced UV crosslinking and immunoprecipitation (eCLIP) data identified high-confidence binding sites within human RNAs. We synthesized a set of diverse RNAs encompassing eleven of these identified crosslink sites for biochemical characterization using a combination of fluorescence anisotropy and electrophoretic mobility shift assays. These in vitro binding experiments with a rationally designed set of RNAs and hnRNP U domains revealed that the RGG/RG element is a small part of a more expansive RBD that encompasses most of the disordered C-terminal region. This RBD contains a second, previously experimentally uncharacterized RGG/RG element with RNA-binding properties comparable to the canonical RGG/RG element. These RGG/RG elements serve redundant functions, with neither serving as the primary RBD. While in isolation each RGG/RG element has modest affinity for RNA, together they significantly enhance the association of hnRNP U with RNA, enabling binding of most of the designed RNA set with low to mid-nanomolar binding affinities. Identification and characterization of the complete hnRNP U RBD highlights the perils of a reductionist approach to defining biochemical activities in this system and paves the way for a detailed investigation of its RNA-binding specificity.
Collapse
Affiliation(s)
- Otto A. Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
8
|
Miyaji M, Kawano S, Furuta R, Murakami E, Ikeda S, Tsutsui KM, Tsutsui K. Selective DNA-binding of SP120 (rat ortholog of human hnRNP U) is mediated by arginine-glycine rich domain and modulated by RNA. PLoS One 2023; 18:e0289599. [PMID: 37540655 PMCID: PMC10403129 DOI: 10.1371/journal.pone.0289599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
A human protein heterogeneous ribonucleoprotein U (hnRNP U) also known as Scaffold attachment factor A (SAF-A) and its orthologous rat protein SP120 are abundant and multifunctional nuclear protein that directly binds to both DNA and RNA. The C-terminal region of hnRNP U enriched with arginine and glycine is essential for the interaction with RNA and the N-terminal region of SAF-A termed SAP domain has been ascribed to the DNA binding. We have reported that rat hnRNP U specifically and cooperatively binds to AT-rich DNA called nuclear scaffold/matrix-associated region (S/MAR) although its detailed mechanism remained unclear. In the present study analysis of hnRNP U deletion mutants revealed for the first time that a C-terminal domain enriched with Arg-Gly (defined here as 'RG domain') is predominantly important for the S/MAR-selective DNA binding activities. RG domain alone directly bound to S/MAR and coexistence with the SAP domain exerted a synergistic effect. The binding was inhibited by netropsin, a minor groove binder with preference to AT pairs that are enriched in S/MAR, suggesting that RG domain interacts with minor groove of S/MAR DNA. Interestingly, excess amounts of RNA attenuated the RG domain-dependent S/MAR-binding of hnRNP U. Taken together, hnRNP U may be the key element for the RNA-regulated recognition of S/MAR DNA and thus contributing to the dynamic structural changes of chromatin compartments.
Collapse
Affiliation(s)
- Mary Miyaji
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinji Kawano
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Ryohei Furuta
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emi Murakami
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Shogo Ikeda
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Kimiko M Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Ressler AK, Sampaio GL, Dugger SA, Sapir T, Krizay D, Boland MJ, Reiner O, Goldstein DB. Evidence of shared transcriptomic dysregulation of HNRNPU-related disorder between human organoids and embryonic mice. iScience 2023; 26:105797. [PMID: 36594023 PMCID: PMC9804147 DOI: 10.1016/j.isci.2022.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Generating effective therapies for neurodevelopmental disorders has remained elusive. An emerging drug discovery approach for neurodevelopmental disorders is to characterize transcriptome-wide dysregulation in an appropriate model system and screen therapeutics based on their capacity to restore functionally relevant expression patterns. We characterized transcriptomic dysregulation in a human model of HNRNPU-related disorder to explore the potential of such a paradigm. We identified widespread dysregulation in functionally relevant pathways and then compared dysregulation in a human model to transcriptomic differences in embryonic and perinatal mice to determine whether dysregulation in an in vitro human model is partially replicated in an in vivo model of HNRNPU-related disorder. Strikingly, we find enrichment of co-dysregulation between 45-day-old human organoids and embryonic, but not perinatal, mice from distinct models of HNRNPU-related disorder. Thus, hnRNPU deficient human organoids may only be suitable to model transcriptional dysregulation in certain cell types within a specific developmental time window.
Collapse
Affiliation(s)
- Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabriela L.A. Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Incumbent of the Berstein-Mason Professorial Chair of Neurochemistry, Head of M. Judith Ruth Institute of Preclinical Brain Research, Weizmann Institute of Science, Rehovot, Israel
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
11
|
Nickerson JA. The ribonucleoprotein network of the nucleus: a historical perspective. Curr Opin Genet Dev 2022; 75:101940. [PMID: 35777349 DOI: 10.1016/j.gde.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
There is a long experimental history supporting the principle that RNA is essential for normal nuclear and chromatin architecture. Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. In the nucleus, most non-coding RNA, packaged in proteins, is bound into structures including chromatin and a non-chromatin scaffolding, the nuclear matrix, which was first observed by electron microscopy. Removing nuclear RNA or inhibiting its transcription causes the condensation of chromatin, showing the importance of RNA in spatially and functionally organizing the genome. Today, powerful techniques for the molecular characterization of RNA and for mapping its spatial organization in the nucleus have provided molecular detail to these principles.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
12
|
Cao L, Luo Y, Guo X, Liu S, Li S, Li J, Zhang Z, Zhao Y, Zhang Q, Gao F, Ji X, Gao X, Li Y, You F. SAFA facilitates chromatin opening of immune genes through interacting with anti-viral host RNAs. PLoS Pathog 2022; 18:e1010599. [PMID: 35658050 PMCID: PMC9200321 DOI: 10.1371/journal.ppat.1010599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Regulation of chromatin structure and accessibility determines the transcription activities of genes, which endows the host with function-specific patterns of gene expression. Upon viral infection, the innate immune responses provide the first line of defense, allowing rapid production of variegated antiviral cytokines. Knowledge on how chromatin accessibility is regulated during host defense against viral infection remains limited. Our previous work found that the nuclear matrix protein SAFA surveilled viral RNA and regulated antiviral immune genes expression. However, how SAFA regulates the specific induction of antiviral immune genes remains unknown. Here, through integration of RNA-seq, ATAC-seq and ChIP-seq assays, we found that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes. And mutation assays suggested that the RNA-binding ability of SAFA was essential for its function in regulating antiviral chromatin accessibility. RIP-seq results showed that SAFA exclusively bound with antiviral related RNAs following viral infection. Further, we combined the CRISPR-Cas13d mediated RNA knockdown system with ATAC-qPCR, and demonstrated that the binding between SAFA and according antiviral RNAs specifically mediated the openness of the corresponding chromatin and following robust transcription of antiviral genes. Moreover, knockdown of these associated RNAs dampened the accessibility of related genes in an extranuclear signaling pathway dependent manner. Interestingly, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products collaborated and remodeled chromatin accessibility to facilitate antiviral innate immune responses. Regulation of chromatin opening and gene expression underlies a key point during host defense against viral infection, which endows the host with timely and effective antiviral gene expression patterns. We previously reported that the nuclear matrix protein SAFA surveils viral RNA and regulates antiviral immune genes expression. However, how SAFA regulates the expression and what determines the specific induction of antiviral immune genes remains unclear. Here, we used a combination of high-throughput sequencing technologies and found that SAFA and the interacting RNA products collaborated and specifically remodeled chromatin accessibility to facilitate antiviral immune genes expression. We also found that VSV infection cleaved SAFA protein at the C-terminus and deprived its RNA binding ability for immune evasion. Our study provides new insights into the mechanism by which chromatin remodeling facilitates the induction of antiviral immune genes.
Collapse
Affiliation(s)
- Lili Cao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yujie Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siji Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Junhong Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zeming Zhang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qiao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Feng Gao
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of life science, Shandong University, Qingdao, China
| | - Yunfei Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
- * E-mail: (YL); (FY)
| | - Fuping You
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
- * E-mail: (YL); (FY)
| |
Collapse
|
13
|
Connolly C, Takahashi S, Miura H, Hiratani I, Gilbert N, Donaldson AD, Hiraga SI. SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. J Cell Sci 2022; 135:jcs258991. [PMID: 34888666 DOI: 10.1242/jcs.258991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.
Collapse
Affiliation(s)
- Caitlin Connolly
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Saori Takahashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Miura
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd, Edinburgh EH4 2XU, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
14
|
Kolpa HJ, Creamer KM, Hall LL, Lawrence JB. SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome 2021; 33:366-381. [PMID: 34859278 PMCID: PMC9114059 DOI: 10.1007/s00335-021-09935-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Here we provide a brief review of relevant background before presenting results of our investigation into the interplay between scaffold attachment factor A (SAF-A), chromatin-associated RNAs, and DNA condensation. SAF-A, also termed heterogenous nuclear protein U (hnRNP U), is a ubiquitous nuclear scaffold protein that was implicated in XIST RNA localization to the inactive X-chromosome (Xi) but also reported to maintain open DNA packaging in euchromatin. Here we use several means to perturb SAF-A and examine potential impacts on the broad association of RNAs on euchromatin, and on chromatin compaction. SAF-A has an N-terminal DNA binding domain and C-terminal RNA binding domain, and a prominent model has been that the protein provides a single-molecule bridge between XIST RNA and chromatin. Here analysis of the impact of SAF-A on broad RNA-chromatin interactions indicate greater biological complexity. We focus on SAF-A's role with repeat-rich C0T-1 hnRNA (repeat-rich heterogeneous nuclear RNA), shown recently to comprise mostly intronic sequences of pre-mRNAs and diverse long non-coding RNAs (lncRNAs). Our results show that SAF-A mutants cause dramatic changes to cytological chromatin condensation through dominant negative effects on C0T-1 RNA's association with euchromatin, and likely other nuclear scaffold factors. In contrast, depletion of SAF-A by RNA interference (RNAi) had no discernible impact on C0T-1 RNA, nor did it cause similarly marked chromatin changes as did three different SAF-A mutations. Overall results support the concept that repeat-rich, chromatin-associated RNAs interact with multiple RNA binding proteins (RBPs) in a complex dynamic meshwork that is integral to larger-scale chromatin architecture and collectively influences cytological-scale DNA condensation.
Collapse
Affiliation(s)
- Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Ashfield MedComms, Lyndhurst, NJ, 07071, USA
| | - Kevin M Creamer
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nat Struct Mol Biol 2021; 28:1009-1019. [PMID: 34887560 DOI: 10.1038/s41594-021-00692-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
NAD metabolism is essential for all forms of life. Compartmental regulation of NAD+ consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD+ consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.
Collapse
|
16
|
Liang Y, Fan Y, Liu Y, Fan H. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res 2021; 409:112898. [PMID: 34737140 DOI: 10.1016/j.yexcr.2021.112898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
The nuclear matrix-associated protein Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), also known as SAF-A, is known to maintain active chromatin structure in mouse hepatocytes. However, the functional roles and molecular mechanisms of HNRNPU in the development of hepatocellular carcinoma (HCC) remain largely unknown. Herein, we found that HNRNPU was upregulated in HCC, and the proliferation of HCC cells was inhibited in vitro and in vivo upon HNRNPU knockdown. Moreover, the upregulation of HNRNPU was correlated with poor prognosis in HCC. Mechanistically, HNRNPU bound to the CDK2 gene locus, a key factor in cell cycle regulation, where it was enriched with H3K27 acetylation (H3K27ac), H3K9 acetylation (H3K9ac), and H3K4 mono-methylation (H3K4me1). Furthermore, HNRNPU knockdown reduced the levels of H3K27ac and H3K9ac at the binding site, where the levels of H3K27 tri-methylation (H3K27me3) were increased, eventually leading to the downregulation of CDK2. Collectively, our results provide a new mechanism whereby HNRNPU promotes HCC development by enhancing the transcription of CDK2.
Collapse
Affiliation(s)
- Yi Liang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yao Fan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Liu BY, Yu XJ, Zhou CM. SAFA initiates innate immunity against cytoplasmic RNA virus SFTSV infection. PLoS Pathog 2021; 17:e1010070. [PMID: 34788350 PMCID: PMC8598041 DOI: 10.1371/journal.ppat.1010070] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear scaffold attachment factor A (SAFA) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS with a high fatality rate of up to 30%. It remains elusive whether and how cytoplasmic SFTSV can be sensed by the RNA sensor SAFA. Here, we demonstrated that SAFA was able to detect SFTSV infection and mediate antiviral interferon and inflammatory responses. Transcription and expression levels of SAFA were strikingly upregulated under SFTSV infection. SAFA was retained in the cytoplasm by interaction with SFTSV nucleocapsid protein (NP). Importantly, SFTSV genomic RNA was recognized by cytoplasmic SAFA, which recruited and promoted activation of the STING-TBK1 signaling axis against SFTSV infection. Of note, the nuclear localization signal (NLS) domain of SAFA was important for interaction with SFTSV NP and recognition of SFTSV RNA in the cytoplasm. In conclusion, our study reveals a novel antiviral mechanism in which SAFA functions as a novel cytoplasmic RNA sensor that directly recognizes RNA virus SFTSV and mediates an antiviral response. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an RNA virus with a high fatality rate of up to 30%, which replicates exclusively in the cytoplasm. To date, many cytoplasmic RNA sensors were known to recognize SFTSV infection and trigger antiviral immune responses. Nuclear scaffold attachment factor A (SAFA) is a novel nuclear RNA sensor which can sense viral RNA in the nucleus and promote activation of antiviral immunity. However, there are no studies to investigate whether SAFA could detect cytoplasmic RNA virus infection. Here, we reported that SAFA was able to detect RNA virus SFTSV invasion. Under SFTSV infection, SAFA was retained in the cytoplasm and recognized SFTSV infection by interaction with SFTSV nucleocapsid protein (NP) and cytoplasmic SFTSV RNA directly. Importantly, SAFA recruited and promoted the activation of the STING-TBK1 signaling pathway-mediated antiviral immunity to suppress SFTSV infection. This study provides a further acquaintance in SAFA-mediated antiviral immune responses, illustrating the novel role of SAFA in sensing cytoplasmic SFTSV and mediates an antiviral response.
Collapse
Affiliation(s)
- Bin-yan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, P.R. China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, P.R. China
- * E-mail: (XY); (C-mZ)
| | - Chuan-min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, P.R. China
- * E-mail: (XY); (C-mZ)
| |
Collapse
|
18
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
19
|
Huang Y, Qiao Y, Zhao Y, Li Y, Yuan J, Zhou J, Sun H, Wang H. Large scale RNA-binding proteins/LncRNAs interaction analysis to uncover lncRNA nuclear localization mechanisms. Brief Bioinform 2021; 22:6287336. [PMID: 34056657 DOI: 10.1093/bib/bbab195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of major biological processes and their functional modes are dictated by their subcellular localization. Relative nuclear enrichment of lncRNAs compared to mRNAs is a prevalent phenomenon but the molecular mechanisms governing their nuclear retention in cells remain largely unknown. Here in this study, we harness the recently released eCLIP data for a large number of RNA-binding proteins (RBPs) in K562 and HepG2 cells and utilize multiple bioinformatics methods to comprehensively survey the roles of RBPs in lncRNA nuclear retention. We identify an array of splicing RBPs that bind to nuclear-enriched lincRNAs (large intergenic non-coding RNAs) thus may act as trans-factors regulating their nuclear retention. Further analyses reveal that these RBPs may bind with distinct core motifs, flanking sequence compositions, or secondary structures to drive lincRNA nuclear retention. Moreover, network analyses uncover potential co-regulatory RBP clusters and the physical interaction between HNRNPU and SAFB2 proteins in K562 cells is further experimentally verified. Altogether, our analyses reveal previously unknown factors and mechanisms that govern lincRNA nuclear localization in cells.
Collapse
Affiliation(s)
- Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yulong Qiao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthaepedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthaepedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
21
|
Sharp JA, Perea-Resa C, Wang W, Blower MD. Cell division requires RNA eviction from condensing chromosomes. J Cell Biol 2021; 219:211450. [PMID: 33053167 PMCID: PMC7549315 DOI: 10.1083/jcb.201910148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid–binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B–dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A–RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B–dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
23
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
24
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
25
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Comparison of proteomic profiles from the testicular tissue of males with impaired and normal spermatogenesis. Syst Biol Reprod Med 2020; 67:127-136. [PMID: 33375868 DOI: 10.1080/19396368.2020.1846822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we aimed to explore the potential differences in proteomic profiles from the testicular tissue of azoospermatic men with impaired spermatogenesis and normal spermatogenesis. Isobaric tags for relative and absolute quantitation (iTRAQ) labeled technology and LC-MS/MS technology were used to identify differentially expressed proteins. Potential functions of differentially expressed proteins were predicted using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG). Immunohistochemistry (IHC) and western blot (WB) were used to verify the differentially expressed proteins. A protein-protein interaction (PPI) network was built to outline the regulatory network of differentially expressed proteins. A total of 3,945 proteins were identified in men with normal and impaired spermatogenesis. Of these, 116 proteins were differentially expressed in men with impaired spermatogenesis: 39 were upregulated and 77 were downregulated. Furthermore, we found that these differentially expressed proteins were mainly involved in the cellular component, which may be mainly associated with the spliceosome, ribosome, and thyroid hormone synthesis signaling pathways. The spliceosome- and ribosome-associated proteins YBX1, FBL, and HNRNPU were downregulated. And the proteomic profile of testicular tissue in men with impaired spermatogenesis is different from that of men with normal spermatogenesis. For this reason, differentially expressed proteins such as YBX1, FBL and HNRNPU might be involved in the pathology of spermatogenesis dysfunction.Abbreviations: iTRAQ: Isobaric tags for relative and absolute quantitation;GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; IHC: Immunohistochemistry; WB: Western blot; PPI: Protein-protein interaction; ICSI: Intracytoplasmic sperm injection; BP: Biological process; CC: Cellular components; MF: Molecular function; snoRNA: Small nucleolar RNA; snRNA: Small nuclear RNA; LC-MS/MS: Liquid chromatography and MS/MS analysis; BSA: Bovine serum albumin; SD: Spermatogenic dysfunction; micro-TESE: Testicular microscopic sperm extraction.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
26
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
27
|
Topoisomerase IIβ targets DNA crossovers formed between distant homologous sites to induce chromatin opening. Sci Rep 2020; 10:18550. [PMID: 33122676 PMCID: PMC7596052 DOI: 10.1038/s41598-020-75004-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/09/2020] [Indexed: 11/08/2022] Open
Abstract
Type II DNA topoisomerases (topo II) flip the spatial positions of two DNA duplexes, called G- and T- segments, by a cleavage-passage-resealing mechanism. In living cells, these DNA segments can be derived from distant sites on the same chromosome. Due to lack of proper methodology, however, no direct evidence has been described so far. The beta isoform of topo II (topo IIβ) is essential for transcriptional regulation of genes expressed in the final stage of neuronal differentiation. Here we devise a genome-wide mapping technique (eTIP-seq) for topo IIβ target sites that can measure the genomic distance between G- and T-segments. It revealed that the enzyme operates in two distinctive modes, termed proximal strand passage (PSP) and distal strand passage (DSP). PSP sites are concentrated around transcription start sites, whereas DSP sites are heavily clustered in small number of hotspots. While PSP represent the conventional topo II targets that remove local torsional stresses, DSP sites have not been described previously. Most remarkably, DSP is driven by the pairing between homologous sequences or repeats located in a large distance. A model-building approach suggested that topo IIβ acts on crossovers to unknot the intertwined DSP sites, leading to chromatin decondensation.
Collapse
|
28
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
29
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
31
|
Desterke C, Gassama-Diagne A. Protein-protein interaction analysis highlights the role of septins in membrane enclosed lumen and mRNA processing. Adv Biol Regul 2019; 73:100635. [PMID: 31420262 DOI: 10.1016/j.jbior.2019.100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Septins are a family of GTP-binding proteins that assemble into non-polar filaments which can be recruited to negatively charged membranes and serve as a scaffold to recruit cytosolic proteins and cytoskeletal elements such as microtubules and actin so that they can perform their important biological functions. Human septins consist of four groups, each with 13 members, and filaments formation usually involve members from each group in specific positions. However, little is known about the molecular mechanisms that drive the binding of septins to membranes and its importance to their biological functions. Here we have built a protein-protein interaction (PPI) network around human septins and highlighted the connections with 170 partners. Functional enrichment by inference of the network of septins and their partners revealed their participation in functions consistent with some of the roles described for septins, including cell cycle, cell division and cell shape, but we also identified septin partners in these functions that had not previously been described. Interestingly, we identified important and multiple connections between septins and mRNA processing and their export from the nucleus. Analysis of the enrichment of gene ontology cellular components highlighted some important interactions between molecules involved in the spliceosome with septin 2 and septin 7 in particular. RNA splicing regulates gene expression, and through it, cell fate, development and physiology. Mutations in components of the in the splicing machinery is linked to several diseases including cancer, thus taken together, the different analyses presented here open new perspectives to elucidate the pathobiological role of septins.
Collapse
Affiliation(s)
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
32
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
33
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
34
|
Fan H, Lv P, Huo X, Wu J, Wang Q, Cheng L, Liu Y, Tang QQ, Zhang L, Zhang F, Zheng X, Wu H, Wen B. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 2017; 28:192-202. [PMID: 29273625 PMCID: PMC5793783 DOI: 10.1101/gr.224576.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022]
Abstract
Eukaryotic chromosomes are folded into higher-order conformations to coordinate genome functions. In addition to long-range chromatin loops, recent chromosome conformation capture (3C)-based studies have indicated higher levels of chromatin structures including compartments and topologically associating domains (TADs), which may serve as units of genome organization and functions. However, the molecular machinery underlying these hierarchically three-dimensional (3D) chromatin architectures remains poorly understood. Via high-throughput assays, including in situ Hi-C, DamID, ChIP-seq, and RNA-seq, we investigated roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, in 3D genome organization. Upon the depletion of HNRNPU in mouse hepatocytes, the coverage of lamina-associated domains (LADs) in the genome increases from 53.1% to 68.6%, and a global condensation of chromatin was observed. Furthermore, disruption of HNRNPU leads to compartment switching on 7.5% of the genome, decreases TAD boundary strengths at borders between A (active) and B (inactive) compartments, and reduces chromatin loop intensities. Long-range chromatin interactions between and within compartments or TADs are also significantly remodeled upon HNRNPU depletion. Intriguingly, HNRNPU mainly associates with active chromatin, and 80% of HNRNPU peaks coincide with the binding of CTCF or RAD21. Collectively, we demonstrated that HNRNPU functions as a major factor maintaining 3D chromatin architecture, suggesting important roles of NM-associated proteins in genome organization.
Collapse
Affiliation(s)
- Hui Fan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pin Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiangru Huo
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jicheng Wu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Cheng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qi-Qun Tang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Creamer KM, Lawrence JB. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160360. [PMID: 28947659 PMCID: PMC5627162 DOI: 10.1098/rstb.2016.0360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST, but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA 'coats' euchromatin and may impact chromosome architecture in a manner opposite of XIST A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- K M Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J B Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
36
|
Cornella N, Tebaldi T, Gasperini L, Singh J, Padgett RA, Rossi A, Macchi P. The hnRNP RALY regulates transcription and cell proliferation by modulating the expression of specific factors including the proliferation marker E2F1. J Biol Chem 2017; 292:19674-19692. [PMID: 28972179 DOI: 10.1074/jbc.m117.795591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression. However, the RALY's role in regulating RNA levels remains elusive. Here, we show that numerous genes coding for factors involved in transcription and cell cycle regulation exhibit an altered expression in RALY-down-regulated HeLa cells, consequently causing impairments in transcription, cell proliferation, and cell cycle progression. Interestingly, by comparing the list of RALY targets with the list of genes affected by RALY down-regulation, we found an enrichment of RALY mRNA targets in the down-regulated genes upon RALY silencing. The affected genes include the E2F transcription factor family. Given its role as proliferation-promoting transcription factor, we focused on E2F1. We demonstrate that E2F1 mRNA stability and E2F1 protein levels are reduced in cells lacking RALY expression. Finally, we also show that RALY interacts with transcriptionally active chromatin in both an RNA-dependent and -independent manner and that this association is abolished in the absence of active transcription. Taken together, our results highlight the importance of RALY as an indirect regulator of transcription and cell cycle progression through the regulation of specific mRNA targets, thus strengthening the possibility of a direct gene expression regulation exerted by RALY.
Collapse
Affiliation(s)
- Nicola Cornella
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Toma Tebaldi
- the Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lisa Gasperini
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | | | | | - Annalisa Rossi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| | - Paolo Macchi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| |
Collapse
|
37
|
Drakouli S, Lyberopoulou A, Papathanassiou M, Mylonis I, Georgatsou E. Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation. FEBS J 2017. [DOI: 10.1111/febs.14141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sotiria Drakouli
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Aggeliki Lyberopoulou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
- Laboratory of Internal Medicine; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Maria Papathanassiou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
- Department of Pathology; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Eleni Georgatsou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| |
Collapse
|
38
|
Yue M, Ogawa A, Yamada N, Charles Richard JL, Barski A, Ogawa Y. Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression. PLoS Genet 2017; 13:e1006890. [PMID: 28686623 PMCID: PMC5521851 DOI: 10.1371/journal.pgen.1006890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA Xist plays a crucial role in establishing and maintaining X-chromosome inactivation (XCI) which is a paradigm of long non-coding RNA-mediated gene regulation. Xist has Xist-specific repeat elements A-F which are conserved among eutherian mammals, underscoring their functional importance. Here we report that Xist RNA repeat E, a conserved Xist repeat element in the Xist exon 7, interacts with ASH2L and contributes to maintenance of escape gene expression level on the inactive X-chromosome (Xi) during XCI. The Xist repeat E-deletion mutant female ES cells show the depletion of ASH2L from the Xi upon differentiation. Furthermore, a subset of escape genes exhibits unexpectedly higher expression in the repeat E mutant cells than the cells expressing wildtype Xist during X-inactivation, whereas the silencing of X-linked non-escape genes is not affected. We discuss the implications of these results to understand the role of ASH2L and Xist repeat E for histone modifications and escape gene regulation during random X-chromosome inactivation.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akiyo Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Norishige Yamada
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17:756-770. [DOI: 10.1038/nrm.2016.126] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet 2015; 11:e1005430. [PMID: 26244333 PMCID: PMC4526699 DOI: 10.1371/journal.pgen.1005430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U. To balance gene expression from X-chromosomes between males and females, one of the two X-chromosomes is inactivated in female mammals. X-chromosome inactivation is a chromosome-wide epigenetic gene silencing mechanism regulated by long non-coding Xist RNA. Mouse Xist RNA is commonly organized into 7 exons, with the extensively studied and known important domains of Xist residing within exon 1. However, the function of exon 7 of Xist RNA, which is the second longest exon, remains poorly understood. Our objective was to clarify the role of this exon in X-inactivation through the use of Xist truncation mutant female ES cells. Here, we provide evidence that Xist exon 7 is required for the stable localization of Xist RNA and X-linked gene silencing on the inactive X-chromosome.
Collapse
|
41
|
McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, Guttman M. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 2015; 521:232-6. [PMID: 25915022 PMCID: PMC4516396 DOI: 10.1038/nature14443] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins--SHARP, SAF-A and LBR--are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome.
Collapse
Affiliation(s)
- Colleen A. McHugh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Christine F. Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Christina Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Amy Pandya-Jones
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Christina Burghard
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Alexander A. Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Julia Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Kathrin Plath
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
42
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
43
|
Razin SV, Borunova VV, Iarovaia OV, Vassetzky YS. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. BIOCHEMISTRY (MOSCOW) 2015; 79:608-18. [PMID: 25108324 DOI: 10.1134/s0006297914070037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
44
|
Lenarcic EM, Ziehr BJ, Moorman NJ. An unbiased proteomics approach to identify human cytomegalovirus RNA-associated proteins. Virology 2015; 481:13-23. [PMID: 25765003 DOI: 10.1016/j.virol.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
Post-transcriptional events regulate herpesvirus gene expression, yet few herpesvirus RNA-binding proteins have been identified. We used an unbiased approach coupling oligo(dT) affinity capture with proteomics to identify viral RNA-associated proteins during infection. Using this approach, we identified and confirmed changes in the abundance or activity of two host RNA-associated proteins, DHX9 and DDX3, in cells infected with human cytomegalovirus (HCMV). We also identified and confirmed previously unreported activities for the HCMV US22 and pp71 proteins as RNA-associated viral proteins and confirmed that a known viral RNA-binding protein, pTRS1, associates with RNA in infected cells. Further, we found that HCMV pp71 co-sedimented with polysomes, associated with host and viral RNAs, and stimulated the overall rate of protein synthesis. These results demonstrate that oligo(dT) affinity capture coupled with proteomics provides a rapid and straightforward means to identify RNA-associated viral proteins during infection that may participate in the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Erik M Lenarcic
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin J Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
45
|
D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 2014; 22:1-10. [PMID: 23139046 DOI: 10.1002/pro.2185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/12/2022]
Abstract
The SPRY domain is a protein interaction module found in 77 murine and ~100 human proteins, and is implicated in important biological pathways, including those that regulate innate and adaptive immunity. The current definition of the SPRY domain is based on a sequence repeat discovered in the splA kinase and ryanodine receptors. The greater SPRY family is divided into the B30.2 (which contains a PRY extension at the N-terminus) and "SPRY-only" sub-families. In this brief review, we examine the current structural and biochemical literature on SPRY/B30.2 domain involvement in key immune processes and highlight a PRY-like 60 amino acid region in the N-terminus of "SPRY-only" proteins. Phylogenetic, structural, and functional analyses suggest that this N-terminal region is related to the PRY region of B30.2 and should be characterized as part of an extended SPRY domain. Greater understanding of the functional importance of the N-terminal region in "SPRY only" proteins will enhance our ability to interrogate SPRY interactions with their respective binding partners.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014; 42:9047-62. [PMID: 25030905 PMCID: PMC4132723 DOI: 10.1093/nar/gku601] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15.
Collapse
Affiliation(s)
- Sébastien Britton
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Emma Dernoncourt
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Christine Delteil
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Carine Froment
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Odile Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Bernard Salles
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
47
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
48
|
Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N, Fackelmayer FO, Lawrence JB. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 2014; 156:907-19. [PMID: 24581492 PMCID: PMC4023122 DOI: 10.1016/j.cell.2014.01.042] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 10/15/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two "black boxes" of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dawn M Carone
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alvin V Gomez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nitish Mehta
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Frank O Fackelmayer
- Laboratory of Epigenetics and Chromosome Biology, Department of Biomedical Research, Institute for Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 45110 Ioannina, Greece
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV. Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013; 587:1840-7. [PMID: 23651551 DOI: 10.1016/j.febslet.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre-initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | | | | |
Collapse
|
50
|
Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW, Chalfant CE. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem 2013; 288:8575-8584. [PMID: 23396972 DOI: 10.1074/jbc.m112.443333] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caspase-9 has two splice variants, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b, which are regulated by RNA trans-factors associated with exon 3 of caspase-9 pre-mRNA (C9/E3). In this study, we identified hnRNP U as an RNA trans-factor associated with C9/E3. Down-regulation of hnRNP U led to a decrease in the caspase-9a/9b mRNA ratio, demonstrating a novel enhancing function. Importantly, hnRNP U bound specifically to C9/E3 at an RNA cis-element previously reported as the binding site for the splicing repressor, hnRNP L. Phosphorylated hnRNP L interfered with hnRNP U binding to C9/E3, and our results demonstrate the importance of the phosphoinositide 3-kinase/AKT pathway in modulating the association of hnRNP U to C9/E3. Taken together, these findings show that hnRNP U competes with hnRNP L for binding to C9/E3 to enhance the inclusion of the four-exon cassette, and this splice-enhancing function is blocked by the AKT pathway via phosphorylation of hnRNP L.
Collapse
Affiliation(s)
- Ngoc T Vu
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298; Vietnam Education Foundation, Arlington, Virginia 22201
| | - Margaret A Park
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jacqueline C Shultz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Rachel W Goehe
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Michael D Shultz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Sarah A Smith
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Charles E Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298; Research and Development, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249; The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|