1
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
2
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
3
|
Yu H, He L, Li ZQ, Li N, Ou-Yang YY, Huang GH. Altering of host larval (Spodoptera exigua) calcineurin activity in response to ascovirus infection. PEST MANAGEMENT SCIENCE 2020; 76:1048-1059. [PMID: 31515935 DOI: 10.1002/ps.5615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Calcineurin (CaN) is involved in numerous cellular processes and Ca2+ -dependent signal transduction pathways. According to our previous transcriptome studies, thousands of host larval (Spodoptera exigua) transcripts were downregulated after the infection of Heliothis virescent ascovirus 3h (HvAV-3h), while the Spodoptera exigua calcineurin genes (SeCaNs) were significantly upregulated. To understand the regulation of SeCaNs in S. exigua larvae during the infection of HvAV-3h, the functions of CaN subunit A (SeCaN-SubA) and CaN binding protein (SeCaN-BP) were analysed. RESULTS The in vitro assays indicated that the bacterial expressed SeCaN-SubA is an acid phosphatase, but no phosphatase activity was detected with the purified SeCaN-BP. The transcription level of SeCaN-SubA was upregulated after HvAV-3h infection and the CaN activity was significantly increased after HvAV-3h infection in S. exigua larvae. Interestingly, the SeCaN-BP transcripts were only detectable in the HvAV-3h infected larvae. Further immunoblotting results consistently agree with those obtained by qPCR, indicating that the infection of HvAV-3h causes the upregulated expression of SeCaN-SubA and the appearance of SeCaN-BP. An interaction between the cleaved SeCaN-SubA and SeCaN-BP was detected by co-immunoprecipitation assays, and the expression of SeCaN-BP in Spodoptera frugiperda-9 (Sf9) cells can help to increase the CaN activity of SeCaN-SubA. Further investigations with CaN inhibitors suggested that HvAV-3h. Further investigations with CaN inhibitors suggested that the inhibition on host larval CaN activity can also inhibit the viral replication of HvAV-3h. CONCLUSION The increase in CaN activity caused by HvAV-3h infection might be due to the upregulation of SeCaN-SubA and the induced expression of SeCaN-BP, and increased CaN activity is essential for ascoviral replication. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P.R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P.R. China
| |
Collapse
|
4
|
O’Day DH, Taylor RJ, Myre MA. Calmodulin and Calmodulin Binding Proteins in Dictyostelium: A Primer. Int J Mol Sci 2020; 21:E1210. [PMID: 32054133 PMCID: PMC7072818 DOI: 10.3390/ijms21041210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L6L 1X3, Canada
| | - Ryan J. Taylor
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| |
Collapse
|
5
|
Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response. Protist 2018; 169:584-602. [DOI: 10.1016/j.protis.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
|
6
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
7
|
Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose. Protein Expr Purif 2016; 122:97-104. [PMID: 26892535 DOI: 10.1016/j.pep.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
Abstract
We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established.
Collapse
|
8
|
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 2015; 57:123-32. [DOI: 10.1016/j.ceca.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
|
9
|
Thewes S, Schubert SK, Park K, Mutzel R. Stress and development inDictyostelium discoideum: the involvement of the catalytic calcineurin A subunit. J Basic Microbiol 2013; 54:607-13. [DOI: 10.1002/jobm.201200574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/19/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Sascha Thewes
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Sebastian K. Schubert
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Kyuhyeon Park
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Rupert Mutzel
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| |
Collapse
|
10
|
The calcineurin dependent transcription factor TacA is involved in development and the stress response of Dictyostelium discoideum. Eur J Cell Biol 2012; 91:789-99. [DOI: 10.1016/j.ejcb.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022] Open
|
11
|
Protein phosphatase 2B (PP2B, calcineurin) in Paramecium: partial characterization reveals that two members of the unusually large catalytic subunit family have distinct roles in calcium-dependent processes. EUKARYOTIC CELL 2010; 9:1049-63. [PMID: 20435698 DOI: 10.1128/ec.00322-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We characterized the calcineurin (CaN) gene family, including the subunits CaNA and CaNB, based upon sequence information obtained from the Paramecium genome project. Paramecium tetraurelia has seven subfamilies of the catalytic CaNA subunit and one subfamily of the regulatory CaNB subunit, with each subfamily having two members of considerable identity on the amino acid level (>or=55% between subfamilies, >or=94% within CaNA subfamilies, and full identity in the CaNB subfamily). Within CaNA subfamily members, the catalytic domain and the CaNB binding region are highly conserved and molecular modeling revealed a three-dimensional structure almost identical to a human ortholog. At 14 members, the size of the CaNA family is unprecedented, and we hypothesized that the different CaNA subfamily members were not strictly redundant and that at least some fulfill different roles in the cell. This was tested by selecting two phylogenetically distinct members of this large family for posttranscriptional silencing by RNA interference. The two targets resulted in differing effects in exocytosis, calcium dynamics, and backward swimming behavior that supported our hypothesis that the large, highly conserved CaNA family members are not strictly redundant and that at least two members have evolved diverse but overlapping functions. In sum, the occurrence of CaN in Paramecium spp., although disputed in the past, has been established on a molecular level. Its role in exocytosis and ciliary beat regulation in a protozoan, as well as in more complex organisms, suggests that these roles for CaN were acquired early in the evolution of this protein family.
Collapse
|
12
|
Li C, Huang J, Li S, Fan W, Hu Y, Wang Q, Zhu F, Xie L, Zhang R. Cloning, characterization and immunolocalization of two subunits of calcineurin from pearl oyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol 2009; 153:43-53. [DOI: 10.1016/j.cbpb.2009.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 01/11/2023]
|
13
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
14
|
O'Day DH, Suhre K, Myre MA, Chatterjee-Chakraborty M, Chavez SE. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins. Biochem Biophys Res Commun 2006; 346:879-88. [PMID: 16777069 DOI: 10.1016/j.bbrc.2006.05.204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 11/20/2022]
Abstract
A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | | | |
Collapse
|
15
|
Boeckeler K, Tischendorf G, Mutzel R, Weissenmayer B. Aberrant stalk development and breakdown of tip dominance in Dictyostelium cell lines with RNAi-silenced expression of calcineurin B. BMC DEVELOPMENTAL BIOLOGY 2006; 6:12. [PMID: 16512895 PMCID: PMC1431509 DOI: 10.1186/1471-213x-6-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/02/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, plays important roles in various cellular processes in lower and higher eukaryotes. Here we analyze the role of calcineurin in the development of Dictyostelium discoideum by RNAi-mediated manipulation of its expression. RESULTS The cnbA gene of Dictyostelium discoideum which encodes the regulatory B subunit (CNB) of calcineurin was silenced by RNAi. We found a variety of silencing levels of CNB in different recombinant cell lines. Reduction of CNB expression in a given cell line was correlated with developmental aberrations. Cell lines with strongly reduced protein levels developed slower than wild type cells and formed short stalks and spore heads with additional tips. Formation of short stalks results from incomplete vacuolization of prestalk cells during terminal differentiation. Expression of the stalk-specific gene ecmB was reduced in mutant cells. Aberrant stalk development is a cell autonomous defect, whereas the breakdown of tip dominance can be prevented by the presence of as low as 10% wild type cells in chimeras. CONCLUSION Silencing of calcineurin B in Dictyostelium by expression of RNAi reveals an unexpected link between increased intracellular calcium levels, possibly triggered by the morphogen DIF, activation of calcineurin, and the terminal stage of morphogenesis.
Collapse
Affiliation(s)
- Katrina Boeckeler
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
- University College London, Department of Biology, Gower Street, London, Wc1 E6BT, UK
| | - Gilbert Tischendorf
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Rupert Mutzel
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Barbara Weissenmayer
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| |
Collapse
|
16
|
Tokheim AM, Martin BL. Inhibition of calcineurin by polyunsaturated lipids. Bioorg Chem 2006; 34:66-76. [PMID: 16464485 DOI: 10.1016/j.bioorg.2005.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/23/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
From earlier studies on calcineurin, the presence of multiple double bonds in putative inhibitors was hypothesized as critical features for effective inhibition. Polyunsaturated fatty acids were tested as inhibitors of calcineurin and found to inhibit the phosphatase activity of calcineurin although effective inhibition was observed only in the absence of calmodulin. Calmodulin and fatty acids seemed to compete for the enzyme with the activation curve of calmodulin shifted approximately 100-fold in the presence of 50 microM eicosa-11Z,14Z-dienoic acid (20:2, n-6) or 50 microM eicosa-8Z,11Z,14Z-trienoic acid (20:3, n-6). Leukotriene B4 and derivatives also were screened as inhibitors. The most effective inhibition was caused by the 6-trans,12-epi-leukotriene B4 with an IC50 of 16.4 microM for the inhibition of calcineurin with pNPP as the substrate. Lipoxins A4 and B4 likewise caused inhibition in the presence of calmodulin with an IC50 of 42.7 microM for lipoxin B4. There was no protection by calmodulin, as found with the inhibition by the fatty acids. These data support the hypothesis that effective inhibition is bolstered by the presence of conjugated double bonds in the inhibitor. Consideration of cis- and trans-orientation of the double bonds suggests that presentation of the delocalized electron density is also a factor in effective inhibition of calcineurin.
Collapse
Affiliation(s)
- Abigail M Tokheim
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
17
|
Weissenmayer B, Boeckeler K, Lahrz A, Mutzel R. The calcineurin inhibitor gossypol impairs growth, cell signalling and development in Dictyostelium discoideum. FEMS Microbiol Lett 2005; 242:19-25. [PMID: 15621416 DOI: 10.1016/j.femsle.2004.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/22/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022] Open
Abstract
The Dictyostelium genome harbors single copy genes for both the catalytic and regulatory subunits of the Ca2+/calmodulin-dependent protein phosphatase calcineurin. Since molecular genetic approaches to reduce the expression of these genes have failed so far, we attempted to pharmacologically target calcineurin activity in vivo by using the recently described calcineurin inhibitor, gossypol. Up-regulation of expression of the gene for the Ca2+-ATPase PAT1 in conditions of Ca2+ stress was reduced by gossypol. Dictyostelium wild-type cells treated with 12.5-100 microM gossypol showed reduced growth rates and impaired development. In addition, cell signalling was affected. A cell line that overproduces the catalytic subunit of calcineurin was more resistant to gossypol.
Collapse
Affiliation(s)
- Barbara Weissenmayer
- Institut für Biologie - Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Myre MA, O'Day DH. Dictyostelium nucleomorphin is a member of the BRCT-domain family of cell cycle checkpoint proteins. Biochim Biophys Acta Gen Subj 2005; 1675:192-7. [PMID: 15535983 DOI: 10.1016/j.bbagen.2004.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
A search of the Dictyostelium genome project database (http://dictybase.org/db/cgi-bin/blast.pl) with nucleomorphin, a protein that regulates the nuclear number, predicted it to be encoded by a larger gene containing a putative breast cancer carboxy-terminus domain (BRCT). Using RT-PCR, Northern and Western blotting we have identified a differentially expressed, 2318 bp cDNA encoding a protein isoform of Dictyostelium NumA with an apparent molecular weight of 70 kDa that we have called NumB. It contains a single amino-terminal BRCT-domain spanning residues 125-201. Starvation of shaking cultures reduces NumA expression by approximately 88+/-5.6%, whereas NumB expression increases approximately 35+/-3.5% from vegetative levels. NumC, a third isoform that is also expressed during development but not growth, remains to be characterized. These findings suggest NumB may be a member of the BRCT-domain containing cell cycle checkpoint proteins.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Rm. 3030, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
19
|
Myre MA, O'Day DH. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number. Biochem Biophys Res Commun 2004; 322:665-71. [PMID: 15325281 DOI: 10.1016/j.bbrc.2004.07.168] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada
| | | |
Collapse
|
20
|
Malchow D, Lusche DF, Schlatterer C. A link of Ca2+ to cAMP oscillations in Dictyostelium: the calmodulin antagonist W-7 potentiates cAMP relay and transiently inhibits the acidic Ca2+-store. BMC DEVELOPMENTAL BIOLOGY 2004; 4:7. [PMID: 15147588 PMCID: PMC419698 DOI: 10.1186/1471-213x-4-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 05/17/2004] [Indexed: 11/24/2022]
Abstract
Background During early differentiation of Dictyostelium the attractant cAMP is released periodically to induce aggregation of the cells. Here we pursue the question whether pulsatile cAMP signaling is coupled to a basic Ca2+-oscillation. Results We found that the calmodulin antagonist W-7 transiently enhanced cAMP spikes. We show that W-7 acts on an acidic Ca2+-store: it abolished ATP-dependent vesicular acidification, inhibited V-type H+ATPase activity more potently than the weaker antagonist W-5 and caused vesicular Ca2+-leakage. Concanamycin A, an inhibitor of the V-type H+-pump, blocked the Ca2+-leakage elicited by W-7 as well as cAMP-oscillations in the presence of W-7. Concanamycin A caused an increase of the cytosolic Ca2+-concentration whereas W-7 did not. In case of the latter, Ca2+ was secreted by the cells. In accord with our hypothesis that the link from Ca2+ to cAMP synthesis is mediated by a Ca2+-dependent phospholipase C we found that W-7 was not active in the phospholipase C knockout mutant. Conclusion We conclude that the potentiation of cAMP relay by W-7 is due to a transient inhibition of the acidic Ca2+-store. The inhibition of the proton pump by W-7 causes a leakage of Ca2+ that indirectly stimulates adenylyl cyclase activity via phospholipase C.
Collapse
Affiliation(s)
- Dieter Malchow
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Lusche
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
21
|
Andrioli LPM, Zaini PA, Viviani W, Da Silva AM. Dictyostelium discoideum protein phosphatase-1 catalytic subunit exhibits distinct biochemical properties. Biochem J 2003; 373:703-11. [PMID: 12737629 PMCID: PMC1223547 DOI: 10.1042/bj20021964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 04/29/2003] [Accepted: 05/09/2003] [Indexed: 01/04/2023]
Abstract
Protein phosphatase-1 (PP1) is expressed ubiquitously and is involved in many eukaryotic cellular functions, although PP1 enzyme activity could not be detected in the social amoeba Dictyostelium discoideum cell extracts. In the present paper, we show that D. discoideum has a single copy gene that codes for the catalytic subunit of PP1 (DdPP1c). DdPP1c is expressed throughout the D. discoideum life cycle with constant levels of mRNA, and its protein and amino acid sequence show a mean identity of 80% with other PP1c enzymes. However, it has a distinctive difference: the substitution of a phenylalanine residue (Phe(269) in the DdPP1c) for a highly conserved cysteine residue (Cys(273) in rabbit PP1c) in a region that was shown to have a critical role in the interaction of rabbit PP1c with toxin inhibitors. Wild-type DdPP1c and an engineered mutant form in which Phe(269) was replaced by a cysteine residue were expressed in Escherichia coli. Both recombinant activities were similarly inhibited by okadaic acid, tautomycin and microcystin. However, the Phe(269)-->Cys mutation resulted in a large increase in enzyme activity towards phosphorylase a and a higher sensitivity to calyculin A. These results, together with the molecular modelling of DdPP1c structure, indicate that the Phe(269) residue, which occurs naturally in D. discoideum, confers distinct biochemical properties on this enzyme.
Collapse
Affiliation(s)
- Luiz P M Andrioli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Myre MA, O'Day DH. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number. J Biol Chem 2002; 277:19735-44. [PMID: 11919178 DOI: 10.1074/jbc.m109717200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Zoology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
23
|
Gauthier ML, O'Day DH. Detection of calmodulin-binding proteins and calmodulin-dependent phosphorylation linked to calmodulin-dependent chemotaxis to folic and cAMP in Dictyostelium. Cell Signal 2001; 13:575-84. [PMID: 11483410 DOI: 10.1016/s0898-6568(01)00187-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calmodulin (CaM) antagonists, trifluoperazine (TFP) or calmidazolium (R24571), dose-dependently inhibited cAMP and folic acid (FA) chemotaxis in Dictyostelium. Developing, starved, and refed cells were compared to determine if certain CaM-binding proteins (CaMBPs) and CaM-dependent phosphorylation events could be identified as potential downstream effectors. Recombinant CaM ([35S]VU-1-CaM) gel overlays coupled with cell fractionation revealed at least three dozen Ca(2+)-dependent and around 12 Ca(2+)-independent CaMBPs in Dictyostelium. The CaMBPs associated with early development were also found in experimentally starved cells (cAMP chemotaxis), but were different for the CaMBP population linked to growth-phase cells (FA chemotaxis). Probing Western blots with phosphoserine antibodies revealed several phosphoprotein bands that displayed increases when cAMP-responsive cells were treated with TFP. In FA-responsive cells, several but distinct phosphoproteins decreased when treated with TFP. These data show that unique CaMBPs are present in growing, FA-chemosensitive cells vs. starved cAMP-chemoresponsive cells that may be important for mediating CaM-dependent events during chemotaxis.
Collapse
Affiliation(s)
- M L Gauthier
- Department of Zoology, University of Toronto at Mississauga, L5L 1C6, Mississauga, ON, Canada
| | | |
Collapse
|
24
|
Dobson S, Bracchi V, Chakrabarti D, Barik S. Characterization of a novel serine/threonine protein phosphatase (PfPPJ) from the malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 2001; 115:29-39. [PMID: 11377737 DOI: 10.1016/s0166-6851(01)00260-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protein phosphatase cDNA of the PPP superfamily was identified from the malaria parasite, Plasmodium falciparum (Pf), and tentatively named PfPPJ. The predicted primary structure of the phosphatase contained all the known conserved motifs of the PPP superfamily essential for catalytic activity. The enzyme was specific for dephosphorylation of phosphoserine and phosphothreonine residues with very little activity against phosphotyrosine residues. However, the sequence at its C-terminal end was unique, and was consistent with its resistance to the classical PP2A-specific inhibitors such as okadaic acid and microcystin-LR, and the PP1-specific inhibitor, mammalian heat-stable inhibitor-2 (I-2). Even the catalytic core of PfPPJ had a sequence substantially different from the other PPPs such that PfPPJ could be placed in an apparently separate phylogenetic branch. At 294 amino acids residues, PfPPJ was one of the smallest okadaic acid-resistant PPP phosphatases known. By Northern blot analysis, the expression of the PfPPJ mRNA showed the following pattern: schizont > ring > trophozoite, which closely paralleled the expression of the protein, as determined by immunofluorescence. Together, these results suggested a parasitic stage-specific transcriptional regulation of this novel and potentially unique protozoan phosphatase.
Collapse
Affiliation(s)
- S Dobson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Blvd., 36688, Mobile, AL, USA
| | | | | | | |
Collapse
|
25
|
Aichem A, Mutzel R. Unconventional mRNA processing in the expression of two calcineurin B isoforms in Dictyostelium. J Mol Biol 2001; 308:873-82. [PMID: 11352578 DOI: 10.1006/jmbi.2001.4645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of Dictyostelium discoideum contains a single gene (cnbA) for the regulatory (B) subunit of the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin (CN). Two mRNA species and two protein products differing in size were found. The apparent molecular masses of the protein isoforms corresponded to translation products starting from the first and second AUG codons of the primary transcript, respectively. The smaller mRNA and protein isoforms accumulated during early differentiation of the cells. Whereas the amount of the higher molecular mass protein isoform remained constant throughout development, the larger mRNA disappeared to virtually undetectable levels during aggregation. 5'RACE amplification of the smaller transcript yielded cDNAs lacking the 5' non-translated region and the first ATG initiator codon. Expression of truncated cDNAs and various chimeric genes encoding CNB-green fluorescent protein fusions in Dictyostelium indicate that the mature cnbA transcript is processed by an unconventional mechanism that leads to truncation of the 5' untranslated region and at least the first AUG initiator codon, and to utilization of the second AUG codon for translation initiation of the small CNB isoform. Determinants for this processing mechanism reside within the coding region of the cnbA gene.
Collapse
Affiliation(s)
- A Aichem
- Fachbereich Biologie, Universität Konstanz, Konstanz, 78457, Germany
| | | |
Collapse
|
26
|
|
27
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
28
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
29
|
Momayezi M, Kissmehl R, Plattner H. Quantitative immunogold localization of protein phosphatase 2B (calcineurin) in Paramecium cells. J Histochem Cytochem 2000; 48:1269-81. [PMID: 10950883 DOI: 10.1177/002215540004800910] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For immunogold EM labeling analysis, we fixed Paramecium cells in 4% formaldehyde and 0.125% glutaraldehyde, followed by low-temperature embedding in unicryl and UV polymerization. We first quantified some obvious but thus far neglected side effects of section staining on immunogold labeling, using mono- or polyclonal antibodies (Abs) against defined secretory and cell surface components, followed by F(ab)(2)- or protein A-gold conjugates. Use of alkaline lead staining resulted in considerable rearrangement and loss of label unless sections were postfixed by glutaraldehyde after gold labeling. This artifact is specific for section staining with lead. It can be avoided by staining sections with aqueous uranyl acetate only to achieve high-resolution immunogold localization of a protein phosphatase on unicryl sections. In general, phosphatases are assumed to be closely, although loosely, associated with their targets. Because the occurrence of protein phosphatase 2B (calcineurin) in Paramecium has been previously established by biochemical and immunological work, as well as by molecular biology, we have used Abs against mammalian CaN or its subunits, CaN-A and CaN-B, for antigen mapping in these cells by quantitative immunogold labeling analysis. Using ABs against whole CaN, four structures are selectively labeled (with slightly decreasing intensity), i.e., infraciliary lattice (centrin-containing contractile cortical filament network), parasomal sacs (coated pits), and outlines of alveolar sacs (subplasmalemmal calcium stores, tightly attached to the cell membrane), as well as rims of chromatin-containing nuclear domains. In other subcellular regions, gold granules reached densities three to four times above background outside the cell but there was no selective enrichment, e.g., in cilia, ciliary basal bodies, cytosol, mitochondria, trichocysts (dense-core secretory organelles), and non-chromatin nuclear domains. Their labeling density was 4- to 8.5-fold (average 6.5-fold) less than that on selectively labeled structures. Labeling tendency was about the same with Abs against either subunit. Our findings may facilitate the examination of molecular targets contained in the selectively labeled structures. (J Histochem Cytochem 48:1269-1281, 2000)
Collapse
Affiliation(s)
- M Momayezi
- Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
30
|
Bogumil R, Namgaladze D, Schaarschmidt D, Schmachtel T, Hellstern S, Mutzel R, Ullrich V. Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1407-15. [PMID: 10691978 DOI: 10.1046/j.1432-1327.2000.01133.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcineurin (CaN) is a Ca2+-and calmodulin (CaM)-dependent serine/threonine phosphatase containing a dinuclear Fe-Zn center in the active site. Recent studies have indicated that CaN is a possible candidate for redox regulation. The inactivation of bovine brain CaN and of the catalytic CaN A-subunit from Dictyostelium by the vicinal dithiol reagents phenylarsine oxide (PAO) and melarsen oxide (MEL) and by H2O2 was investigated. PAO and MEL inhibited CaN with an IC50 of 3-8 microM and the inactivation was reversed by 2, 3-dimercapto-1-propane sulfonic acid. The treatment of isolated CaN with hydrogen peroxide resulted in a concentration-dependent inactivation. Analysis of the free thiol content performed on the H2O2 inactivated enzyme demonstrated that only two or three of the 14 Cys residues in CaN are modified. The inactivation of CaN by H2O2 could be reversed with 1,4-dithiothreitol and with the dithiol oxidoreductase thioredoxin. We propose that a bridging of two closely spaced Cys residues in the catalytic CaN A-subunit by PAO/MEL or the oxidative formation of a disulfide bridge by H2O2 involving the same Cys residues causes the inactivation. Our data implicate a possible involvement of thioredoxin in the redox control of CaN activity under physiological conditions. The low temperature EPR spectrum of the native enzyme was consistent with a Fe3+-Zn2+ dinuclear centre. Upon H2O2-mediated inactivation of the enzyme no significant changes in the EPR spectrum were observed ruling out that Fe2+ is present in the active enzyme and that the dinuclear metal centre is the target for the oxidative inactivation of CaN.
Collapse
Affiliation(s)
- R Bogumil
- Fakultät für Biologie, Universität Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kessen U, Schaloske R, Aichem A, Mutzel R. Ca(2+)/calmodulin-independent activation of calcineurin from Dictyostelium by unsaturated long chain fatty acids. J Biol Chem 1999; 274:37821-6. [PMID: 10608845 DOI: 10.1074/jbc.274.53.37821] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes a novel mode of activation for the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. Using purified calcineurin from Dictyostelium discoideum we found a reversible, Ca(2+)/calmodulin-independent activation by the long chain unsaturated fatty acids arachidonic acid, linoleic acid, and oleic acid, which was of the same magnitude as activation by Ca(2+)/calmodulin. Half-maximal stimulation of calcineurin occurred at fatty acid concentrations of approximately 10 microM with either p-nitrophenyl phosphate or RII phosphopeptide as substrates. The methyl ester of arachidonic acid and the saturated fatty acids palmitic acid and arachidic acid did not activate calcineurin. The activation was shown to be independent of the regulatory subunit, calcineurin B. Activation by Ca(2+)/calmodulin and fatty acids was not additive. In binding assays with immobilized calmodulin, arachidonic acid inhibited binding of calcineurin to calmodulin. Therefore fatty acids appear to mimic Ca(2+)/calmodulin action by binding to the calmodulin-binding site.
Collapse
Affiliation(s)
- U Kessen
- Fakultät für Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
32
|
Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 1999; 12:583-611. [PMID: 10515904 PMCID: PMC88926 DOI: 10.1128/cmr.12.4.583] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evolutionary studies reveal that microorganisms including yeasts and fungi are more closely related to mammals than was previously appreciated. Possibly as a consequence, many natural-product toxins that have antimicrobial activity are also toxic to mammalian cells. While this makes it difficult to discover antifungal agents without toxic side effects, it also has enabled detailed studies of drug action in simple genetic model systems. We review here studies on the antifungal actions of antineoplasmic agents. Topics covered include the mechanisms of action of inhibitors of topoisomerases I and II; the immunosuppressants rapamycin, cyclosporin A, and FK506; the phosphatidylinositol 3-kinase inhibitor wortmannin; the angiogenesis inhibitors fumagillin and ovalicin; the HSP90 inhibitor geldanamycin; and agents that inhibit sphingolipid metabolism. In general, these natural products inhibit target proteins conserved from microorganisms to humans. These studies highlight the potential of microorganisms as screening tools to elucidate the mechanisms of action of novel pharmacological agents with unique effects against specific mammalian cell types, including neoplastic cells. In addition, this analysis suggests that antineoplastic agents and derivatives might find novel indications in the treatment of fungal infections, for which few agents are presently available, toxicity remains a serious concern, and drug resistance is emerging.
Collapse
Affiliation(s)
- M E Cardenas
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
33
|
Murphy MB, Levi SK, Egelhoff TT. Molecular characterization and immunolocalization of Dictyostelium discoideum protein phosphatase 2A. FEBS Lett 1999; 456:7-12. [PMID: 10452519 DOI: 10.1016/s0014-5793(99)00835-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein phosphatase 2A (PP2A) was previously purified from Dictyostelium and biochemically characterized. The purified PP2A holoenzyme was composed of a 37 kDa catalytic 'C-subunit', a 65 kDa 'A-subunit' and a 55 kDa 'B-subunit'. We report here the characterization of the genes encoding the Dictyostelium PP2A subunits as well as the immunolocalization of the PP2A subunits in Dictyostelium. The cDNAs encoding the B- and C-subunits were isolated from a Dictyostelium library and the deduced amino acid sequences reveal strong conservation with the mammalian PP2A homologues. Southern blot analysis suggests that each of the PP2A subunit genes is present in a single copy. The PP2A subunits were localized mainly to the cytosol in Dictyostelium cells. However, immunofluorescence confocal microscopy demonstrates that the B-subunit of PP2A is highly enriched in centrosomes, suggesting a potential role for this PP2A regulatory subunit in the centrosomal function.
Collapse
Affiliation(s)
- M B Murphy
- Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
34
|
Schenk PW, Nebl T, Fisher PR, Snaar-Jagalska BE. A serpentine receptor-dependent, Gbeta- and Ca(2+) influx-independent pathway regulates mitogen-activated protein kinase ERK2 in Dictyostelium. Biochem Biophys Res Commun 1999; 260:504-9. [PMID: 10403797 DOI: 10.1006/bbrc.1999.0862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx and mitogen-activated protein (MAP) kinase activation are important phenomena in signal transduction, which are often interconnected. We investigated whether serpentine receptor-dependent, Gbeta-independent activation of MAP kinase ERK2 by chemoattractant cyclic AMP (cAMP) is mediated by Ca(2+) influx in the social amoeba Dictyostelium discoideum. We generated a D. discoideum double mutant, which harbours a temperature-sensitive Gbeta subunit and expresses the apoaequorin protein. Utilizing this mutant, we demonstrate that cAMP induced Ca(2+) influx into intact D. discoideum cells can be blocked completely at both the permissive and the restrictive temperature, by using either gadolinium ions or Ruthenium Red. Under the same experimental conditions, these substances do not abolish cAMP stimulation of ERK2 at either temperature. We conclude that there is a Gbeta- and Ca(2+) influx-independent pathway for the receptor-dependent activation of MAP kinase ERK2 in D. discoideum.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, Leiden, 2300 RA, The Netherlands
| | | | | | | |
Collapse
|
35
|
da-Silva AM, Zapella PD, Andrioli LP, Campanhã RB, Fiorini LC, Etchebehere LC, da-Costa-Maia JC, Terenzi HF. Searching for the role of protein phosphatases in eukaryotic microorganisms. Braz J Med Biol Res 1999; 32:835-9. [PMID: 10454741 DOI: 10.1590/s0100-879x1999000700006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Collapse
Affiliation(s)
- A M da-Silva
- Departamento de Bioquímica, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Moniakis J, Coukell MB, Janiec A. Involvement of the Ca2+-ATPase PAT1 and the contractile vacuole in calcium regulation in Dictyostelium discoideum. J Cell Sci 1999; 112 ( Pt 3):405-14. [PMID: 9885293 DOI: 10.1242/jcs.112.3.405] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Dictyostelium discoideum, the Ca2+-ATPase, PAT1, is localized to membranes of the contractile vacuole and its expression is upregulated substantially when the cells are grown in Ca2+-rich medium. In this study, we have analyzed the cellular/molecular mechanisms regulating PAT1 expression and examined the role of PAT1 and the contractile vacuole in Ca2+ regulation. During both growth and development, Dictyostelium cells respond to low millimolar concentrations of extracellular Ca2+ and upregulate PAT1 in a few hours. This process is dependent on protein synthesis and the serine/threonine phosphatase, calcineurin. Immunofluorescence analysis indicates that the upregulated PAT1 is associated mainly with the contractile vacuole, but it is also on the plasma membrane. This latter finding suggests that the contractile vacuole fuses with the plasma membrane to eliminate excess intracellular Ca2+. In support of this idea, it was observed that conditions which impair contractile vacuolar function reduce the rate of Ca2+ secretion. It was also found that cells deficient in PAT1, due to the expression of antisense patA RNA or to the presence of calcineurin antagonists, grow normally in low Ca2+ medium but poorly or not at all in high Ca2+ medium. Together, these results suggest that PAT1 and the contractile vacuole are components of a Ca2+ sequestration and excretion pathway, which functions to help maintain Ca2+ homeostasis, especially under conditions of Ca2+ stress.
Collapse
Affiliation(s)
- J Moniakis
- Department of Biology, York University, Toronto, Ontario, Canada, M3J 1P3
| | | | | |
Collapse
|
37
|
Ulbricht B, Soldati T. Production of reagents and optimization of methods for studying calmodulin-binding proteins. Protein Expr Purif 1999; 15:24-33. [PMID: 10024466 DOI: 10.1006/prep.1998.0983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Owing to subtle but potentially crucial structural and functional differences between calmodulin (CaM) of different species, the biochemical study of low-affinity CaM-binding proteins from Dictyostelium discoideum likely necessitates the use of CaM from the same organism. In addition, most of the methods used for identification and purification of CaM-binding proteins require native CaM in nonlimiting biochemical quantities. The gene encoding D. discoideum CaM has previously been cloned allowing production of recombinant protein. The present study describes the expression of D. discoideum CaM in Escherichia coli and its straightforward and rapid purification. Furthermore, we describe the optimization of a complete palette of assays to detect as little as nanogram quantities of proteins binding CaM with middle to low affinities. Purified CaM was used to raise high-affinity polyclonal antibodies suitable for immunoblotting, immunofluorescence, and immunoprecipitation experiments. The purified CaM was also used to optimize a specific and sensitive nonradioactive CaM overlay assay as well as to produce a high-capacity CaM affinity chromatography matrix. The effectiveness of this methods is illustrated by the detection of potentially novel D. discoideum CaM-binding proteins and the preparatory purification of one of these proteins, a short tail myosin I.
Collapse
Affiliation(s)
- B Ulbricht
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Jahnstrasse 29, Heidelberg, D-69120, Germany
| | | |
Collapse
|
38
|
Han YH, Kang SO. Cloning of a cDNA encoding a new calcium-binding protein from Dictyostelium discoideum and its developmental regulation. FEBS Lett 1998; 441:302-6. [PMID: 9883904 DOI: 10.1016/s0014-5793(98)01568-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By employing 2D-PAGE, a protein differentially expressed during the development of Dictyostelium discoideum was discovered. The full cDNA of this protein was cloned using RT-PCR. The deduced protein is composed of 166 amino acid residues containing four EF-hand domains typical for calcium-binding proteins and was named CBP3. This protein shows little amino acid sequence homology with the other calcium-binding proteins from D. discoideum except EF-hand domains. The CBP3 mRNA was absent in vegetative amebas and accumulated maximally at 6 h of the development on filters. The mRNA level decreased thereafter and disappeared after 12 h of the development, while the protein level peaked at 8 h of development and remained constant thereafter. The mobility of CBP3 on SDS gel was shifted by treatment with EGTA, confirming the Ca2+-binding activity of the protein.
Collapse
Affiliation(s)
- Y H Han
- Department of Microbiology, College of Natural Sciences, and Research Center for Molecular Microbiology, Seoul National University, South Korea
| | | |
Collapse
|
39
|
Itoh M, Noguchi M, Maeda Y. Overexpression of CAF1 encoding a novel Ca2+-binding protein stimulates the transition of Dictyostelium cells from growth to differentiation. Dev Growth Differ 1998; 40:677-83. [PMID: 9865978 DOI: 10.1046/j.1440-169x.1998.t01-2-00012.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the expressed genes associated with the switch-over of Dictyostelium cells from cell proliferation to differentiation, the Calfumirin-1 (CAF1) gene has been shown to be preferentially expressed at the initial step of differentiation, encoding a novel Ca2+-binding protein (Abe & Maeda 1995). To analyze precisely the function of CAF1, transformants overexpressing the CAF1 mRNA at the vegetative growth phase and also CAF1-null mutants were prepared, and their developmental features were compared with those of parental wild-type cells. As a result, the CAF1-overexpression was found to promote cell differentiation, possibly through prompt induction of the cAMP receptor 1 (CAR1) gene expression. In addition, the CAF1-overexpressing cells were able to differentiate even under low external Ca2+ ([Ca2+]e) conditions around 10(-6) mol/L at which non-transformed wild-type cells never differentiated. Unexpectedly, however, the CAF1-null mutant produced by homologous recombination exhibited apparently normal development to form fruiting bodies on non-nutrient agar. These results seem to indicate that CAF1-overexpression has a stimulatory effect on differentiation, but that the CAF1 protein is not necessarily required for the phase-shift of cells from growth to differentiation.
Collapse
Affiliation(s)
- M Itoh
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan
| | | | | |
Collapse
|
40
|
Verkerke-van Wijk I, Brandt R, Bosman L, Schaap P. Two distinct signaling pathways mediate DIF induction of prestalk gene expression in Dictyostelium. Exp Cell Res 1998; 245:179-85. [PMID: 9828114 DOI: 10.1006/excr.1998.4248] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During Dictyostelium development, the differentiation inducing factor (DIF) triggers expression of the prestalk gene ecmB and induces stalk cell differentiation, a form of programmed cell death. The effects of DIF are mediated by a sustained increase in cytosolic Ca2+ levels. The Ca2+ ATPase inhibitor BHQ causes a similar rise in Ca2+ levels and also induces prestalk gene expression. We show here that Ca2+ is a specific intermediate for prestalk gene induction, since BHQ represses transcription of the cAMP-inducible aggregative gene PDE, the postaggregative gene CP2, and the prespore gene D19. The prestalk gene ecmA is also induced by DIF, but induction appears to occur in two steps, which occur within 1 h and after 2 h, respectively. The slow step shows the same kinetics as ecmB induction and similar to ecmB induction, this step is BHQ inducible and requires an initial round of protein synthesis. The fast step does not require protein synthesis and cannot be induced by BHQ. This indicates that in addition to the slow Ca2+-mediated pathway, there is probably a second fast Ca2+-independent signal transduction pathway for DIF.
Collapse
Affiliation(s)
- I Verkerke-van Wijk
- Institute for Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, Leiden, 2333 AL, The Netherlands
| | | | | | | |
Collapse
|
41
|
Tanaka Y, Itakura R, Amagai A, Maeda Y. The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells. Exp Cell Res 1998; 240:340-8. [PMID: 9597007 DOI: 10.1006/excr.1998.3947] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which cells recognize starvation to allow subsequent cellular development was analyzed using Dictyostelium discoideum, with special emphasis on Ca2+ as a crucial signal transducer in intra- and intercellular communications. As was expected, the cytosolic Ca2+ concentration ([Ca2+]i) in aequorin-expressing cells (RHI76 derived from D. discoideum Ax-3) was temporarily increased, when 3-5 microM thapsigargin (Tg), a specific inhibitor of the Ca(2+)-ATPase, was added into the cells incubated in semistarvation medium (SS-medium: 1 vol of growth medium plus 7 vol either of 20 mM Na2/K-phosphate buffer (pH 6.2) or of Bonner's salt solution (BSS)). Essentially the same result was obtained by the application of 5 microM nigericin (Ng), an acid ionophore to cells under the semistarved condition. Here it is of interest to note that in the SS-medium Tg and Ng are capable of enhancing cell differentiation as exemplified well by the earlier acquisition of chemotactic response to cAMP, possibly inducing the starvation response through the [Ca2+]i increase. From Western blot analysis of phosphotyrosine (pTyr)-containing proteins using anti-pTyr antibody, it was found that the pTyr-phosphorylation levels of 97-, 80-, and 45-kDa proteins increase specifically in response to starvation. Interestingly, Tg and Ng induced such a change of the 80-kDa protein in the cells incubated in the SS-medium. Taken together these results strongly suggest that the temporal increase of [Ca2+]i may be a matter of importance for signal transduction coupled with starvation response.
Collapse
Affiliation(s)
- Y Tanaka
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
42
|
Schaloske R, Malchow D. Mechanism of cAMP-induced Ca2+ influx in Dictyostelium: role of phospholipase A2. Biochem J 1997; 327 ( Pt 1):233-8. [PMID: 9355757 PMCID: PMC1218785 DOI: 10.1042/bj3270233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
cAMP-induced Ca2+ influx in Dictyostelium follows two pathways: a G-protein-dependent pathway where influx is reduced by 50-70% in Galpha2 and Gbeta-negative strains and a heterotrimeric G-protein-independent pathway. Using a pharmacological approach, we found that phospholipase A2 (PLA2) is the target of both pathways. The products of PLA2 activity, arachidonic acid (AA) and palmitic acid, induced Ca2+ influx to a similar extent as cAMP. Half-maximal activation occurred at 3 microM AA and saturation at 10 microM AA. The response to AA was quantitatively similar throughout early differentiation and thus independent of cAMP-receptor concentration. Synergy experiments revealed that cAMP and AA acted through identical pathways. The PLA2-activating peptide, a peptide with sequence similarity to the G-protein beta-subunit, activated Ca2+ influx. The G-protein-independent pathway was sensitive to genistein but not to blockers of protein kinase C and other kinases, suggesting that tyrosine kinase may directly or indirectly activate PLA2 in this case.
Collapse
Affiliation(s)
- R Schaloske
- Faculty of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
43
|
Kissmehl R, Treptau T, Kottwitz B, Plattner H. Occurrence of a para-nitrophenyl phosphate-phosphatase with calcineurin-like characteristics in Paramecium tetraurelia. Arch Biochem Biophys 1997; 344:260-70. [PMID: 9264538 DOI: 10.1006/abbi.1997.0208] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using para-nitrophenyl phosphate (pNPP) as a substrate for enzymatic activity, we sought to identify CaN in Paramecium. We isolated three different pNPP-phosphatases from the soluble fraction of Paramecium cells by anion-exchange and affinity column chromatographies. One, pNPP-phosphatase Peak I, is very similar to mammalian CaN. Divalent cation dependency, inhibition by calmodulin (CaM) antagonists (trifluoperazine, calmidazolium), and insensitivity to various phosphatase inhibitors (heparin, okadaic acid, sodium vanadate, etc.) show similarity to mammalian CaN rather than to any other Paramecium pNPP-hydrolyzing enzymes tested. Polyclonal antibodies against bovine brain CaN recognizing subunits A (61 or 58 kDa) and B (17 kDa) of brain CaN cross-reacted with a 63-kDa protein in fractions containing Peak IpNPP-phosphatase activity and coeluted calmodulin. Overlay assays using biotinylated brain calmodulin indicated Ca2+-dependent CaM-binding by the 63-kDa protein. A Ca2+-binding protein with the same electrophoretic mobility as CaN B (17 kDa) was also present, though in other fractions from DEAE-cellulose chromatography. This finding strongly suggests that, in the absence of Ca2+, both subunits, A and B, were separated either before or during chromatographic processing. Our data support the existence of both subunits of a CaN-like phosphatase in Paramecium cells.
Collapse
Affiliation(s)
- R Kissmehl
- Faculty of Biology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
44
|
Abstract
Calcineurin is a Ca2+ calmodulin dependent protein phosphatase which has an important role in the control of intracellular Ca2+ signalling. The protein is a heterodimer of one catalytic (CnA) subunit and one regulatory (CnB) subunit. As suggested by the protein sequence and confirmed by the crystallographic structure, the catalytic subunit of calcineurin (CnA) has high homologies with other protein phosphatases. The regulatory subunit (CnB) belongs to the EF-hand Ca2+ binding protein family. Despite its similarity with calmodulin, it has a different tertiary structure. Calcineurin is the target of two important immunosuppressant drugs: cyclosporin A and FK506. Subsequently, a detailed clarification of the role of calcineurin in the cytokine mediated activation of the T-cells has been possible. The understanding of the role of calcineurin in other cells, in particular neurons, is also progressing rapidly.
Collapse
Affiliation(s)
- D Guerini
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), Zürich
| |
Collapse
|
45
|
Hellstern S, Dammann H, Husain Q, Mutzel R. Overexpression, purification and characterization of Dictyostelium calcineurin A. Res Microbiol 1997; 148:335-43. [PMID: 9765812 DOI: 10.1016/s0923-2508(97)81589-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic subunit of Ca2+/calmodulin-dependent protein phosphatase (calcineurin A) was overexpressed about 50-fold in Dictyostelium discoideum cells transformed with a vector containing the cDNA for D. discoideum calcineurin A under control of the actin-6 promoter. In crude lysates from the overexpressing cell line, high Ca2+/calmodulin-stimulated phosphatase activity was detected. Calcineurin A was purified by anion exchange chromatography and calmodulin-Sepharose affinity chromatography, and the enzymatic activity of the isolated protein was characterized. Its phosphatase activity was strictly dependent on the addition of divalent metal ions such as Mg2+ or Mn2+. Disulphide-reducing agents increased the activity more than 10-fold. Ca2+/calmodulin stimulated the activity by a factor of 2.5-5. Despite the high extra Ca2+/calmodulin-dependent phosphatase activity, the overexpressing cell line showed no phenotypic aberrations.
Collapse
Affiliation(s)
- S Hellstern
- Fakultät fur Biologie, Universität Konstanz, Germany
| | | | | | | |
Collapse
|