1
|
Li M, Wang P, Zou Y, Wang W, Zhao Y, Liu M, Wu J, Zhang Y, Zhang N, Sun Y. Spleen tyrosine kinase (SYK) signals are implicated in cardio-cerebrovascular diseases. Heliyon 2023; 9:e15625. [PMID: 37180910 PMCID: PMC10172877 DOI: 10.1016/j.heliyon.2023.e15625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pengbo Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wenbin Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanhui Zhao
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Mengke Liu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jianlong Wu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Phosphatidylinositol 3-kinase is an important signaling molecule that, once activated, leads to the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). We performed a proteomic screen to identify PIP3-interacting proteins in human platelets. Among these proteins, we found engulfment and cell motility 1 (ELMO1), a scaffold protein with no catalytic activity. ELMO1 is expressed in platelets and interacts with active RhoG. However, the function of ELMO1 in platelets is not known. The focus of this study was to determine the function of ELMO1 in platelets utilizing ELMO1-/- mice. Platelet aggregation, granule secretion, integrin αIIbβ3 activation, and thromboxane generation were enhanced in ELMO1-/- platelets in response to glycoprotein VI (GPVI) agonists but unaltered when a protease-activated receptor 4 agonist was used. The kinetics of spreading on immobilized fibrinogen was enhanced in ELMO1-/- platelets compared with wild-type (WT) littermate controls. This suggests that ELMO1 plays a role downstream of the GPVI and integrin αIIbβ3 pathway. Furthermore, whole blood from ELMO1-/- mice perfused over collagen exhibited enhanced thrombus formation compared with WT littermate controls. ELMO1-/- mice showed reduced survival compared with control following pulmonary embolism. ELMO1-/- mice also exhibited a shorter time to occlusion using the ferric-chloride injury model and reduced bleeding times compared with WT littermate controls. These results indicate that ELMO1 plays an important role in hemostasis and thrombosis in vivo. RhoG activity was enhanced in ELMO1-/- murine platelets compared with WT littermate controls in response to GPVI agonist. Together, these data suggest that ELMO1 negatively regulates GPVI-mediated thrombus formation via RhoG.
Collapse
|
3
|
Gross D. Thromboembolic Phenomena and the use of the Pig as an Appropriate Animal Model for Research on Cardiovascular Devices. Int J Artif Organs 2018. [DOI: 10.1177/039139889702000402] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- D.R. Gross
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign - USA
| |
Collapse
|
4
|
Jang JY, Min JH, Wang SB, Chae YH, Baek JY, Kim M, Ryu JS, Chang TS. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2. Free Radic Biol Med 2015; 89:842-51. [PMID: 26482867 DOI: 10.1016/j.freeradbiomed.2015.10.413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea.
| |
Collapse
|
5
|
Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS, Chang TS. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med 2015; 83:41-53. [PMID: 25645952 DOI: 10.1016/j.freeradbiomed.2015.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yunjeong Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Gwi Seo Hwang
- Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
6
|
Jang JY, Wang SB, Min JH, Chae YH, Baek JY, Yu DY, Chang TS. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function. J Biol Chem 2015; 290:11432-42. [PMID: 25802339 DOI: 10.1074/jbc.m115.644260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.
Collapse
Affiliation(s)
- Ji Yong Jang
- From the Graduate School of Pharmaceutical Sciences and
| | - Su Bin Wang
- From the Graduate School of Pharmaceutical Sciences and
| | - Ji Hyun Min
- From the Graduate School of Pharmaceutical Sciences and
| | - Yun Hee Chae
- From the Graduate School of Pharmaceutical Sciences and
| | | | - Dae-Yeul Yu
- the Disease Model Research Laboratory, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 605-806, Korea
| | - Tong-Shin Chang
- From the Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750 and
| |
Collapse
|
7
|
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 2014; 20:2528-40. [PMID: 24093153 PMCID: PMC4025609 DOI: 10.1089/ars.2013.5337] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The collagen-stimulated generation of reactive oxygen species (ROS) regulates signal transduction in platelets, although the mechanism is unclear. The major targets of ROS include protein tyrosine phosphatases (PTPs). ROS-mediated oxidation of the active cysteine site in PTPs abrogates the PTP catalytic activity. The aim of this study was to elucidate whether collagen-induced ROS generation leads to PTP oxidation, which promotes platelet stimulation. RESULTS SH2 domain-containing PTP-2 (SHP-2) is oxidized in platelets by ROS produced upon collagen stimulation. The oxidative inactivation of SHP-2 leads to the enhanced tyrosine phosphorylation of spleen tyrosine kinase (Syk), Vav1, and Bruton's tyrosine kinase (Btk) in the linker for the activation of T cells signaling complex, which promotes the tyrosine phosphorylation-mediated activation of phospholipase Cγ2 (PLCγ2). Moreover, we found that, relative to wild-type platelets, platelets derived from glutathione peroxidase 1 (GPx1)/catalase double-deficient mice showed enhanced cellular ROS levels, oxidative inactivation of SHP-2, and tyrosine phosphorylation of Syk, Vav1, Btk, and PLCγ2 in response to collagen, which subsequently led to increased intracellular calcium levels, degranulation, and integrin αIIbβ3 activation. Consistent with these findings, GPx1/catalase double-deficiency accelerated the thrombotic response in FeCl3-injured carotid arteries. INNOVATION The present study is the first to demonstrate that SHP-2 is targeted by ROS produced in collagen-stimulated platelets and suggests that a novel mechanism for the regulation of platelet activation by ROS is due to oxidative inactivation of SHP-2. CONCLUSION We conclude that collagen-induced ROS production leads to SHP-2 oxidation, which promotes platelet activation by upregulating tyrosine phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Ji Yong Jang
- 1 Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24:372-83. [PMID: 23395392 DOI: 10.1016/j.devcel.2013.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Abstract
CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.
Collapse
|
9
|
A novel histidine tyrosine phosphatase, TULA-2, associates with Syk and negatively regulates GPVI signaling in platelets. Blood 2010; 116:2570-8. [PMID: 20585042 DOI: 10.1182/blood-2010-02-268136] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell ubiquitin ligand-2 (TULA-2) is a recently discovered histidine tyrosine phosphatase thought to be ubiquitously expressed. In this work, we have investigated whether TULA-2 has a key role in platelet glycoprotein VI (GPVI) signaling. This study indicates that TULA-2 is expressed in human and murine platelets and is able to associate with Syk and dephosphorylate it. Ablation of TULA-2 resulted in hyperphosphorylation of Syk and its downstream effector phospholipase C-γ2 as well as enhanced GPVI-mediated platelet functional responses. In addition, shorter bleeding times and a prothrombotic phenotype were observed in mice lacking TULA-2. We therefore propose that TULA-2 is the primary tyrosine phosphatase mediating the dephosphorylation of Syk and thus functions as a negative regulator of GPVI signaling in platelets.
Collapse
|
10
|
Speich HE, Grgurevich S, Kueter TJ, Earhart AD, Slack SM, Jennings LK. Platelets undergo phosphorylation of Syk at Y525/526 and Y352 in response to pathophysiological shear stress. Am J Physiol Cell Physiol 2008; 295:C1045-54. [PMID: 18715989 DOI: 10.1152/ajpcell.90644.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerotic plaques can lead to partial vascular occlusions that produce abnormally high levels of arterial wall shear stress. Such pathophysiological shear stress can promote shear-induced platelet aggregation (SIPA), which has been linked to acute myocardial infarction, unstable angina, and stroke. This study investigated the role of the tyrosine kinase Syk in shear-induced human platelet signaling. The extent of Syk tyrosine phosphorylation induced by pathophysiological levels of shear stress (100 dyn/cm(2)) was significantly greater than that resulting from physiological shear stress (10 dyn/cm(2)). With the use of phospho-Syk specific antibodies, these data are the first to show that key regulatory sites of Syk at tyrosines 525/526 (Y525/526) and tyrosine 352 (Y352) were phosphorylated in response to pathophysiological shear stress. Increased phosphorylation at both sites was attenuated by pharmacological inhibition of Syk using two different Syk inhibitors, piceatannol and 3-(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-1H-indole-5-sulfonamide (OXSI-2), and by inhibition of upstream Src-family kinases (SFKs). Shear-induced response at the Syk 525/526 site was ADP dependent but not contingent on glycoprotein (GP) IIb-IIIa ligation or the generation of thromboxane (Tx) A(2). Pretreatment with Syk inhibitors not only reduced SIPA and Syk phosphorylation in isolated platelets, but also diminished, up to 50%, the platelet-mediated thrombus formation when whole blood was perfused over type-III collagen. In summary, this study demonstrated that Syk is a key molecule in both SIPA and thrombus formation under flow. Pharmacological regulation of Syk may prove efficacious in treating occlusive vascular disease.
Collapse
Affiliation(s)
- Henry E Speich
- Department of Biomedical Engineering, The University of Memphis, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kondo K, Suzuki Y, Ikeda Y, Umemura K. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur J Pharmacol 2002; 455:53-7. [PMID: 12433594 DOI: 10.1016/s0014-2999(02)02449-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diet can be the most important factor that influences risks for cardiovascular diseases. Genistein included in soy is one candidate that may benefit the cardiovascular system. Here, we investigated the inhibitory effects of genistein on thrombotic vessel occlusion in the mouse femoral artery using a photochemical reaction, and in vitro platelet aggregation in whole blood measured by single platelet counting. Genistein (10 mg/kg), intravenously administered 10 min before the rose bengal injection, significantly prolonged the thrombotic occlusion time from 6.1+/-0.4 to 8.4+/-0.8 min (P<0.05). Genistein at doses higher than 30 microM significantly (P<0.01) inhibited in vitro platelet aggregation induced by collagen (1 and 3 microg/ml). When 10 mg/kg genistein was intravenously administered, ex vivo platelet aggregation induced by collagen (1 and 3 microg/ml) was significantly suppressed (P<0.01). In conclusion, genistein prevented in vivo thrombogenesis and suppressed in vitro platelet aggregation. These results suggest that dietary supplementation of soy may prevent the progression of thrombosis and atherosclerosis.
Collapse
Affiliation(s)
- Kazunao Kondo
- Department of Pharmacology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Shizuoka, Japan.
| | | | | | | |
Collapse
|
12
|
Abstract
Plasmin has been reported to activate and inhibit platelet function depending on dose and exposure temperature. The present study examines the induction of fibrinogen-dependent platelet aggregation following prolonged (60 min) platelet exposure to very low doses of plasmin (0.05 CU/ml) at either 22 or 37 degrees C. Maximum aggregation [mean +/- SD, 60 +/- 19 light transmission units (LTU); n = 43] occurred following platelet exposure to plasmin at 22 degrees C, but significant platelet aggregation (28 +/- 4 LTU, n = 3) also occurred following plasmin treatment at 37 degrees C. Plasmin-induced platelet aggregates appeared microscopically larger than aggregates of adenosine diphosphate (ADP)-activated platelets, and were less reversible. Aggregated plasmin-treated platelets also expressed more procoagulant activity than platelets aggregated with ADP, as reflected by shortening of the plasma kaolin recalcification time. Aggregation of platelets exposed to very low doses of plasmin was not accompanied by dense or alpha-granule secretion, and was unaffected by ADP antagonists or aspirin. Partial inhibition of platelet aggregation, however, was achieved with metabolic inhibitors, PGE1, and inhibitors of phosphoinositide 3-kinase or protein kinase C. Although fibrinogen was required for plasmin-treated platelet aggregation, [125I]-fibrinogen binding comprised only 58 +/- 3% (n = 3) of fibrinogen binding associated with ADP aggregated platelets. This was consistent with observed decreases in reptilase-induced fibrin clot retraction. Taken together, these data suggest that sustained exposure of platelets to very low plasmin doses leads to platelet activation and thus may contribute to thrombotic complications in vivo.
Collapse
Affiliation(s)
- A L Ervin
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
13
|
Suzuki-Inoue K, Ozaki Y, Kainoh M, Shin Y, Wu Y, Yatomi Y, Ohmori T, Tanaka T, Satoh K, Morita T. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ia/IIa (GPIa/IIa, Integrin alpha 2beta 1). Involvement of GPIa/IIa-associated src and protein tyrosine phosphorylation. J Biol Chem 2001; 276:1643-52. [PMID: 11038351 DOI: 10.1074/jbc.m006191200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although glycoprotein Ia/IIa (GPIa/IIa, integrin alpha(2)beta(1)) has established its role as a collagen receptor, it remains unclear whether GPIa/IIa mediates activation signals. In this study, we show that rhodocytin, purified from the Calloselasma rhodostoma venom, induces platelet aggregation, which can be blocked by anti-GPIa monoclonal antibodies. Studies with rhodocytin-coupled beads and liposomes loaded with recombinant GPIa/IIa demonstrated that rhodocytin directly binds to GPIa/IIa independently of divalent cations. In vitro kinase assays and Western blotting of GPIa immunoprecipitates revealed that Src and Lyn constitutively associate with GPIa/IIa and that Src activity increases transiently after rhodocytin stimulation. Src specifically associates with p130 Crk-associated substrate (Cas) in a manner dependent upon Cas phosphorylation, suggesting that Src is responsible for Cas tyrosine phosphorylation. While all these phenomena occur early after rhodocytin stimulation in a cAMP-resistant manner, tyrosine phosphorylation of Syk and phospholipase Cgamma2, intracellular Ca(2+) mobilization, and platelet aggregation occur later in a cAMP-sensitive manner. Cytochalasin D, which interferes with actin polymerization and blocks receptor clustering, inhibits all the rhodocytin-mediated signals we examined in this study. We suggest that rhodocytin, by clustering GPIa/IIa, activates GPIa/IIa-associated Src, which then mediates downstream activation signals.
Collapse
Affiliation(s)
- K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Yamanashi Medical University, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Myung PS, Clements JL, White DW, Malik ZA, Cowdery JS, Allen LH, Harty JT, Kusner DJ, Koretzky GA. In vitro and in vivo macrophage function can occur independently of SLP-76. Int Immunol 2000; 12:887-97. [PMID: 10837416 DOI: 10.1093/intimm/12.6.887] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of SH2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), a hematopoietic cell-specific adapter protein, is required to couple Syk family tyrosine kinase activation to downstream mediators such as phospholipase C (PLC)-gamma following TCR, platelet collagen receptor and mast cell Fc epsilon R stimulation. In addition to T cells, mast cells and platelets, SLP-76 is expressed in monocytes and macrophages. To determine the role of SLP-76 in Fc gamma R-stimulated signaling pathways in macrophages, we examined cultured bone marrow-derived macrophages (BMM) from SLP-76(-/-) and wild-type mice. In this study, we show that Fc gamma R cross-linking rapidly induces tyrosine phosphorylation of SLP-76 in wild-type BMM. Surprisingly, however, BMM from SLP-76(-/-) mice activate ERK2 and phosphorylate PLC-gamma 2 following Fc gamma R ligation. Furthermore, SLP-76(-/-) BMM display normal Fc gamma R-dependent phagocytic function and reactive oxygen intermediate production. SLP-76(-/-) and SLP-76(+/+) BMM secrete comparable levels of IL-12 in response to lipopolysaccharide and IFN-gamma. To examine macrophage function in vivo, SLP-76(-/-) mice were challenged i.v. with Listeria monocytogenes. SLP-76(-/-) mice survive and efficiently contain the acute phase of infection similar to wild-type mice but exhibit a stable chronic infection attributed to the lack of mature T cells. These data show that, although SLP-76 is required to couple Syk family PTK activity to downstream mediators and effector functions in Fc gamma R-induced pathways in some cell types, activation of Fc gamma R-dependent pathways occurs independently of SLP-76 in BM
Collapse
Affiliation(s)
- P S Myung
- Department of Physiology and Biophysics, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kamiguti AS, Theakston RD, Watson SP, Bon C, Laing GD, Zuzel M. Distinct contributions of glycoprotein VI and alpha(2)beta(1) integrin to the induction of platelet protein tyrosine phosphorylation and aggregation. Arch Biochem Biophys 2000; 374:356-62. [PMID: 10666318 DOI: 10.1006/abbi.1999.1627] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.
Collapse
Affiliation(s)
- A S Kamiguti
- Department of Haematology, Royal Liverpool Hospital, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
16
|
Alberio L, Dale GL. Review article: platelet-collagen interactions: membrane receptors and intracellular signalling pathways. Eur J Clin Invest 1999; 29:1066-76. [PMID: 10583456 DOI: 10.1046/j.1365-2362.1999.00570.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet adhesion to and activation by exposed subendothelial collagen plays a critical role in normal haemostasis and pathological thrombosis. Recent advances in elucidating the mechanisms underlying platelet-collagen interaction support a 'two-site, two-step' model. Direct platelet binding to integrin alpha2beta1 mainly sustains adhesion and allows recognition of glycoprotein VI. The latter interaction is responsible for characteristic intracellular signalling events leading to p72Syk and PLCgamma2 activation. The present review describes the known collagen receptors on platelets and discusses the current understanding of signal transduction promoted by collagen.
Collapse
Affiliation(s)
- L Alberio
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | | |
Collapse
|
17
|
Su CY, Shiao MS, Wang CT. Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:223-34. [PMID: 10064905 DOI: 10.1016/s1388-1981(98)00012-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ganodermic acid S (GAS), a membrane acting agent, exerts multiple effects on human platelet function (C.N. Wang et al. (1991) Biochem. J. 277, 189-197). The study reported how GAS affected the response of human gel-filtered platelets (GFP) to collagen. The agent inhibited cell aggregation by prolonging lag and shape change periods and decreasing the initial cell aggregation rate. However, the inhibitory efficiency was less than its inhibition on GFP response to U46619, a thromboxane (TX) A2 mimetic. In the agent-effect on biochemical events, GAS effectively inhibited Ca2+ mobilization, phosphorylation of myosin light chain, dense granule secretion and TXB2 generation. The inhibitions might originate from blocking Ca2+ mobilization of the TXA2-dependent pathway. GAS partially decreased the phosphorylation of most phosphotyrosine proteins from early activation to the integrin alphaIIbbeta3-regulated steps. The agent did not affect the phosphorylation of three proteins at the steps regulated by integrin alphaIIbbeta3. The results suggest that GAS inhibits the collagen response predominantly on the TXA2-dependent signaling, and the tyrosine kinase-dependent pathway in collagen response plays a major role in aggregation.
Collapse
Affiliation(s)
- C Y Su
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | |
Collapse
|
18
|
Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 1999; 144:745-54. [PMID: 10037795 PMCID: PMC2132941 DOI: 10.1083/jcb.144.4.745] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1998] [Revised: 01/19/1999] [Indexed: 11/22/2022] Open
Abstract
Platelets respond to various stimuli with rapid changes in shape followed by aggregation and secretion of their granule contents. Platelets lacking the alpha-subunit of the heterotrimeric G protein Gq do not aggregate and degranulate but still undergo shape change after activation through thromboxane-A2 (TXA2) or thrombin receptors. In contrast to thrombin, the TXA2 mimetic U46619 led to the selective activation of G12 and G13 in Galphaq-deficient platelets indicating that these G proteins mediate TXA2 receptor-induced shape change. TXA2 receptor-mediated activation of G12/G13 resulted in tyrosine phosphorylation of pp72(syk) and stimulation of pp60(c-src) as well as in phosphorylation of myosin light chain (MLC) in Galphaq-deficient platelets. Both MLC phosphorylation and shape change induced through G12/G13 in the absence of Galphaq were inhibited by the C3 exoenzyme from Clostridium botulinum, by the Rho-kinase inhibitor Y-27632 and by cAMP-analogue Sp-5,6-DCl-cBIMPS. These data indicate that G12/G13 couple receptors to tyrosine kinases as well as to the Rho/Rho-kinase-mediated regulation of MLC phosphorylation. We provide evidence that G12/G13-mediated Rho/Rho-kinase-dependent regulation of MLC phosphorylation participates in receptor-induced platelet shape change.
Collapse
Affiliation(s)
- B Klages
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Hackeng CM, Huigsloot M, Pladet MW, Nieuwenhuis HK, van Rijn HJ, Akkerman JW. Low-density lipoprotein enhances platelet secretion via integrin-alphaIIbbeta3-mediated signaling. Arterioscler Thromb Vasc Biol 1999; 19:239-47. [PMID: 9974403 DOI: 10.1161/01.atv.19.2.239] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LDL is known to increase the sensitivity of human platelets for agonists and to induce aggregation and secretion independently at high concentrations, but its mechanism of action is largely obscure. To clarify how LDL increases platelet sensitivity, cells were incubated in lipoprotein-poor plasma and treated with collagen at a concentration that induced approximately 20% secretion of 14C-serotonin. Preincubation with LDL (30 minutes at 37 degreesC) enhanced secretion in a dose-dependent manner to 60+/-14% at a concentration of 2 g LDL protein/L. Similar stimulation by LDL was seen when secretion was induced by the thrombin receptor-activating peptide. This enhancement was strongly reduced (1) in the presence of monoclonal antibody PAC1 against activated alphaIIbbeta3, a polyclonal antibody against alphaIIb, and in the presence of the fibrinogen peptides GRGDS and HHLGGAKQAGDV; (2) in alphaIIbbeta3-deficient platelets; and (3) after dissociation of alphaIIbbeta3. In contrast, binding of 125I-LDL to normal platelets in the presence of PAC1, anti-alphaIIb, GRGDS, and HHLGGAKQAGDV, and to alphaIIbbeta3-deficient platelets was normal. LDL increased the surface expression of fibrinogen in lipoprotein-poor plasma and fibrinogen-free medium, suggesting that extracellular and granular fibrinogen bind to alphaIIbbeta3 after platelet-LDL interaction. Platelets deficient in fibrinogen (<0.5% of normal) or von Willebrand Factor (<1% of normal) but containing normal amounts of other ligands for alphaIIbbeta3 preserved responsiveness to LDL, indicating that occupancy of alphaIIbbeta3 was not restricted to fibrinogen. Inhibition of protein kinase C (bisindolylmaleimide) diminished fibrinogen binding and sensitization by LDL; inhibition of tyrosine kinases (herbimycin A) left fibrinogen binding unchanged but diminished sensitization by LDL. We conclude that an increased concentration of LDL, such as observed in homozygous familial hypercholesterolemia, sensitizes platelets to stimulation by collagen and thrombin receptor-activating peptide via ligand-induced outside-in signaling through integrin-alphaIIbbeta3.
Collapse
Affiliation(s)
- C M Hackeng
- Department of Clinical Chemistry, University Hospital Utrecht, and Institute for Biomembranes, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, Watson SP, Lentz SR, Koretzky GA. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest 1999; 103:19-25. [PMID: 9884330 PMCID: PMC407870 DOI: 10.1172/jci5317] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 11/19/1998] [Indexed: 11/17/2022] Open
Abstract
The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor-dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76-deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76-deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-gamma2 (PLC-gamma2), suggesting that SLP-76 functions upstream of PLC-gamma2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76-deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes.
Collapse
Affiliation(s)
- J L Clements
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Kooyk Y, Lub M, Figdor CG. Adhesion and signaling mediated by the cytoplasmic tails of leucocyte integrins. CELL ADHESION AND COMMUNICATION 1998; 6:247-54. [PMID: 9823475 DOI: 10.3109/15419069809004480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrins not only mediate cell adhesion but also contribute to a variety of other cellular processes including proliferation, cytokine production, cytotoxicity and apoptosis. They act as bi-directional signal transducers, mediating signaling from inside-to-outside the cell and from outside-to-inside the cell. Evidence is emerging that signaling through leukocyte integrins (beta 2 and beta 7) is distinct from signaling by the more widely distributed beta 1 integrins. Here we discuss the role of the cytoplasmic domains of leukocyte integrins and that of cytosolic proteins that bind integrins in mediating signal transduction. Distinct sites in the alpha as well as the common beta chain contribute to this process. We also show that beta 2 integrin distribution on the cell surface is of particular relevance for leukocytes to rapidly alter their adhesive state and display their highly dynamic adhesive behavior. From these and recently published findings the picture is arising that particular cell functions may be supported by integrin-specific signaling pathways.
Collapse
Affiliation(s)
- Y van Kooyk
- Department of Tumor Immunology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
22
|
Kralisz U, Cierniewski CS. Tyrosine phosphorylation events during different stages of collagen-platelet activation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1405:128-38. [PMID: 9784623 DOI: 10.1016/s0167-4889(98)00100-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three groups of phosphoproteins have been distinguished, basing on the velocity and extent of phosphorylation in platelets stimulated with collagen. pp60c-src constituted the first group; the increase in its phosphorylation was the highest and most rapid (maximal in 30 s after the addition of collagen). pp80/85 and non-identified protein of 65 kDa formed the second group; the increase in their phosphorylation was twice smaller than that of pp60c-src, and reached its maximum 60 s after the addition of collagen. pp120, pp72syk, and two non-identified phosphoproteins of 90 and 75 kDa constituted the third group; the increase in their phosphorylation was 4-10-fold lower than that of pp60c-src and reached its maximum after 180 s. We conclude that the phosphorylation of pp60c-src is important for the change of shape of platelets, the phosphorylation of pp80/85 and pp65 for the initiation of the formation of aggregates and the phosphorylation of the third group of phosphoproteins for the formation of massive aggregates. This conclusion was supported by using a monoclonal anti-GPIb antibody, which did not inhibit the shape change of platelets and did not inhibit pp60c-src phosphorylation. This antibody inhibited aggregate formation as well as tyrosine phosphorylation of proteins belonging to the second and the third group of phosphoproteins.
Collapse
Affiliation(s)
- U Kralisz
- Department of Biophysics, Institute of Physiology and Biochemistry, Medical University of Lodz, Lindleya 3, 90-131 Lodz, Poland
| | | |
Collapse
|
23
|
Outside-In Signaling of Soluble and Solid-Phase Fibrinogen Through Integrin ΙΙbβ3 Is Different and Cooperative With Each Other in a Megakaryoblastic Leukemia Cell Line, CMK. Blood 1998. [DOI: 10.1182/blood.v92.4.1277.416k21_1277_1286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function and the outside-in signaling pathways of IIbβ3 were examined in relation to cell adhesion using a megakaryoblastic leukemia cell line, CMK. After 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, the cells adhered to the culture plate and underwent megakaryocytic differentiation with expression of IIbβ3. Binding of soluble fibrinogen to the cells via IIbβ3 was dependent on cell adhesion. Cell detaching reduced the affinity of this integrin for soluble fibrinogen, although its surface expression was almost unchanged. In contrast, detached cells became tightly adherent to the fibrinogen-coated plate (solid-phase fibrinogen). The same ligand, fibrinogen, present either in soluble or solid-phase form, triggered differential signaling pathways mediated by IIbβ3. By the stimulation with soluble fibrinogen, Syk was tyrosine-phosphorylated but FAK was dephosphorylated, whereas solid-phase fibrinogen promptly caused tyrosine phosphorylation of FAK followed by delayed phosphorylation of Syk. In addition, the binding of soluble fibrinogen to the cells adherent to fibrinogen-coated plate resulted in tyrosine phosphorylation of integrin β3 and a complex formation of integrin β3 with Syk. This implies the cooperation of both soluble and solid-phase fibrinogen-mediated signaling pathways.© 1998 by The American Society of Hematology.
Collapse
|
24
|
Outside-In Signaling of Soluble and Solid-Phase Fibrinogen Through Integrin ΙΙbβ3 Is Different and Cooperative With Each Other in a Megakaryoblastic Leukemia Cell Line, CMK. Blood 1998. [DOI: 10.1182/blood.v92.4.1277] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe function and the outside-in signaling pathways of IIbβ3 were examined in relation to cell adhesion using a megakaryoblastic leukemia cell line, CMK. After 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, the cells adhered to the culture plate and underwent megakaryocytic differentiation with expression of IIbβ3. Binding of soluble fibrinogen to the cells via IIbβ3 was dependent on cell adhesion. Cell detaching reduced the affinity of this integrin for soluble fibrinogen, although its surface expression was almost unchanged. In contrast, detached cells became tightly adherent to the fibrinogen-coated plate (solid-phase fibrinogen). The same ligand, fibrinogen, present either in soluble or solid-phase form, triggered differential signaling pathways mediated by IIbβ3. By the stimulation with soluble fibrinogen, Syk was tyrosine-phosphorylated but FAK was dephosphorylated, whereas solid-phase fibrinogen promptly caused tyrosine phosphorylation of FAK followed by delayed phosphorylation of Syk. In addition, the binding of soluble fibrinogen to the cells adherent to fibrinogen-coated plate resulted in tyrosine phosphorylation of integrin β3 and a complex formation of integrin β3 with Syk. This implies the cooperation of both soluble and solid-phase fibrinogen-mediated signaling pathways.© 1998 by The American Society of Hematology.
Collapse
|
25
|
Kamiguti AS, Zuzel M, Theakston RD. Snake venom metalloproteinases and disintegrins: interactions with cells. Braz J Med Biol Res 1998; 31:853-62. [PMID: 9698750 DOI: 10.1590/s0100-879x1998000700001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.
Collapse
Affiliation(s)
- A S Kamiguti
- Department of Haematology, Royal Liverpool University Hospital, University of Liverpool, UK.
| | | | | |
Collapse
|
26
|
Hers I, Donath J, van Willigen G, Akkerman JW. Differential involvement of tyrosine and serine/threonine kinases in platelet integrin alphaIIbbeta3 exposure. Arterioscler Thromb Vasc Biol 1998; 18:404-14. [PMID: 9514409 DOI: 10.1161/01.atv.18.3.404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The relative contributions of protein tyrosine kinases (PTKs) and protein kinase C isoenzymes (PKCs), a family of serine/threonine kinases, in integrin alpha(IIb)beta3 (glycoprotein IIb/IIIa) exposure are the subject of much controversy. In the present study we measured the effect of the PTK inhibitor herbimycin A and the PKC inhibitor bisindolylmaleimide I on 125I-fibrinogen binding to alpha(IIb)beta3 and on aggregation/secretion induced by different agonists. Dose-response studies showed complete inhibition of alpha(IIb)beta3 exposure by 30 micromol/L (ADP stimulation) and 35 to 40 micromol/L (alpha-thrombin stimulation) herbimycin A. In contrast, inhibition of exposure by bisindolylmaleimide I varied from none (for ADP and epinephrine), to 30% (for platelet-activating factor), and to approximately 80% (for alpha-thrombin). Studies with a submaximal dose of herbimycin A (approximately 50% inhibition of the ADP-response) and a maximal dose of bisindolylmaleimide I showed that optical aggregation had a similar sensitivity to the inhibitors as alpha(IIb)beta3 exposure with minimal interference by secreted ADP. Thus, the relative contributions of tyrosine and serine/threonine kinases in alpha(IIb)beta3 exposure and aggregation differ among the different agonists, with an exclusive role for PTKs in ADP- and epinephrine-induced responses and a role for both PTKs and PKCs in responses induced by platelet-activating factor and alpha-thrombin.
Collapse
Affiliation(s)
- I Hers
- Department of Haematology, University Hospital Utrecht, and the Institute for Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
27
|
Kamiguti AS, Markland FS, Zhou Q, Laing GD, Theakston RD, Zuzel M. Proteolytic cleavage of the beta1 subunit of platelet alpha2beta1 integrin by the metalloproteinase jararhagin compromises collagen-stimulated phosphorylation of pp72. J Biol Chem 1997; 272:32599-605. [PMID: 9405475 DOI: 10.1074/jbc.272.51.32599] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early signaling events in the stimulation of platelets by collagen include the tyrosine phosphorylations of FcR gamma-chain, pp72(syk) and phospholipase Cgamma2. These events are dependent on the main platelet collagen receptor, alpha2beta1 integrin (glycoprotein Ia-IIa complex). We recently found that jararhagin, a 52-kDa snake venom metalloproteinase, selectively inhibits collagen-induced platelet secretion and aggregation in parallel with the cleavage of the beta1 subunit of the alpha2beta1 integrin. The present study demonstrates that jararhagin also interferes with collagen-induced phosphorylation of the protein-tyrosine kinase pp72(syk). This effect is not observed when the platelet aggregation response to collagen is inhibited by two venom RGD-containing disintegrins, contortrostatin and echistatin. These disintegrins inhibit platelet aggregation through their high affinity binding to the platelet alphaIIbbeta3 integrin (glycoprotein IIb-IIIa complex). We also show that mild stimulation by ADP of jararhagin-treated platelets, but not of platelets treated with the RGD-containing disintegrins, restores the collagen-induced platelet aggregation. ADP also restored both pp72(syk) and pleckstrin phosphorylation of jararhagin-treated platelets in response to collagen, presumably via interaction of collagen with ADP-activated alphaIIbbeta3 integrin. Thus, RGD-containing disintegrins do not interfere with agonist-induced pp72(syk) phosphorylation but inhibit aggregation through occupancy of the alphaIIbbeta3 integrin. Conversely, jararhagin affects early platelet signaling events in response to collagen through its effects on the alpha2beta1 integrin without interfering with the function of the alphaIIbbeta3 integrin. Our demonstration that the degradation of the beta1 subunit of alpha2beta1 by jararhagin results in the loss of pp72(syk) phosphorylation, suggests that this subunit is critically involved in collagen-induced platelet signaling.
Collapse
Affiliation(s)
- A S Kamiguti
- Department of Haematology, Royal Liverpool Hospital, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Matsuoka I, Nakahata N, Nakanishi H. Selective inhibition of collagen-induced arachidonic acid liberation by 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7), a myosin light chain kinase inhibitor, in washed rabbit platelets. Biochem Pharmacol 1997; 54:1019-26. [PMID: 9374423 DOI: 10.1016/s0006-2952(97)00322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effects of myosin light chain (MLC) kinase inhibitor ML-7 [1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine hydrochloride] and protein kinase C inhibitor H-7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine dihydro-chloride] on collagen-induced platelet activation were investigated in washed rabbit platelets. Upon stimulation with collagen (1 microg/mL), H-7 decreased protein kinase C-mediated pleckstrin phosphorylation, but had no inhibitory effect on thromboxane (TX) A2 formation or platelet aggregation. In contrast, ML-7 produced a concentration-dependent inhibition of the collagen-induced platelet aggregation and TXA2 formation by preventing arachidonic acid (AA) liberation from membrane phospholipids. However, ML-7 had little effect on AA liberation induced by thrombin, Ca2+ ionophore A-23187 or melittin, suggesting that ML-7 may affect the signal transduction pathway specific for collagen-induced AA liberation, without direct inhibition of phospholipase A2 activity. In indomethacin-treated platelets, collagen caused MLC phosphorylation and AA liberation in the absence of a significant increase in intracellular Ca2+ concentration ([Ca2+]i) or protein tyrosine phosphorylation. ML-7 inhibited both MLC phosphorylation and AA liberation induced by collagen in indomethacin-treated platelets. These results demonstrate that MLC phosphorylation and AA liberation are early events detectable in collagen-stimulated platelets, and suggest that ML-7 inhibits these early steps of collagen-induced signal transduction pathway in rabbit platelets.
Collapse
Affiliation(s)
- I Matsuoka
- Department of Pharmacology, Fukushima Medical College, Japan
| | | | | |
Collapse
|
29
|
Tsubokawa M, Tohyama Y, Tohyama K, Asahi M, Inazu T, Nakamura H, Saito H, Yamamura H. Interleukin-3 activates Syk in a human myeloblastic leukemia cell line, AML193. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:792-6. [PMID: 9395328 DOI: 10.1111/j.1432-1033.1997.t01-2-00792.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein-tyrosine kinases and phosphatases play an important role in cytokine-mediated cell growth. The proliferation of a human myeloid leukemia cell line, AML193, is dependent on interleukin-3 (IL-3) or granulocyte colony-stimulating factor. In the current study, we demonstrated that a non-receptor-type protein-tyrosine kinase, Syk, was immediately activated by the stimulation with IL-3 or granulocyte colony-stimulating factor in AML193 cells. We further investigated the relation of Syk with IL-3-mediated signaling and found that the IL-3 receptor beta subunit was immunoprecipitated with Syk. Since the IL-3 receptor beta subunit is known to mediate growth signaling, our results indicate that Syk may be involved in the proliferation of myeloid cells.
Collapse
Affiliation(s)
- M Tsubokawa
- Department of Otorhinolaryngology, Fukui Medical School, Matsuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Collagen But Not Fibrinogen Surfaces Induce Bleb Formation, Exposure of Phosphatidylserine, and Procoagulant Activity of Adherent Platelets: Evidence for Regulation by Protein Tyrosine Kinase-Dependent Ca2+ Responses. Blood 1997. [DOI: 10.1182/blood.v90.7.2615] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWith a combined phase-contrast and fluorescence video imaging system, changes in morphology and cytosolic [Ca2+]i were investigated of fura-2–loaded platelets during adhesion to fibrinogen or collagen matrices. The Ca2+ signals were, on the level of single platelets, compared to the secretion and procoagulant responses, using fluorescent-labeled AK-6 antibody against P-selectin and labeled annexin V for detection of surface-exposed phosphatidylserine (PS), respectively. Platelets in contact with fibrinogen developed filapods and spread over the matrix, in most of the cells without detectable Ca2+ signal. Thrombin induced repetitive spiking in [Ca2+]i , followed by the expression of P-selectin but not of PS on the platelet surface. Platelet interaction with collagen resulted in spreading and transformation of the cells into blebbing, “balloon”-like structures (diameter about 5 μm). The latter morphological changes were accompanied by high and prolonged increases in [Ca2+]i , by the exposure of both P-selectin and PS, and by the ability of the platelets to convert prothrombin into thrombin. Thrombin addition accelerated the onset of the Ca2+ signals and the appearance of surface-exposed PS. Collagen-induced PS exposure was slightly reduced by treatment of the platelets with aspirin, and strongly inhibited by suppression of the Ca2+ responses with prostaglandin E1 or the Ca2+ chelator, dimethyl-BAPTA. Inhibition of protein tyrosine phosphorylation with genistein, U73343, or wortmannin resulted in spiking Ca2+ responses in many of the platelets and in almost complete reduction of bleb formation and PS exposure. In contrast, genistein did not suppress bleb formation and PS exposure of platelets stimulated with the Ca2+ ionophore A23187. We conclude that a collagen but not fibrinogen matrix acts as a potent activator of the procoagulant response through activation of tyrosine kinases and subsequent generation of sustained intracellular Ca2+ signals.
Collapse
|
31
|
Collagen But Not Fibrinogen Surfaces Induce Bleb Formation, Exposure of Phosphatidylserine, and Procoagulant Activity of Adherent Platelets: Evidence for Regulation by Protein Tyrosine Kinase-Dependent Ca2+ Responses. Blood 1997. [DOI: 10.1182/blood.v90.7.2615.2615_2615_2625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With a combined phase-contrast and fluorescence video imaging system, changes in morphology and cytosolic [Ca2+]i were investigated of fura-2–loaded platelets during adhesion to fibrinogen or collagen matrices. The Ca2+ signals were, on the level of single platelets, compared to the secretion and procoagulant responses, using fluorescent-labeled AK-6 antibody against P-selectin and labeled annexin V for detection of surface-exposed phosphatidylserine (PS), respectively. Platelets in contact with fibrinogen developed filapods and spread over the matrix, in most of the cells without detectable Ca2+ signal. Thrombin induced repetitive spiking in [Ca2+]i , followed by the expression of P-selectin but not of PS on the platelet surface. Platelet interaction with collagen resulted in spreading and transformation of the cells into blebbing, “balloon”-like structures (diameter about 5 μm). The latter morphological changes were accompanied by high and prolonged increases in [Ca2+]i , by the exposure of both P-selectin and PS, and by the ability of the platelets to convert prothrombin into thrombin. Thrombin addition accelerated the onset of the Ca2+ signals and the appearance of surface-exposed PS. Collagen-induced PS exposure was slightly reduced by treatment of the platelets with aspirin, and strongly inhibited by suppression of the Ca2+ responses with prostaglandin E1 or the Ca2+ chelator, dimethyl-BAPTA. Inhibition of protein tyrosine phosphorylation with genistein, U73343, or wortmannin resulted in spiking Ca2+ responses in many of the platelets and in almost complete reduction of bleb formation and PS exposure. In contrast, genistein did not suppress bleb formation and PS exposure of platelets stimulated with the Ca2+ ionophore A23187. We conclude that a collagen but not fibrinogen matrix acts as a potent activator of the procoagulant response through activation of tyrosine kinases and subsequent generation of sustained intracellular Ca2+ signals.
Collapse
|
32
|
Kralisz U, Cierniewski CS. Differential effects of the tyrosine kinase inhibitors on collagen type 1-induced platelet aggregation and adhesion to this protein. Thromb Res 1997; 86:287-99. [PMID: 9187017 DOI: 10.1016/s0049-3848(97)00072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herbimycin A, lavendustin A, and methyl 2,5-dihydroxycinnamate were used to study the role of protein tyrosine kinases in collagen-platelet interaction. All three compounds produced a concentration dependent inhibition of platelet aggregation induced by collagen type I, characterized by values of IC50 equaled to 0.9, 10.0, and 5.0 microM, respectively. This effect was accompanied by strong inhibition of phosphorylation of p125FAK, p90, p72syk, p60c-arc, and p56lyn. In the absence of the inhibitors, phosphorylation of these proteins is evoked by aggregation of platelets. In addition to the antiaggregatory effect, the tyrosine kinase inhibitors reduced adhesion of platelets to collagen although to much lower extent than aggregation. Platelets which adhered to collagen showed also the presence of phosphorylated p125FAK, p90, p72syk, p60c-arc, and p56lyn. Of these proteins, the extent of phosphorylation of p90 was particularly high. Adhesion of platelets was associated with inhibition of phosphorylation of p125FAK, p60c-arc, and p56lyn only when high concentration of lavendustin A and methyl 2,5-dihydroxycinnamate were used. Herbimycin A did not affect adhesion-evoked protein tyrosine phosphorylation. Phosphorylation of p90 and p72syk was not affected by inhibitors. This study indicates that collagen type I can induce different transmembrane signalling dependent upon whether platelet aggregates formation or adhesion of platelets to this protein occurs.
Collapse
Affiliation(s)
- U Kralisz
- Department of Biophysics, Medical University of Lodz, Poland
| | | |
Collapse
|
33
|
Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16:2333-41. [PMID: 9171347 PMCID: PMC1169834 DOI: 10.1093/emboj/16.9.2333] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.
Collapse
Affiliation(s)
- A Poole
- Department of Pharmacology, University of Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
AbstractThrombopoietin has an essential role in megakaryopoiesis and thrombopoiesis. To investigate the signaling processes induced by thrombopoietin, we have employed human platelets and recently demonstrated that thrombopoietin induces rapid tyrosine phosphorylation of Jak-2, Tyk2, Shc, Stat3, Stat5, p120c-cbl and other proteins in human platelets. Because the apparent molecular weight of a major tyrosine phosphorylated protein in platelets stimulated by thrombopoietin is approximately 85 to 95 kD, we examined the possibility that this could be Vav, a 95-kD proto-oncogene product. Specific antisera against Vav recognized the same 95 kD protein in lysates of Jurkat cells, which are known to express Vav, and platelets, indicating that platelets have Vav. Thrombopoietin induced rapid tyrosine phosphorylation of Vav in platelets without an elevation in cytosolic free calcium concentration or activation of protein kinase C. Vav was also tyrosine phosphorylated upon treatment of platelets with thrombin, collagen, or U46619, which activate phospholipase C, leading to an increased ionized calcium concentration and activation of protein kinase C. Ionomycin or phorbol 12-myristate 13-acetate (PMA) also induces tyrosine phosphorylation of Vav, suggesting that an increase in ionized calcium concentration or activation of protein kinase C may lead to phosphorylation of Vav. Thrombopoietin also induced tyrosine phosphorylation of Vav in FDCP-2 cells, genetically engineered to express human c-Mpl (FDCP-hMpl5). However, neither ionomycin nor PMA induced an increase in tyrosine phosphorylation of Vav in FDCP-hMpl5 cells, suggesting that the calcium and protein kinase C pathways of Vav phosphorylation may be unique to platelets. Further, Vav became incorporated into the Triton X-100 insoluble 10,000g sedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes. Vav was constitutively associated with a 28-kD adapter protein, Grb2, which is also incorporated into the cytoskeleton in an aggregation-dependent fashion. Lastly, we found that Vav is cleaved when there is activation of calpain, a protease that may have a role in postaggregation signaling processes. Our data suggest that thrombopoietin and other agonists may induce tyrosine phosphorylation of Vav by different mechanisms and Vav may also be involved in signaling during platelet aggregation by its redistribution to the cytoskeleton.
Collapse
|
35
|
A Collagen-Like Peptide Stimulates Tyrosine Phosphorylation of syk and Phospholipase Cγ2 in Platelets Independent of the Integrin α2β1. Blood 1997. [DOI: 10.1182/blood.v89.4.1235] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of platelets by collagen is mediated through a tyrosine kinase-dependent pathway that is associated with phosphorylation of the Fc receptor γ chain, the tyrosine kinase syk, and phospholipase Cγ2 (PLCγ2). We recently described a collagen-related triple-helical peptide (CRP) with the sequence GCP*(GPP*)GCP*G (single letter amino acid code: P* = hydroxyproline; Morton et al, Biochem J 306:337, 1995). The cross-linked peptide is a potent stimulus of platelet activation but, unlike collagen, does not support α2β1-mediated, Mg2+-dependent adhesion, suggesting that its action is independent of the integrin α2β1 . This finding suggests the existence of a platelet receptor other than α2β1 that underlies activation. In the present study, we show that CRP stimulates tyrosine phosphorylation of the same pattern of proteins in platelets as collagen, including syk and PLCγ2. Protein tyrosine phosphorylation induced by CRP is not altered in the absence of Mg2+ or the presence of monoclonal antibodies (MoAbs) to the integrin α2β1 (MoAb 6F1 and MoAb 13), conditions that prevent the interaction of collagen with the integrin. In contrast, phosphorylation of syk and PLCγ2 by collagen is partially reduced by MoAb 6F1 and MoAb 13 or by removal of Mg2+. This may reflect a direct role of α2β1 in collagen-induced signaling events or an indirect role in which the integrin facilitates the binding of collagen to its signaling receptor. The results show an α2β1-independent pathway of platelet activation by CRP that involves phosphorylation of syk and PLCγ2. This pathway appears to contribute to platelet activation by collagen.
Collapse
|
36
|
Sjaastad MD, Nelson WJ. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. Bioessays 1997; 19:47-55. [PMID: 9008416 DOI: 10.1002/bies.950190109] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.
Collapse
Affiliation(s)
- M D Sjaastad
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
37
|
Negrescu EV, Siess W. Dissociation of the alphaIIbbeta3-integrin by EGTA stimulates the tyrosine kinase pp72(syk) without inducing platelet activation. J Biol Chem 1996; 271:26547-53. [PMID: 8900125 DOI: 10.1074/jbc.271.43.26547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Incubation of human platelets with EGTA under conditions that dissociate the alphaIIbbeta3-integrin stimulated tyrosine phosphorylation of pp72(syk) (6.8-fold) and of proteins of 62 (2. 2-fold), 68 (2.5-fold) and 130 kDa (1.4-fold). Stimulation of tyrosine phosphorylation of pp72(syk) was associated with an increase of pp72(syk) kinase activity. In contrast to pp72(syk), tyrosine phosphorylation of the focal adhesion kinase pp125(FAK) was not stimulated by EGTA. Preincubation of platelets with the monoclonal antibody P2, which binds to the alphaIIbbeta3 complex and thus stabilizes it, strongly reduced the increase of tyrosine phosphorylation of pp72(syk), p62, and p68 induced by EGTA. The Y2/51 monoclonal antibody, which recognizes only the beta3 glycoprotein, did not inhibit the stimulation of protein tyrosine phosphorylation evoked by EGTA. Stimulation of tyrosine phosphorylation of pp72(syk), p62, p68, and p130 induced by EGTA was not observed in thrombasthenic platelets, which lack the alphaIIbbeta3-integrin. The results indicate that the dissociation of the alphaIIbbeta3 complex in intact platelets activates pp72(syk). The mechanism of activation was found to be insensitive to inhibition by cAMP and cGMP and only partially dependent on cytosolic Ca2+, suggesting a close functional coupling of alphaIIbbeta3-integrin and pp72(syk). Since platelets retain their discoid shape after EGTA treatment, we further conclude that pp72(syk) stimulation alone is not sufficient for platelet activation.
Collapse
Affiliation(s)
- E V Negrescu
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, b. d. Universität München, Pettenkoferstrasse 9, 80336 Munich, Germany
| | | |
Collapse
|
38
|
Keely PJ, Parise LV. The α2β1 Integrin Is a Necessary Co-receptor for Collagen-induced Activation of Syk and the Subsequent Phosphorylation of Phospholipase Cγ2 in Platelets. J Biol Chem 1996. [DOI: 10.1074/jbc.271.43.26668] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Chacko GW, Brandt JT, Coggeshall KM, Anderson CL. Phosphoinositide 3-kinase and p72syk noncovalently associate with the low affinity Fc gamma receptor on human platelets through an immunoreceptor tyrosine-based activation motif. Reconstitution with synthetic phosphopeptides. J Biol Chem 1996; 271:10775-81. [PMID: 8631888 DOI: 10.1074/jbc.271.18.10775] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previously, we have demonstrated that the cytoplasmic tyrosine kinase p72syk is coupled to the platelet Fc receptor for IgG (Fc gamma RIIA) (Chacko, G. W., Duchemin, A. M., Coggeshall, K. M., Osborne, J. M., Brandt, J. T., and Anderson, C. L. (1994) J. Biol. Chem. 269, 32435-32440). Further analysis of the platelet activation by Fc gamma RIIA demonstrated that Fc gamma RIIA is also inducibly coupled to the serine/threonine and lipid kinase, phosphoinositide 3-kinase (PI 3-K). activation of platelets with anti-Fc gamma RIIA antibodies resulted in the noncovalent association of PI 3-K with Fc gamma RIIA as well as an increase in Fc gamma RIIA-associated PI 3-K activity. Binding of both p72syk and PI 3-K to Fc gamma RIIA was reconstituted with synthetic phosphopeptides corresponding to the sequence of the atypical immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic domain of Fc gamma RIIA. Our findings demonstrate that coupling of both p72syk and PI. 3-K activities to Fc gamma RIIA is regulated by tyrosine phosphorylation of the ITAM, and we speculate that p72syk might act as an adapter to recruit PI 3-K to activated Fc gamma RIIA.
Collapse
Affiliation(s)
- G W Chacko
- Department of Internal Medicine, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Small GTP-binding proteins of the Rho family appear to integrate extracellular signals from diverse receptor types and initiate rearrangements of F-actin. Active members of the Rho family, Rho and Rac, are now joined by Cdc42 which induces filopodia. Downstream of the Rho family proteins, actin polymerization may be induced by an increase in the availability of actin filament barbed ends. Actin organization may be affected by exposure of actin-binding sites on proteins such as vinculin and ezrin.
Collapse
Affiliation(s)
- S H Zigmond
- Biology Department, University of Pennsylvania, Philadelphia 19104-6018, USA.
| |
Collapse
|
41
|
Barnes MJ, Knight CG, Farndale RW. The use of collagen-based model peptides to investigate platelet-reactive sequences in collagen. Biopolymers 1996; 40:383-97. [PMID: 8765609 DOI: 10.1002/(sici)1097-0282(1996)40:4<383::aid-bip4>3.0.co;2-s] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple collagen-like peptides comprising a repeat Gly-Pro-Hyp sequence are highly platelet-reactive when presented to platelets in triple-helical and polymeric form. This activity is not mediated by the platelet collagen receptor integrin alpha 2 beta 1. This may imply the existence of an intrinsic platelet reactivity associated with the collagen triple helix as such or perhaps that the Gly-Pro-Hyp sequence in collagen serves as a specific cell-recognition site. In our view this basic alpha 2 beta 1-independent reactivity is modulated by the presence in collagen of sequences that may either enhance or diminish the interaction with platelets. Inhibition studies with short linear peptides have allowed the tentative identification of sequences in collagen such as XPGEP(Q)GPX and D(N)GE(Q)X that may promote the activation of platelets and so enhance collagen-platelet interaction. Sequences serving as integrin alpha 2 beta 1-binding sites may also promote platelet reactivity by permitting interaction with the collagen receptor. Using triple-helical peptides based on the sequence of the platelet-reactive collagen type III fragment alpha 1(III)CB4, we have been able to locate an alpha 2 beta 1-binding site in collagen type III within a 30-mer sequence representing residues 508-537 of the alpha 1(III) constituent alpha-chain. Despite their alpha 2 beta 1-independent platelet reactivity, signalling by the (Gly-Pro-Hyp)n-based peptides shows many features in common with signalling by collagen fibers, including activation of p72SYK and p125FAK the latter of which has until now been considered a specific consequence of ligand binding to alpha 2 beta 1.
Collapse
Affiliation(s)
- M J Barnes
- Strangeways Research Laboratory, Cambridge, UK
| | | | | |
Collapse
|
42
|
Yanaga F, Poole A, Asselin J, Blake R, Schieven GL, Clark EA, Law CL, Watson SP. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor. Biochem J 1995; 311 ( Pt 2):471-8. [PMID: 7487883 PMCID: PMC1136023 DOI: 10.1042/bj3110471] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation and, together with Fc gamma-RIIA, is phosphorylated in the kinase assay in vitro. These results demonstrate that syk is activated by Fc gamma-RIIA cross-linking and collagen, independent of PLC, suggesting that it may have an important role in the early events associated with platelet activation. The association of syk with Fc gamma-RIIA appears to be mediated through the tandem SH2 domains in syk and the ARAM motif of Fc gamma-RIIA. A similar interaction may underlie the response to collagen, suggesting that its signalling receptor contains an ARAM motif.
Collapse
Affiliation(s)
- F Yanaga
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Adhesive interactions play critical roles in directing the migration, proliferation, and differentiation of cells; aberrations in such interactions can lead to pathological disorders. These adhesive interactions, mediated by cell surface receptors that bind to ligands on adjacent cells or in the extracellular matrix, also regulate intracellular signal transduction pathways that control adhesion-induced changes in cell physiology. Though the extracellular molecular interactions involving many adhesion receptors have been well characterized, the adhesion-dependent intracellular signaling events that regulate these physiological alterations have only begun to be elucidated. This article will focus on recent advances in our understanding of intracellular signal transduction pathways regulated by the integrin family of adhesion receptors.
Collapse
Affiliation(s)
- E A Clark
- ARIAD Pharmaceuticals, Cambridge, MA 02139, USA
| | | |
Collapse
|