1
|
Kishnani PS, Chien YH, Berger KI, Thibault N, Sparks S. Clinical insight meets scientific innovation to develop a next generation ERT for Pompe disease. Mol Genet Metab 2024; 143:108559. [PMID: 39154400 DOI: 10.1016/j.ymgme.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Years of research into the structure, processing, and function of acid alpha-glucosidase led to the development and 2006 approval of alglucosidase alfa (recombinant human acid alpha-glucosidase, Myozyme®/Lumizyme®), an enzyme replacement therapy and the first approved treatment for Pompe disease. Alglucosidase alfa has been a lifesaving treatment for patients with infantile-onset Pompe disease and radically improved daily life for patients with late-onset Pompe disease; however, long-term experience with alglucosidase alfa unraveled key unmet needs in these populations. Despite treatment, Pompe disease continues to progress, especially from a skeletal muscle perspective, resulting in a multitude of functional limitations. Strong collaboration between the scientific and patient communities led to increased awareness of Pompe disease, a better understanding of disease pathophysiology, knowledge of the clinical course of the disease as patients surpassed the first decade of life, and the strengths and limitations of enzyme replacement therapy. Taken together, these advancements spurred the need for development of a next generation of enzyme replacement therapy and provided a framework for progress toward other novel treatments. This review provides an overview of the development of avalglucosidase alfa as a model to highlight the interaction between clinical experience with existing treatments, the role of the clinician scientist, translational research at both system and cellular levels, and the iterative and collaborative process that optimizes the development of therapeutics.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
2
|
Liang Q, Vlaar EC, Catalano F, Pijnenburg JM, Stok M, van Helsdingen Y, Vulto AG, Unger WW, van der Ploeg AT, Pijnappel WP, van Til NP. Lentiviral gene therapy prevents anti-human acid α-glucosidase antibody formation in murine Pompe disease. Mol Ther Methods Clin Dev 2022; 25:520-532. [PMID: 35662813 PMCID: PMC9127119 DOI: 10.1016/j.omtm.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 01/20/2023]
Abstract
Enzyme replacement therapy (ERT) is the current standard treatment for Pompe disease, a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). ERT has shown to be lifesaving in patients with classic infantile Pompe disease. However, a major drawback is the development of neutralizing antibodies against ERT. Hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) provides a novel, potential lifelong therapy with a single intervention and may induce immune tolerance. Here, we investigated whether ERT can be safely applied as additional or alternative therapy following HSPC-LVGT in a murine model of Pompe disease. We found that lentiviral expression at subtherapeutic dose was sufficient to induce tolerance to the transgene product, as well as to subsequently administered ERT. Immune tolerance was established within 4–6 weeks after gene therapy. The mice tolerated ERT doses up to 100 mg/kg, allowing ERT to eliminate glycogen accumulation in cardiac and skeletal muscle and normalizing locomotor function. The presence of HSPC-derived cells expressing GAA in the thymus suggested the establishment of central immune tolerance. These findings demonstrate that lentiviral gene therapy in murine Pompe disease induced robust and long-term immune tolerance to GAA either expressed by a transgene or supplied as ERT.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eva C. Vlaar
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Fabio Catalano
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Joon M. Pijnenburg
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Merel Stok
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Yvette van Helsdingen
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Arnold G. Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wendy W.J. Unger
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015GE Rotterdam, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - W.W.M. Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Corresponding author W.W.M. Pim Pijnappel, PhD, Erasmus University Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Niek P. van Til
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
3
|
Jung JW, Huy NX, Kim HB, Kim NS, Van Giap D, Yang MS. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol 2017; 249:42-50. [PMID: 28363873 DOI: 10.1016/j.jbiotec.2017.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Lysosomal storage diseases are a group of inherited metabolic disorders. Patients are treated with enzyme replacement therapy (ERT), in which the replacement enzymes are required to carry terminal mannose or mannose 6-phosphate residues to allow efficient uptake into target cells and tissues. N-acetylglucosaminyltransferase-I (GnTI) mediates N-glycosylation in the cis cisternae of the Golgi apparatus by adding N-acetylglucosamine to the exposed terminal mannose residue of core N-glycan structures for further processing. Mutant rice lacking GnTI produces only high mannosylated glycoproteins. In this study, we introduced a gene encoding recombinant human acid α-glucosidase (rhGAA), which is used in ERT for Pompe disease, into gnt1 rice callus by particle bombardment. Integration of the target gene into the genome of the gnt1 rice line and its mRNA expression were confirmed by PCR and Northern blot, respectively. Western blot analysis was performed to confirm secretion of the target proteins into the culture media. Using an indirect enzyme linked immunosorbent assay, we determined the maximum expression of rhGAA to be approximately 45mg/L, 13days after induction. To assay the enzymatic activity and determine the N-glycan profile of rhGAA, we purified the protein using a 6×histidine tag. The in vitro α-glucosidase activity of rhGAA from gnt1 rice callus (gnt1-GAA) was 3.092U/mg, similar to the activity of the Chinese hamster ovary cell-derived GAA (3.154U/mg). N-glycan analysis revealed the presence of high-mannose N-glycans on gnt1-GAA. In addition, the production of high-mannose GAA using gnt1 rice calli as an expression host was characterized, which may aid the future development of therapeutic enzymes for the treatment of Pompe disease.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Biology Department, Hue University of Education, 34 Le Loi, Hue, Viet Nam
| | - Hyo-Boon Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Do Van Giap
- Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Research Center of Bioactive Materials, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
4
|
Production and characterization of recombinant human acid α-glucosidase in transgenic rice cell suspension culture. J Biotechnol 2016; 226:44-53. [DOI: 10.1016/j.jbiotec.2016.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
|
5
|
Wagemaker G. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum Gene Ther 2014; 25:862-5. [PMID: 25184354 DOI: 10.1089/hum.2014.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease.
Collapse
Affiliation(s)
- Gerard Wagemaker
- Erasmus University Rotterdam, 3005 LA Rotterdam, The Netherlands
| |
Collapse
|
6
|
Byrne BJ, Falk DJ, Pacak CA, Nayak S, Herzog RW, Elder ME, Collins SW, Conlon TJ, Clement N, Cleaver BD, Cloutier DA, Porvasnik SL, Islam S, Elmallah MK, Martin A, Smith BK, Fuller DD, Lawson LA, Mah CS. Pompe disease gene therapy. Hum Mol Genet 2011; 20:R61-8. [PMID: 21518733 DOI: 10.1093/hmg/ddr174] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation. A wide spectrum of disease exists from hypotonia and severe cardiac hypertrophy in the first few months of life due to severe mutations to a milder form with the onset of symptoms in adulthood. In either condition, the involvement of several systems leads to progressive weakness and disability. In early-onset severe cases, the natural history is characteristically cardiorespiratory failure and death in the first year of life. Since the advent of enzyme replacement therapy (ERT), the clinical outcomes have improved. However, it has become apparent that a new natural history is being defined in which some patients have substantial improvement following ERT, while others develop chronic disability reminiscent of the late-onset disease. In order to improve on the current clinical outcomes in Pompe patients with diminished clinical response to ERT, we sought to address the cause and potential for the treatment of disease manifestations which are not amenable to ERT. In this review, we will focus on the preclinical studies that are relevant to the development of a gene therapy strategy for Pompe disease, and have led to the first clinical trial of recombinant adeno-associated virus-mediated gene-based therapy for Pompe disease. We will cover the preliminary laboratory studies and rationale for a clinical trial, which is based on the treatment of the high rate of respiratory failure in the early-onset patients receiving ERT.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, Bali D, Smith SA, Li JS, Mandel H, Koeberl D, Rosenberg A, Chen YT. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010; 99:26-33. [PMID: 19775921 PMCID: PMC3721340 DOI: 10.1016/j.ymgme.2009.08.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Deficiency of acid alpha glucosidase (GAA) causes Pompe disease, which is usually fatal if onset occurs in infancy. Patients synthesize a non-functional form of GAA or are unable to form native enzyme. Enzyme replacement therapy with recombinant human GAA (rhGAA) prolongs survival in infantile Pompe patients but may be less effective in cross-reactive immunologic material (CRIM)-negative patients. We retrospectively analyzed the influence of CRIM status on outcome in 21 CRIM-positive and 11 CRIM-negative infantile Pompe patients receiving rhGAA. Patients were from the clinical setting and from clinical trials of rhGAA, were 6 months of age, were not invasively ventilated, and were treated with IV rhGAA at a cumulative or total dose of 20 or 40 mg/kg/2 weeks. Outcome measures included survival, invasive ventilator-free survival, cardiac status, gross motor development, development of antibodies to rhGAA, and levels of urinary Glc(4). Following 52 weeks of treatment, 6/11 (54.5%) CRIM-negative and 1/21 (4.8%) CRIM-positive patients were deceased or invasively ventilated (p<0.0001). By age 27.1 months, all CRIM-negative patients and 4/21 (19.0%) CRIM-positive patients were deceased or invasively ventilated. Cardiac function and gross motor development improved significantly more in the CRIM-positive group. IgG antibodies to rhGAA developed earlier and serotiters were higher and more sustained in the CRIM-negative group. CRIM-negative status predicted reduced overall survival and invasive ventilator-free survival and poorer clinical outcomes in infants with Pompe disease treated with rhGAA. The effect of CRIM status on outcome appears to be mediated by antibody responses to the exogenous protein.
Collapse
Affiliation(s)
- Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Box 103856 DUMC, 4th Floor GSRBI, 595 LaSalle Street, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also regarded as a muscular disorder, but the generalised storage of glycogen causes more than mobility and respiratory problems. The clinical spectrum is continuous and broad. First symptoms can present in infants, children, and adults. Cardiac hypertrophy is a key feature of classic infantile Pompe's disease. For a long time, there was no means to stop disease progression, but the approval of enzyme replacement therapy has substantially changed the prospects for patients. With this new development, the disease is now among the small but increasing number of lysosomal storage disorders, for which treatment has become a reality. This review is meant to raise general awareness, to present and discuss the latest insights in disease pathophysiology, and to draw attention to new developments about diagnosis and care. We also discuss the developments that led to the approval of enzyme replacement therapy with recombinant human alpha-glucosidase from Chinese hamster ovary cells (alglucosidase alfa) by the US Food and Drug Administration and European Medicines Agency in 2006, and review clinical practice.
Collapse
Affiliation(s)
- Ans T van der Ploeg
- Department of Paediatrics, Division of Metabolic Diseases and Genetics, Erasmus MC, Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands.
| | | |
Collapse
|
9
|
McVie-Wylie AJ, Lee KL, Qiu H, Jin X, Do H, Gotschall R, Thurberg BL, Rogers C, Raben N, O'Callaghan M, Canfield W, Andrews L, McPherson JM, Mattaliano RJ. Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab 2008; 94:448-455. [PMID: 18538603 PMCID: PMC2774491 DOI: 10.1016/j.ymgme.2008.04.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 12/19/2022]
Abstract
Pompe disease results in the accumulation of lysosomal glycogen in multiple tissues due to a deficiency of acid alpha-glucosidase (GAA). Enzyme replacement therapy for Pompe disease was recently approved in Europe, the U.S., Canada, and Japan using a recombinant human GAA (Myozyme, alglucosidase alfa) produced in CHO cells (CHO-GAA). During the development of alglucosidase alfa, we examined the in vitro and in vivo properties of CHO cell-derived rhGAA, an rhGAA purified from the milk of transgenic rabbits, as well as an experimental version of rhGAA containing additional mannose-6-phosphate intended to facilitate muscle targeting. Biochemical analyses identified differences in rhGAA N-termini, glycosylation types and binding properties to several carbohydrate receptors. In a mouse model of Pompe disease, glycogen was more efficiently removed from the heart than from skeletal muscle for all enzymes, and overall, the CHO cell-derived rhGAA reduced glycogen to a greater extent than that observed with the other enzymes. The results of these preclinical studies, combined with biochemical characterization data for the three molecules described within, led to the selection of the CHO-GAA for clinical development and registration as the first approved therapy for Pompe disease.
Collapse
Affiliation(s)
- A J McVie-Wylie
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - K L Lee
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - H Qiu
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - X Jin
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - H Do
- Glycobiology Research Institute, Genzyme Corporation, Oklahoma City, OK 73104, USA
| | - R Gotschall
- Glycobiology Research Institute, Genzyme Corporation, Oklahoma City, OK 73104, USA
| | - B L Thurberg
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - C Rogers
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - N Raben
- Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - M O'Callaghan
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - W Canfield
- Glycobiology Research Institute, Genzyme Corporation, Oklahoma City, OK 73104, USA
| | - L Andrews
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - J M McPherson
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| | - R J Mattaliano
- Biologics Research and Development, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA
| |
Collapse
|
10
|
Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 2007; 90:49-57. [PMID: 17095274 DOI: 10.1016/j.ymgme.2006.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Glycogen storage disease type II (GSDII; Pompe disease or acid maltase deficiency) is an autosomal recessive disorder caused by lysosomal acid alpha-glucosidase (AalphaGlu) deficiency and manifests predominantly as skeletal muscle weakness. Defects in post-translational modification and transport of mutant AalphaGlu species are frequently encountered and may potentially be corrected with chaperone-mediated therapy. In the present study, we have tested this hypothesis by using deoxynojirimycin and derivatives as chemical chaperones to correct the AalphaGlu deficiency in cultured fibroblasts from patients with GSDII. Four mutant phenotypes were chosen: Y455F/Y455F, P545L/P545L, 525del/R600C and D645E/R854X. In case of Y455F/Y455F and P545L/P545L, N-(n-butyl)deoxynojirimycin (NB-DNJ) restored the transport, maturation and activity of AalphaGlu in a dose dependent manner, while it had no effect on the reference enzyme beta-hexosaminidase. NB-DNJ promoted export from the endoplasmic reticulum (ER) to the lysosomes and stabilized the activity of mutant AalphaGlu species, Y455F and P545L, inside the lysosomes. In long-term culture, the AalphaGlu activity in the fibroblasts from the patients with mutant phenotypes, Y455F/Y455F and P545L/P545L, increased up to 14.0- and 7.9-fold, respectively, in the presence of 10mumol/L NB-DNJ. However, the effect of NB-DNJ on Y455F/Y455F subsided quickly after removal of the compound. We conclude that NB-DNJ acts in low concentration as chemical chaperone for certain mutant forms of AalphaGlu that are trapped in the ER, poorly transported or labile in the lysosomal environment. Chemical chaperone therapy could create new perspectives for therapeutic intervention in GSDII.
Collapse
Affiliation(s)
- Toshika Okumiya
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Kakavanos R, Hopwood JJ, Lang D, Meikle PJ, Brooks DA. Stabilising normal and mis-sense variant alpha-glucosidase. FEBS Lett 2006; 580:4365-70. [PMID: 16846599 DOI: 10.1016/j.febslet.2006.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/07/2006] [Accepted: 06/29/2006] [Indexed: 11/26/2022]
Abstract
alpha-Glucosidase (EC 3.2.1.3) is a lysosomal enzyme that hydrolyses alpha-1,4- and alpha-1,6-linkages of glycogen to produce free glucose. A deficiency in alpha-glucosidase activity results in glycogen storage disorder type II (GSD II), also called Pompe disease. Here, d-glucose was shown to be a competitive inhibitor of alpha-glucosidase and when added to culture medium at 6.0 g/L increased the production of this protein by CHO-K1 expression cells and stabilised the enzyme activity. D-Glucose also prevented alpha-glucosidase aggregation/precipitation and increased protein yield in a modified purification scheme. In fibroblast cells, from adult-onset GSD II patients, D-glucose increased the residual level of alpha-glucosidase activity, suggesting that a structural analogue of d-glucose may be used for enzyme enhancement therapy.
Collapse
Affiliation(s)
- Revecca Kakavanos
- Department of Genetic Medicine, Lysosomal Diseases Research Unit, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | | | | | | | | |
Collapse
|
12
|
Okumiya T, Keulemans JLM, Kroos MA, Van der Beek NME, Boer MA, Takeuchi H, Van Diggelen OP, Reuser AJJ. A new diagnostic assay for glycogen storage disease type II in mixed leukocytes. Mol Genet Metab 2006; 88:22-8. [PMID: 16359900 DOI: 10.1016/j.ymgme.2005.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
We have established a new method for the enzymatic diagnosis of glycogen storage disease type II (Pompe disease or acid maltase deficiency) using mixed leukocytes. The method employs glycogen and 4-methylumbelliferyl-alpha-D-glucopyranoside (4MU-alphaGlc) as substrates for measuring the lysosomal acid alpha-glucosidase (acid alphaGlu) activity, and incorporates acarbose to eliminate the interference of unrelated alpha-glucosidases (predominantly maltase-glucoamylase). It is shown that 3.0 micromol/L acarbose completely inhibits the maltase-glucoamylase activity at pH 4.0, but the lysosomal acid alphaGlu activity by less than 5%. With this method, we determined the acid alphaGlu activity in mixed leukocytes from 25 patients with glycogen storage disease type II (2 infantile and 23 late-onset cases), one GAA2/GAA2 homozygote and 30 healthy subjects. In the assay with glycogen as substrate, the addition of acarbose created a clear separation between the patient and the control ranges. In the assay with 4MU-alphaGlc as substrate, the two ranges were fully separated but remained very close despite the use of acarbose. The separation of the patient and normal ranges was improved considerably by taking the ratio of acarbose-inhibited over uninhibited activity. A GAA2/GAA2 homozygote was correctly diagnosed with 4MU-alphaGlc but misdiagnosed as patient when glycogen was used as substrate. We conclude that the inclusion of 3.0 micromol/L acarbose in the assays with glycogen and 4MU-alphaGlc substrates at pH 4.0 allows for the specific measurement of lysosomal acid alphaGlu activity in mixed leukocytes, thus enabling a reliable diagnosis of glycogen storage disease type II in this specimen.
Collapse
Affiliation(s)
- Toshika Okumiya
- Department of Clinical Genetics, Erasmus MC, P.O. Box 1738, 3000DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu Y, Li X, Mcvie-Wylie A, Jiang C, Thurberg B, Raben N, Mattaliano R, Cheng S. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J 2005; 389:619-28. [PMID: 15839836 PMCID: PMC1180711 DOI: 10.1042/bj20050364] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To enhance the delivery of rhGAA (recombinant GAA, where GAA stands for acid alpha-glucosidase) to the affected muscles in Pompe disease, the carbohydrate moieties on the enzyme were remodelled to exhibit a high affinity ligand for the CI-MPR (cation-independent M6P receptor, where M6P stands for mannose 6-phosphate). This was achieved by chemically conjugating on to rhGAA, a synthetic oligosaccharide ligand bearing M6P residues in the optimal configuration for binding the receptor. The carbonyl chemistry used resulted in the conjugation of approx. six synthetic ligands on to each enzyme. The resulting modified enzyme [neo-rhGAA (modified recombinant human GAA harbouring synthetic oligosaccharide ligands)] displayed near-normal specific activity and significantly increased affinity for the CI-MPR. However, binding to the mannose receptor was unaffected despite the introduction of additional mannose residues in neo-rhGAA. Uptake studies using L6 myoblasts showed neo-rhGAA was internalized approx. 20-fold more efficiently than the unmodified enzyme. Administration of neo-rhGAA into Pompe mice also resulted in greater clearance of glycogen from all the affected muscles when compared with the unmodified rhGAA. Comparable reductions in tissue glycogen levels in the Pompe mice were realized using an approx. 8-fold lower dose of neo-rhGAA in the heart and diaphragm and an approx. 4-fold lower dose in the skeletal muscles. Treatment of older Pompe mice, which are more refractory to enzyme therapy, with 40 mg/kg neo-rhGAA resulted in near-complete clearance of glycogen from all the affected muscles as opposed to only partial correction with the unmodified rhGAA. These results demonstrate that remodelling the carbohydrate of rhGAA to improve its affinity for the CI-MPR represents a feasible approach to enhance the efficacy of enzyme replacement therapy for Pompe disease.
Collapse
Affiliation(s)
- Yunxiang Zhu
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
| | - Xuemei Li
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
| | - Alison Mcvie-Wylie
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
| | - Canwen Jiang
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
| | - Beth L. Thurberg
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
| | - Nina Raben
- †National Institutes of Health, Bethesda, MD 20892, U.S.A
| | | | - Seng H. Cheng
- *Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
An Y, Young SP, Kishnani PS, Millington DS, Amalfitano A, Corz D, Chen YT. Glucose tetrasaccharide as a biomarker for monitoring the therapeutic response to enzyme replacement therapy for Pompe disease. Mol Genet Metab 2005; 85:247-54. [PMID: 15886040 DOI: 10.1016/j.ymgme.2005.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 11/19/2022]
Abstract
A tetraglucose oligomer, Glcalpha1-6Glcalpha1-4Glcalpha1-4Glc, designated Glc4, has been shown to be a putative biomarker for the diagnosis of Pompe disease. The purpose of this study was to assess whether Glc4 could be used to monitor the therapeutic response to recombinant human acid alpha glucosidase (rhGAA) enzyme replacement therapy (ERT) in patients with Pompe disease. Urinary Glc4 levels in 11 patients receiving rhGAA therapy was determined by both HPLC-UV and stable isotope dilution ESI-MS/MS. Combined Glc4 and maltotetraose, Glcalpha1-4Glcalpha1-4Glcalpha1-4Glc, (M4) concentrations, designated Hex4, in plasma from these patients were measured by HPLC-UV only. Baseline urinary Glc4 and plasma Hex4 in these patients (mean+/-SD: 34.2+/-11.3 mmol/mol creatinine and 1.7+/-0.8 microM, respectively) were higher than age-matched control values (mean+/-SD, 6.1+/-5.1 mmol/mol creatinine and 0.22+/-0.15 microM, respectively). Both urinary Glc4 and plasma Hex4 levels decreased after initiation of ERT for all patients. In the four patients with the best overall clinical response in both skeletal and cardiac muscle, levels decreased to within, or near, normal levels during the first year of treatment. In contrast, levels fluctuated and were persistently elevated above the control ranges in those patients with a less favorable clinical response (good cardiac response but limited motor improvement). These results suggest that urinary Glc4 and plasma Hex4 could serve as a valuable adjunct to clinical endpoints for monitoring the efficacy of therapeutic interventions such as rhGAA ERT in Pompe disease.
Collapse
Affiliation(s)
- Yan An
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham and RTP, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Klinge L, Straub V, Neudorf U, Schaper J, Bosbach T, Görlinger K, Wallot M, Richards S, Voit T. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005; 15:24-31. [PMID: 15639117 DOI: 10.1016/j.nmd.2004.10.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 10/19/2004] [Indexed: 11/24/2022]
Abstract
Pompe disease is an autosomal recessive muscle-wasting disorder caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase. Due to virtual absence of acid alpha-glucosidase, patients with classical infantile Pompe disease develop progressive cardiomyopathy, skeletal muscle weakness and respiratory insufficiency leading to death in early infancy. We report on the results of a phase II clinical trial including two patients with classical infantile Pompe disease receiving enzyme replacement therapy over a period of 48 weeks by weekly infusions. Recombinant acid alpha-glucosidase was derived from the milk of transgenic rabbits. Safety was evaluated by recording adverse events while clinical efficacy was evaluated by ventilator-free survival, left ventricular mass index, motor development as well as histologic and biochemical analysis of muscle biopsies. This therapy was in general well-tolerated. There was an overall improvement in left ventricular mass, cardiac function, skeletal muscle function and histological appearance of skeletal muscle.
Collapse
Affiliation(s)
- L Klinge
- Department of Paediatrics and Paediatric Neurology, University of Essen, Hufelandstrasse 55, 45 122 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prince WS, McCormick LM, Wendt DJ, Fitzpatrick PA, Schwartz KL, Aguilera AI, Koppaka V, Christianson TM, Vellard MC, Pavloff N, Lemontt JF, Qin M, Starr CM, Bu G, Zankel TC. Lipoprotein Receptor Binding, Cellular Uptake, and Lysosomal Delivery of Fusions between the Receptor-associated Protein (RAP) and α-l-Iduronidase or Acid α-Glucosidase. J Biol Chem 2004; 279:35037-46. [PMID: 15170390 DOI: 10.1074/jbc.m402630200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme replacement therapy for lysosomal storage disorders depends on efficient uptake of recombinant enzyme into the tissues of patients. This uptake is mediated by oligosaccharide receptors including the cation-independent mannose 6-phosphate receptor and the mannose receptor. We have sought to exploit alternative receptor systems that are independent of glycosylation but allow for efficient delivery to the lysosome. Fusions of the human lysosomal enzymes alpha-l-iduronidase or acid alpha-glucosidase with the receptor-associated protein were efficiently endocytosed by lysosomal storage disorder patient fibroblasts, rat C6 glioma cells, mouse C2C12 myoblasts, and recombinant Chinese hamster ovary cells expressing individual members of the low-density lipoprotein receptor family. Uptake of the fusions exceeded that of phosphorylated enzyme in all cases, often by an order of magnitude or greater. Uptake was specifically mediated by members of the low-density lipoprotein receptor protein family and was followed by delivery of the fusions to the lysosome. The advantages of the lipoprotein receptor system over oligosaccharide receptor systems include more efficient cellular delivery and the potential for transcytosis of ligands across tight endothelia, including the blood-brain barrier.
Collapse
|
17
|
Van den Hout JMP, Kamphoven JHJ, Winkel LPF, Arts WFM, De Klerk JBC, Loonen MCB, Vulto AG, Cromme-Dijkhuis A, Weisglas-Kuperus N, Hop W, Van Hirtum H, Van Diggelen OP, Boer M, Kroos MA, Van Doorn PA, Van der Voort E, Sibbles B, Van Corven EJJM, Brakenhoff JPJ, Van Hove J, Smeitink JAM, de Jong G, Reuser AJJ, Van der Ploeg AT. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 2004; 113:e448-57. [PMID: 15121988 DOI: 10.1542/peds.113.5.e448] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Recent reports warn that the worldwide cell culture capacity is insufficient to fulfill the increasing demand for human protein drugs. Production in milk of transgenic animals is an attractive alternative. Kilogram quantities of product per year can be obtained at relatively low costs, even in small animals such as rabbits. We tested the long-term safety and efficacy of recombinant human -glucosidase (rhAGLU) from rabbit milk for the treatment of the lysosomal storage disorder Pompe disease. The disease occurs with an estimated frequency of 1 in 40,000 and is designated as orphan disease. The classic infantile form leads to death at a median age of 6 to 8 months and is diagnosed by absence of alpha-glucosidase activity and presence of fully deleterious mutations in the alpha-glucosidase gene. Cardiac hypertrophy is characteristically present. Loss of muscle strength prevents infants from achieving developmental milestones such as sitting, standing, and walking. Milder forms of the disease are associated with less severe mutations and partial deficiency of alpha-glucosidase. METHODS In the beginning of 1999, 4 critically ill patients with infantile Pompe disease (2.5-8 months of age) were enrolled in a single-center open-label study and treated intravenously with rhAGLU in a dose of 15 to 40 mg/kg/week. RESULTS Genotypes of patients were consistent with the most severe form of Pompe disease. Additional molecular analysis failed to detect processed forms of alpha-glucosidase (95, 76, and 70 kDa) in 3 of the 4 patients and revealed only a trace amount of the 95-kDa biosynthetic intermediate form in the fourth (patient 1). With the more sensitive detection method, 35S-methionine incorporation, we could detect low-level synthesis of -glucosidase in 3 of the 4 patients (patients 1, 2, and 4) with some posttranslation modification from 110 kDa to 95 kDa in 1 of them (patient 1). One patient (patient 3) remained totally deficient with both detection methods (negative for cross-reactive immunologic material [CRIM negative]). The alpha-glucosidase activity in skeletal muscle and fibroblasts of all 4 patients was below the lower limit of detection (<2% of normal). The rhAGLU was tolerated well by the patients during >3 years of treatment. Anti-rhAGLU immunoglobulin G titers initially increased during the first 20 to 48 weeks of therapy but declined thereafter. There was no consistent difference in antibody formation comparing CRIM-negative with CRIM-positive patients. Muscle alpha-glucosidase activity increased from <2% to 10% to 20% of normal in all patients during the first 12 weeks of treatment with 15 to 20 mg/kg/week. For optimizing the effect, the dose was increased to 40 mg/kg/week. This resulted, 12 weeks later, in normal alpha-glucosidase activity levels, which were maintained until the last measurement in week 72. Importantly, all 4 patients, including the patient without any endogenous alpha-glucosidase (CRIM negative), revealed mature 76- and 70-kDa forms of -glucosidase on Western blot. Conversion of the 110-kDa precursor from milk to mature 76/70-kDa alpha-glucosidase provides evidence that the enzyme is targeted to lysosomes, where this proteolytic processing occurs. At baseline, patients had severe glycogen storage in the quadriceps muscle as revealed by strong periodic acid-Schiff--positive staining and lacework patterns in hematoxylin and eosin--stained tissue sections. The muscle pathology correlated at each time point with severity of signs. Periodic acid-Schiff intensity diminished and number of vacuoles increased during the first 12 weeks of treatment. Twelve weeks after dose elevation, we observed signs of muscle regeneration in 3 of the 4 patients. Obvious improvement of muscular architecture was seen only in the patient who learned to walk. Clinical effects were significant. All patients survived beyond the age of 4 years, whereas untreated patients succumb at a median age of 6 to 8 months. The characteristic cardiac hypertrophy present at start of treatment diminished significantly. The left ventricular mass index decreased from 171 to 599 g/m2 (upper limit of normal 86.6 g/m2 for infants from 0 to 1 year) to 70 to 160 g/m2 during 84 weeks of treatment. In addition, we found a significant change of slope for the diastolic thickness of the left ventricular posterior wall against time at t = 0 for each separate patient. Remarkably, the younger patients (patients 1 and 3) showed no significant respiratory problems during the first 2 years of life. One of the younger patients recovered from a life-threatening bronchiolitis at the age of 1 year without sequelae, despite borderline oxygen saturations at inclusion. At the age of 2, however, she became ventilator dependent after surgical removal of an infected Port-A-Cath. She died at the age of 4 years and 3 months suddenly after a short period of intractable fever of >42 degrees C, unstable blood pressure, and coma. The respiratory course of patient 1 remained uneventful. The 2 older patients, who both were hypercapnic (partial pressure of carbon dioxide: 10.6 and 9.8 kPa; normal range: 4.5-6.8 kPa) at start of treatment, became ventilator dependent before the first infusion (patient 2) and after 10 weeks of therapy (patient 4). Patient 4 was gradually weaned from the ventilator after 1 year of high-dose treatment and was eventually completely ventilator-free for 5 days, but this situation could not be maintained. Currently, both patients are completely ventilator dependent. The most remarkable progress in motor function was seen in the younger patients (patients 1 and 3). They achieved motor milestones that are unmet in infantile Pompe disease. Patient 1 learned to crawl (12 months), walk (16 months), squat (18 months), and climb stairs (22 months), and patient 3 learned to sit unsupported. The Alberta Infant Motor Scale score for patients 2, 3, and 4 remained far below p5. Patient 1 followed the p5 of normal. CONCLUSION Our study shows that a safe and effective medicine can be produced in the milk of mammals and encourages additional development of enzyme replacement therapy for the several forms of Pompe disease. Restoration of skeletal muscle function and prevention of pulmonary insufficiency require dosing in the range of 20 to 40 mg/kg/week. The effect depends on residual muscle function at the start of treatment. Early start of treatment is required.
Collapse
Affiliation(s)
- Johanna M P Van den Hout
- Department of Pediatrics, Division of Metabolic Diseases and Genetics, Erasmus MC-Sophia, Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Winkel LPF, Kamphoven JHJ, van den Hout HJMP, Severijnen LA, van Doorn PA, Reuser AJJ, van der Ploeg AT. Morphological changes in muscle tissue of patients with infantile Pompe's disease receiving enzyme replacement therapy. Muscle Nerve 2003; 27:743-51. [PMID: 12766987 DOI: 10.1002/mus.10381] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pompe's disease (glycogen storage disease type II) is an autosomal recessive myopathy caused by lysosomal alpha-glucosidase deficiency. Enzyme replacement therapy (ERT) is currently under development for this disease. We evaluated the morphological changes in muscle tissue of four children with infantile Pompe's disease who received recombinant human alpha-glucosidase from rabbit milk for 72 weeks. The patients were 2.5-8 months of age at entry. Prior to treatment, all patients showed lysosomal glycogen storage in skeletal and smooth muscle cells, vascular endothelium, Schwann cells, and perineurium. The first response to treatment was noticed in vascular endothelium and in peripheral nerves after 12 weeks of treatment at an enzyme dose of 15-20 mg/kg. Increasing the dose to 40 mg/kg led, after 72 weeks of treatment, to a reduction of glycogen storage and substantial improvement of muscle architecture in the least affected patient. Not all patients responded equally well, possibly due to differences in degree of glycogen storage and concomitant muscle pathology at the start of treatment. We conclude that intravenous administration of recombinant human alpha-glucosidase from rabbit milk can improve muscle morphology in classic infantile Pompe's disease when treatment is started before irreversible damage has occurred.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Female
- Glycogen/metabolism
- Glycogen Storage Disease Type II/drug therapy
- Glycogen Storage Disease Type II/metabolism
- Glycogen Storage Disease Type II/pathology
- Humans
- Infant
- Lysosomes/metabolism
- Lysosomes/pathology
- Lysosomes/ultrastructure
- Male
- Microscopy, Electron
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/ultrastructure
- Peripheral Nerves/metabolism
- Peripheral Nerves/pathology
- Rabbits
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Schwann Cells/metabolism
- Schwann Cells/pathology
- Treatment Outcome
- alpha-Glucosidases/deficiency
- alpha-Glucosidases/pharmacology
- alpha-Glucosidases/therapeutic use
Collapse
Affiliation(s)
- Léon P F Winkel
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Pauly DF, Fraites TJ, Toma C, Bayes HS, Huie ML, Hirschhorn R, Plotz PH, Raben N, Kessler PD, Byrne BJ. Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther 2001; 12:527-38. [PMID: 11268285 DOI: 10.1089/104303401300042447] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pompe disease is a lethal cardioskeletal myopathy in infants and results from genetic deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). Genetic replacement of the cDNA for human GAA (hGAA) is one potential therapeutic approach. Three months after a single intramuscular injection of 10(8) plaque-forming units (PFU) of E1-deleted adenovirus encoding human GAA (Ad-hGAA), the activity in whole muscle lysates of immunodeficient mice is increased to 20 times the native level. Direct transduction of a target muscle, however, may not correct all deficient cells. Therefore, the amount of enzyme that can be transferred to deficient cells from virally transduced cells was studied. Fibroblasts from an affected patient were transduced with AdhGAA, washed, and plated on transwell culture dishes to serve as donors of recombinant enzyme. Deficient fibroblasts were plated as acceptor cells, and were separated from the donor monolayer by a 22-microm pore size filter. Enzymatic and Western analyses demonstrate secretion of the 110-kDa precursor form of hGAA from the donor cells into the culture medium. This recombinant, 110-kDa species reaches the acceptor cells, where it can be taken up by mannose 6-phosphate receptor-mediated endocytosis. It then trafficks to lysosomes, where Western analysis shows proteolytic processing to the 76- and 70-kDa lysosomal forms of the enzyme. Patient fibroblasts receiving recombinant hGAA by this transfer mechanism reach levels of enzyme activity that are comparable to normal human fibroblasts. Skeletal muscle cell cultures from an affected patient were also transduced with Ad-hGAA. Recombinant hGAA is identified in a lysosomal location in these muscle cells by immunocytochemistry, and enzyme activity is transferred to deficient skeletal muscle cells grown in coculture. Transfer of the precursor protein between muscle cells again occurs via mannose 6-phosphate receptors, as evidenced by competitive inhibition with 5 mM mannose 6-phosphate. In vivo studies in GAA-knockout mice demonstrate that hepatic transduction with adenovirus encoding either murine or human GAA can provide a depot of recombinant enzyme that is available to heart and skeletal muscle through this mechanism. Taken together, these data show that the mannose 6-phosphate receptor pathway provides a useful strategy for cell-to-cell distribution of virally derived recombinant GAA.
Collapse
Affiliation(s)
- D F Pauly
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weber B, Hopwood JJ, Yogalingam G. Expression and characterization of human recombinant and alpha-N-acetylglucosaminidase. Protein Expr Purif 2001; 21:251-9. [PMID: 11237686 DOI: 10.1006/prep.2000.1361] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation.
Collapse
Affiliation(s)
- B Weber
- Lysosomal Diseases Research Unit, Department of Chemical Pathology, Women's and Children's Hospital, 72 King William Road, SA 5006, North Adelaide, Australia
| | | | | |
Collapse
|
21
|
Recombinant human acid ??-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genet Med 2001. [DOI: 10.1097/00125817-200103000-00008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 2000; 356:397-8. [PMID: 10972374 DOI: 10.1016/s0140-6736(00)02533-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Pompe's disease is a fatal muscular disorder caused by lysosomal alpha-glucosidase deficiency. In an open-label study, four babies with characteristic cardiomyopathy were treated with recombinant human alpha-glucosidase (rhGAA) from rabbit milk at starting doses of 15 mg/kg or 20 mg/kg, and later 40 mg/kg. The enzyme was generally well tolerated. Activity of alpha-glucosidase normalised in muscle. Tissue morphology and motor and cardiac function improved. The left-ventricular-mass index decreased significantly. We recommend early treatment. Long-term effects are being studied.
Collapse
|
23
|
Zhao KW, Neufeld EF. Purification and characterization of recombinant human alpha-N-acetylglucosaminidase secreted by Chinese hamster ovary cells. Protein Expr Purif 2000; 19:202-11. [PMID: 10833408 DOI: 10.1006/prep.2000.1230] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-N-Acetylglucosaminidase (EC 3.2.1.50) is a lysosomal enzyme that is deficient in the genetic disorder Sanfilippo syndrome type B. To study the human enzyme, we expressed its cDNA in Lec1 mutant Chinese hamster ovary (CHO) cells, which do not synthesize complex oligosaccharides. The enzyme was purified to apparent homogeneity from culture medium by chromatography on concanavalin A-Sepharose, Poros 20-heparin, and aminooctyl-agarose. The purified enzyme migrated as a single band of 83 kDa on SDS-PAGE and as two peaks corresponding to monomeric and dimeric forms on Sephacryl-300. It had an apparent K(m) of 0.22 mM toward 4-methylumbelliferyl-alpha-N-acetylglucosaminide and was competitively inhibited by two potential transition analogs, 2-acetamido-1,2-dideoxynojirimycin (K(i) = 0.45 microM) and 6-acetamido-6-deoxycastanospermine (K(i) = 0.087 microM). Activity was also inhibited by mercurials but not by N-ethylmaleimide or iodoacetamide, suggesting the presence of essential sulfhydryl residues that are buried. The purified enzyme preparation corrected the abnormal [(35)S]glycosaminoglycan catabolism of Sanfilippo B fibroblasts in a mannose 6-phosphate-inhibitable manner, but its effectiveness was surprisingly low. Metabolic labeling experiments showed that the recombinant alpha-N-acetylglucosaminidase secreted by CHO cells had only a trace of mannose 6-phosphate, probably derived from contaminating endogenous CHO enzyme. This contrasts with the presence of mannose 6-phosphate on naturally occurring alpha-N-acetylglucosaminidase secreted by diploid human fibroblasts and on recombinant human alpha-l-iduronidase secreted by the same CHO cells. Thus contrary to current belief, overexpressing CHO cells do not necessarily secrete recombinant lysosomal enzyme with the mannose 6-phosphate-targeting signal; this finding has implications for the preparation of such enzymes for therapeutic purposes.
Collapse
Affiliation(s)
- K W Zhao
- Department of Biological Chemistry, University of California, Los Angeles 90095-1737, USA
| | | |
Collapse
|
24
|
Chen YT, Amalfitano A. Towards a molecular therapy for glycogen storage disease type II (Pompe disease). MOLECULAR MEDICINE TODAY 2000; 6:245-51. [PMID: 10840383 DOI: 10.1016/s1357-4310(00)01694-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen storage disease type II (GSD-II), also known as Pompe disease, is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase, a glycogen-degrading lysosomal enzyme. Currently, there is no treatment for this fatal disorder. However, several lines of research suggest the possibility of future treatment. Enzyme replacement strategies hold the greatest hope for patients currently affected by GSD-II, but future strategies could include in vivo or ex vivo gene therapy approaches and/or mesenchymal stem cell or bone-marrow transplantation approaches. Each of the approaches might eventually be combined to further improve the overall clinical efficacy of any one treatment regimen. The lessons learned from GSD-II research will also benefit a great number of individuals affected by other genetic disorders.
Collapse
Affiliation(s)
- Y T Chen
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
25
|
Zwerschke W, Mannhardt B, Massimi P, Nauenburg S, Pim D, Nickel W, Banks L, Reuser AJ, Jansen-Dürr P. Allosteric activation of acid alpha-glucosidase by the human papillomavirus E7 protein. J Biol Chem 2000; 275:9534-41. [PMID: 10734102 DOI: 10.1074/jbc.275.13.9534] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the cellular carbohydrate metabolism are a hallmark of malignant transformation and represent one of the earliest discernible events in tumorigenesis. In the early stages of certain epithelial cancers, a metabolic switch is regularly observed, in which slowly growing glycogenotic cells are converted to highly proliferating basophilic cells. This step is accompanied by a rapid depletion of the intracellular glycogen stores, which in liver carcinogenesis results from the activation of the enzyme acid alpha-glucosidase by an as yet unknown mechanism. We show here that acid alpha-glucosidase is a target for the E7 protein encoded by human papillomavirus type 16, a human tumor virus that plays a key role in the genesis of cervical carcinoma. We show that expression of E7 induces the catalytic activity of acid alpha-glucosidase in vivo and wild type E7, but not transformation-deficient mutants bind directly to acid alpha-glucosidase and increase the catalytic activity of the enzyme in vitro. The data suggest that the E7 protein encoded by human papillomavirus type 16 can act as an allosteric activator of acid alpha-glucosidase.
Collapse
Affiliation(s)
- W Zwerschke
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung F0301, INF 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schoneveld O, Visser P, Brakenhoff JP, Weggeman M, van Corven EJ, Van der Ploeg AT, Reuser AJ. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet 1999; 8:2145-53. [PMID: 10545593 DOI: 10.1093/hmg/8.12.2145] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pompe's disease or glycogen storage disease type II (GSDII) belongs to the family of inherited lysosomal storage diseases. The underlying deficiency of acid alpha-glucosidase leads in different degrees of severity to glycogen storage in heart, skeletal and smooth muscle. There is currently no treatment for this fatal disease, but the applicability of enzyme replacement therapy is under investigation. For this purpose, recombinant human acid alpha-glucosidase has been produced on an industrial scale in the milk of transgenic rabbits. In this paper we demonstrate the therapeutic effect of this enzyme in our knockout mouse model of GSDII. Full correction of acid alpha-glucosidase deficiency was obtained in all tissues except brain after a single dose of i.v. enzyme administration. Weekly enzyme infusions over a period of 6 months resulted in degradation of lysosomal glycogen in heart, skeletal and smooth muscle. The tissue morphology improved substantially despite the advanced state of disease at the start of treatment. The results have led to the start of a Phase II clinical trial of enzyme replacement therapy in patients.
Collapse
Affiliation(s)
- A G Bijvoet
- Department of Clinical Genetics,Erasmus University Rotterdam and Sophia Children's Hospital, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nicolino MP, Puech JP, Kremer EJ, Reuser AJ, Mbebi C, Verdière-Sahuqué M, Kahn A, Poenaru L. Adenovirus-mediated transfer of the acid alpha-glucosidase gene into fibroblasts, myoblasts and myotubes from patients with glycogen storage disease type II leads to high level expression of enzyme and corrects glycogen accumulation. Hum Mol Genet 1998; 7:1695-702. [PMID: 9736771 DOI: 10.1093/hmg/7.11.1695] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycogen storage disease type II (GSD II) is an autosomal recessive disorder caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. We investigated the feasibility of using a recombinant adenovirus containing the human GAA gene under the control of the cytomegalovirus promoter (AdCMV-GAA) to correct the enzyme deficiency in different cultured cells from patients with the infantile form of GSD II. In GAA-deficient fibroblasts infected with AdCMV-GAA, transduction and transcription of the human transgene resulted in de novo synthesis of GAA protein. The GAA enzyme activity was corrected from the deficient level to 12 times the activity of normal cells. The transduced cells overexpressed the 110 kDa precursor form of GAA, which was secreted into the culture medium and was taken up by recipient cells. The recombinant GAA protein was correctly processed and was active on both an artificial substrate 4-methylumbelliferyl-alpha-D-glucopyranoside (4MUG) and glycogen. In GAA-deficient muscle cells, a significant increase in cellular enzyme level, approximately 20-fold higher than in normal cells, was also observed after viral treatment. The transduced muscle cells were also able to efficiently secrete the recombinant GAA. Moreover, transfer of the human transgene resulted in normalization of cellular glycogen content with clearance of glycogen from lysosomes, as assessed by electron microscopy, in differentiated myotubes. These results demonstrate phenotypic correction of cultured skeletal muscle from a patient with infantile-onset GSD II using a recombinant adenovirus. We conclude that adenovirus-mediated gene transfer might be a suitable model system for further in vivo studies on delivering GAA to GSD II muscle, not only by direct cell targeting but also by a combination of secretion and uptake mechanisms.
Collapse
Affiliation(s)
- M P Nicolino
- Laboratoire de Génétique, Université René Descartes (Paris V), CHU Cochin-Port Royal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bijvoet AG, Kroos MA, Pieper FR, Van der Vliet M, De Boer HA, Van der Ploeg AT, Verbeet MP, Reuser AJ. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum Mol Genet 1998; 7:1815-24. [PMID: 9736785 DOI: 10.1093/hmg/7.11.1815] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycogen storage disease type II (GSDII) is caused by lysosomal acid alpha-glucosidase deficiency. Patients have a rapidly fatal or slowly progressive impairment of muscle function. Enzyme replacement therapy is under investigation. For large-scale, cost-effective production of recombinant human acid alpha-glucosidase in the milk of transgenic animals, we have fused the human acid alpha-glucosidase gene to 6.3 kb of the bovine alphaS1-casein gene promoter and have tested the performance of this transgene in mice. The highest production level reached was 2 mg/ml. The major fraction of the purified recombinant enzyme has a molecular mass of 110 kDa and resembles the natural acid alpha-glucosidase precursor from human urine and the recombinant precursor secreted by CHO cells, with respect to pH optimum, Km, Vmax, N-terminal amino acid sequence and glycosylation pattern. The therapeutic potential of the recombinant enzyme produced in milk is demonstrated in vitro and in vivo. The precursor is taken up in a mannose 6-phosphate receptor-dependent manner by cultured fibroblasts, is converted to mature enzyme of 76 kDa and depletes the glycogen deposit in fibroblasts of patients. When injected intravenously, the milk enzyme corrects the acid alpha-glucosidase deficiency in heart and skeletal muscle of GSDII knockout mice.
Collapse
Affiliation(s)
- A G Bijvoet
- Department of Clinical Genetics, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fuller M, Hopwood JJ, Anson DS. Receptor mediated binding of two glycosylation forms of N-acetylgalactosamine-4-sulphatase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:283-90. [PMID: 9630676 DOI: 10.1016/s0925-4439(98)00011-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lysosomal storage disorders are a group of inherited metabolic diseases each characterised by a relative or absolute deficiency of one or more of the lysosomal proteins involved in the hydrolysis of glycoconjugates or in the transport of the resulting product. Enzyme replacement therapies are under consideration for a number of these disorders and are based on the in vitro observation that cells from affected patients can be corrected by addition of exogenous enzyme. In this study, two glycosylation variants of the lysosomal enzyme N-acetylgalactosamine-4-sulphatase (4S) (the deficiency of which causes Mucopolysaccharidosis (MPS) type VI, (Maroteaux-Lamy syndrome) were made by expression of 4S cDNA in both wild type chinese hamster ovary (CHO-K1), and Lec1 (N-acetylglucosaminyltransferase I deficient CHO-K1) cells. Differences in the glycosylation pattern of the two enzyme forms were demonstrated with endoglycosidase H and N-glycosidase F digestions. The receptor mediated binding of these two forms of 4S to two cell types, human skin fibroblasts and rat alveolar macrophages, was then analysed. We have shown that both enzyme forms bind to the mannose-6-phosphate receptor on human skin fibroblasts with equal affinity demonstrating that the degree of phosphorylation of mannose residues in the two forms is similar. However, using rat alveolar macrophages, we found that the binding/uptake of the two enzymes differs considerably. These results show that differences in glycosylation of lysosomal enzymes can be an important factor in altering enzyme uptake by different cell types. Thus, producing carbohydrate modification variants in this way may be useful for altering the distribution of exogenous enzyme in vivo.
Collapse
Affiliation(s)
- M Fuller
- Lysosomal Diseases Research Unit, Department of Chemical Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, 5006, South Australia, Australia
| | | | | |
Collapse
|
30
|
O'Connor LH, Erway LC, Vogler CA, Sly WS, Nicholes A, Grubb J, Holmberg SW, Levy B, Sands MS. Enzyme replacement therapy for murine mucopolysaccharidosis type VII leads to improvements in behavior and auditory function. J Clin Invest 1998; 101:1394-400. [PMID: 9525982 PMCID: PMC508717 DOI: 10.1172/jci1773] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is one of a group of lysosomal storage diseases that share many clinical features, including mental retardation and hearing loss. Lysosomal storage in neurons of the brain and the associated behavioral abnormalities characteristic of a murine model of MPS VII have not been shown to be corrected by either bone marrow transplantation or gene therapy. However, intravenous injections of recombinant beta-glucuronidase initiated at birth reduce the pathological evidence of disease in MPS VII mice. In this study we present evidence that enzyme replacement initiated at birth improved the behavioral performance and reduced hearing loss in MPS VII mice. Enzyme-treated MPS VII mice performed similarly to normal mice and significantly better than mock- treated MPS VII mice in every phase of the Morris Water Maze test. In addition, the auditory function of treated MPS VII mice was dramatically improved, and was indistinguishable from normal mice. These data indicate that some of the learning, memory, and hearing deficits can be prevented in MPS VII mice if enzyme replacement therapy is initiated early in life. These data also provide functional correlates to the biochemical and histopathological improvements observed after enzyme replacement therapy.
Collapse
Affiliation(s)
- L H O'Connor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kikuchi T, Yang HW, Pennybacker M, Ichihara N, Mizutani M, Van Hove JL, Chen YT. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail. J Clin Invest 1998; 101:827-33. [PMID: 9466978 PMCID: PMC508631 DOI: 10.1172/jci1722] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase (GAA), a glycogen degrading lysosomal enzyme. GAA-deficient (AMD) Japanese quails exhibit progressive myopathy and cannot lift their wings, fly, or right themselves from the supine position (flip test). Six 4-wk-old acid maltase-deficient quails, with the clinical symptoms listed, were intravenously injected with 14 or 4.2 mg/kg of precursor form of recombinant human GAA or buffer alone every 2-3 d for 18 d (seven injections). On day 18, both high dose-treated birds (14 mg/kg) scored positive flip tests and flapped their wings, and one bird flew up more than 100 cm. GAA activity increased in most of the tissues examined. In heart and liver, glycogen levels dropped to normal and histopathology was normal. In pectoralis muscle, morphology was essentially normal, except for increased glycogen granules. In sharp contrast, sham-treated quail muscle had markedly increased glycogen granules, multi-vesicular autophagosomes, and inter- and intrafascicular fatty infiltrations. Low dose-treated birds (4.2 mg/kg) improved less biochemically and histopathologically than high dose birds, indicating a dose-dependent response. Additional experiment with intermediate doses and extended treatment (four birds, 5.7-9 mg/kg for 45 d) halted the progression of the disease. Our data is the first to show that an exogenous protein can target to muscle and produce muscle improvement. These data also suggest enzyme replacement with recombinant human GAA is a promising therapy for human Pompe disease.
Collapse
Affiliation(s)
- T Kikuchi
- Department of Animal Models for Human Disease, National Institute of Neuroscience, NCNP, Tokyo 187, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Karageorgos LE, Isaac EL, Brooks DA, Ravenscroft EM, Davey R, Hopwood JJ, Meikle PJ. Lysosomal biogenesis in lysosomal storage disorders. Exp Cell Res 1997; 234:85-97. [PMID: 9223373 DOI: 10.1006/excr.1997.3581] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lysosomal biogenesis is an orchestration of the structural and functional elements of the lysosome to form an integrated organelle and involves the synthesis, targeting, functional residence, and turnover of the proteins that comprise the lysosome. We have investigated lysosomal biogenesis during the formation and dissipation of storage vacuoles in two model systems. One involves the formation of sucrosomes in normal skin fibroblasts and the other utilizes storage disorder-affected skin fibroblasts; both of these systems result in an increase in the size and the number of lysosomal vacuoles. Lysosomal proteins, beta-hexosaminidase, alpha-mannosidase, N-acetylgalactosamine-4-sulfatase, acid phosphatase, and the lysosome-associated membrane protein, LAMP-1, were shown to be elevated between 2- and 28-fold above normal during lysosomal storage. Levels of mRNA for the lysosome-associated membrane proteins LAMP-1 and LAMP-2, N-acetylgalactosamine-4-sulfatase, and the 46- and 300-kDa mannose-6-phosphate receptors were also elevated 2- to 8-fold. The up-regulation of protein and mRNA lagged 2-4 days behind the formation of lysosomal storage vacuoles. Correction of storage, in both systems, resulted in the rapid decline of the mRNA to basal levels, with a slower decrease in the levels of lysosomal proteins. Lysosomal biogenesis in storage disorders is shown to be a regulated process which is partially controlled at, or prior to, the level of mRNA. Although lysosomal proteins were differentially regulated, the coordination of these events in lysosomal biogenesis would suggest that a common mechanism(s) may be in operation.
Collapse
Affiliation(s)
- L E Karageorgos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Bijvoet AG, Kroos MA, Pieper FR, de Boer HA, Reuser AJ, van der Ploeg AT, Verbeet MP. Expression of cDNA-encoded human acid alpha-glucosidase in milk of transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:93-6. [PMID: 8764823 DOI: 10.1016/0167-4781(96)00093-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enzyme replacement therapy is at present the option of choice for treatment of lysosomal storage diseases. To explore the feasibility of lysosomal enzyme production in milk of transgenic animals, the human acid alpha-glucosidase cDNA was placed under control of the alpha S1-casein promoter and expressed in mice. The milk contained recombinant enzyme at a concentration up to 1.5 micrograms/ml. Enzyme purified from milk of transgenic mice was internalized via the mannose 6-phosphate receptor and corrected enzyme deficiency in fibroblasts from patients. We conclude that transgenically produced human acid alpha-glucosidase meets the criteria for therapeutic application.
Collapse
Affiliation(s)
- A G Bijvoet
- Department of Clinical Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|