1
|
Kállai BM, Sawasaki T, Endo Y, Mészáros T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. Int J Mol Sci 2025; 26:3577. [PMID: 40332070 PMCID: PMC12026531 DOI: 10.3390/ijms26083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The first demonstration of wheat germ extract (WGE)-based in vitro translation synthesising a protein from exogenously introduced messenger ribonucleic acid (mRNA) was published approximately fifty years ago. Since then, there have been numerous crucial improvements to the WGE-based in vitro translation, resulting in a significant increase in yield and the development of high-throughput protein-producing platforms. These developments have transformed the original setup into a versatile eukaryotic protein production method with broad applications. The present review explores the theoretical background of the implemented modifications and brings a panel of examples for WGE applications in high-throughput protein studies and synthesis of challenging-to-produce proteins such as protein complexes, extracellular proteins, and membrane proteins. It also highlights the unique advantages of in vitro translation as an open system for synthesising radioactively labelled proteins, as illustrated by numerous publications using WGE to meet the protein demands of these studies. This review aims to orientate readers in finding the most appropriate WGE arrangement for their specific needs and demonstrate that a deeper understanding of the system modifications will help them make further adjustments to the reaction conditions for synthesising difficult-to-express proteins.
Collapse
Affiliation(s)
- Brigitta M. Kállai
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan;
| | - Yaeta Endo
- Ehime Prefectural University of Health Sciences, 543 Takooda, Tobe-cho 791-2101, Iyo-gun, Japan;
| | - Tamás Mészáros
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary;
| |
Collapse
|
2
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
4
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
DeWinter MA, Thames AH, Guerrero L, Kightlinger W, Karim AS, Jewett MC. Point-of-Care Peptide Hormone Production Enabled by Cell-Free Protein Synthesis. ACS Synth Biol 2023; 12:1216-1226. [PMID: 36940255 DOI: 10.1021/acssynbio.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
In resource-limited settings, it can be difficult to safely deliver sensitive biologic medicines to patients due to cold chain and infrastructure constraints. Point-of-care drug manufacturing could circumvent these challenges since medicines could be produced locally and used on-demand. Toward this vision, we combine cell-free protein synthesis (CFPS) and a 2-in-1 affinity purification and enzymatic cleavage scheme to develop a platform for point-of-care drug manufacturing. As a model, we use this platform to synthesize a panel of peptide hormones, an important class of medications that can be used to treat a wide variety of diseases including diabetes, osteoporosis, and growth disorders. With this approach, temperature-stable lyophilized CFPS reaction components can be rehydrated with DNA encoding a SUMOylated peptide hormone of interest when needed. Strep-Tactin affinity purification and on-bead SUMO protease cleavage yield peptide hormones in their native form that are recognized by ELISA antibodies and that can bind their respective receptors. With further development to ensure proper biologic activity and patient safety, we envision that this platform could be used to manufacture valuable peptide hormone drugs in a decentralized way.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
6
|
Jacková B, Mottet G, Rudiuk S, Morel M, Baigl D. DNA-Encoded Immunoassay in Picoliter Drops: A Minimal Cell-Free Approach. Adv Biol (Weinh) 2023; 7:e2200266. [PMID: 36750732 DOI: 10.1002/adbi.202200266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Immunoassays have emerged as indispensable bioanalytical tools but necessitate long preliminary steps for the selection, production, and purification of the antibody(ies) to be used. Here is explored the paradigm shift of creating a rapid and purification-free assay in picoliter drops where the antibody is expressed from coding DNA and its binding to antigens concomitantly characterized in situ. Efficient synthesis in bulk of various functional variable domains of heavy-chain only antibodies (VHH) using reconstituted cell-free expression media, including an anti-green fluorescent protein VHH, is shown first. A microfluidic device is then used to generate monodisperse drops (30 pL) containing all the assay components, including a capture scaffold, onto which the accumulation of VHH:antigen produces a specific fluorescent signal. This allows to assess, in parallel or sequentially at high throughput (500 Hz), the VHH-antigen binding and its specificity in less than 3 h, directly from a VHH-coding DNA, for multiple VHH sequences, various antigens and down to DNA concentrations as low as 12 plasmids per drop. It is anticipated that the ultraminiaturized format, robustness, and programmability of this novel cell-free immunoassay concept will constitute valuable assets in fields as diverse as antibody discovery, point-of-care diagnostics, synthetic biology, and/or bioanalytical assays.
Collapse
Affiliation(s)
- Barbara Jacková
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Guillaume Mottet
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| |
Collapse
|
7
|
A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nat Commun 2022; 13:3626. [PMID: 35750678 PMCID: PMC9232554 DOI: 10.1038/s41467-022-31306-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Cell-free protein synthesis has been widely used as a “breadboard” for design of synthetic genetic networks. However, due to a severe lack of modularity, forward engineering of genetic networks remains challenging. Here, we demonstrate how a combination of optimal experimental design and microfluidics allows us to devise dynamic cell-free gene expression experiments providing maximum information content for subsequent non-linear model identification. Importantly, we reveal that applying this methodology to a library of genetic circuits, that share common elements, further increases the information content of the data resulting in higher accuracy of model parameters. To show modularity of model parameters, we design a pulse decoder and bistable switch, and predict their behaviour both qualitatively and quantitatively. Finally, we update the parameter database and indicate that network topology affects parameter estimation accuracy. Utilizing our methodology provides us with more accurate model parameters, a necessity for forward engineering of complex genetic networks. Characterization of cell-free genetic networks is inherently difficult. Here the authors use optimal experimental design and microfluidics to improve characterization, demonstrating modularity and predictability of parts in applied test cases.
Collapse
|
8
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
DeLorenzo DM, Diao J, Carr R, Hu Y, Moon TS. An Improved CRISPR Interference Tool to Engineer Rhodococcus opacus. ACS Synth Biol 2021; 10:786-798. [PMID: 33787248 DOI: 10.1021/acssynbio.0c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodococcus opacus is a nonmodel bacterium that is well suited for valorizing lignin. Despite recent advances in our systems-level understanding of its versatile metabolism, studies of its gene functions at a single gene level are still lagging. Elucidating gene functions in nonmodel organisms is challenging due to limited genetic engineering tools that are convenient to use. To address this issue, we developed a simple gene repression system based on CRISPR interference (CRISPRi). This gene repression system uses a T7 RNA polymerase system to express a small guide RNA, demonstrating improved repression compared to the previously demonstrated CRISPRi system (i.e., the maximum repression efficiency improved from 58% to 85%). Additionally, our cloning strategy allows for building multiple CRISPRi plasmids in parallel without any PCR step, facilitating the engineering of this GC-rich organism. Using the improved CRISPRi system, we confirmed the annotated roles of four metabolic pathway genes, which had been identified by our previous transcriptomic analysis to be related to the consumption of benzoate, vanillate, catechol, and acetate. Furthermore, we showed our tool's utility by demonstrating the inducible accumulation of muconate that is a precursor of adipic acid, an important monomer for nylon production. While the maximum muconate yield obtained using our tool was 30% of the yield obtained using gene knockout, our tool showed its inducibility and partial repressibility. Our CRISPRi tool will be useful to facilitate functional studies of this nonmodel organism and engineer this promising microbial chassis for lignin valorization.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rhiannon Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
12
|
Mohr B, Giannone RJ, Hettich RL, Doktycz MJ. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude E. coli Cell-Free Systems. ACS Synth Biol 2020; 9:2986-2997. [PMID: 33044063 DOI: 10.1021/acssynbio.9b00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in cell-free protein synthesis (CFPS) has spurred resurgent interest in engineering complex biological metabolism outside of the cell. Unlike purified enzyme systems, crude cell-free systems can be prepared for a fraction of the cost and contain endogenous cellular pathways that can be activated for biosynthesis. Endogenous activity performs essential functions in cell-free systems including substrate biosynthesis and energy regeneration; however, use of crude cell-free systems for bioproduction has been hampered by the under-described complexity of the metabolic networks inherent to a crude lysate. Physical and chemical cultivation parameters influence the endogenous activity of the resulting lysate, but targeted efforts to engineer this activity by manipulation of these nongenetic factors has been limited. Here growth medium composition was manipulated to improve the one-pot in vitro biosynthesis of phenol from glucose via the expression of Pasteurella multocida phenol-tyrosine lyase in crude E. coli lysates. Crude cell lysate metabolic activity was focused toward the limiting precursor tyrosine by targeted growth medium dropouts guided by proteomics. The result is the activation of a 25-step enzymatic reaction cascade involving at least three endogenous E. coli metabolic pathways. Additional modification of this system, through CFPS of feedback intolerant AroG improves yield. This effort demonstrates the ability to activate a long, complex pathway in vitro and provides a framework for harnessing the metabolic potential of diverse organisms for cell-free metabolic engineering. The more than 6-fold increase in phenol yield with limited genetic manipulation demonstrates the benefits of optimizing growth medium for crude cell-free extract production and illustrates the advantages of a systems approach to cell-free metabolic engineering.
Collapse
Affiliation(s)
- Benjamin Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Robert L. Hettich
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mitchel J. Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
13
|
Wang H, Song P, Li X, Wang Y, Gui S, Liu Y, Lu F. Screening of the candidate inhibitory peptides of subtilisin by in vitro RNA display technique. Int J Biol Macromol 2020; 163:1162-1167. [PMID: 32673721 DOI: 10.1016/j.ijbiomac.2020.07.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Abstract
The application of inhibitors facilitates the stable preservation of enzyme in liquid detergent by mitigating the proteolytic activity of subtilisin. The conventionally used subtilisin inhibitors such as boric acid pose a threat to the environment and human health. Thus, the formulation of novel subtilisin inhibitors demands immediate attention. In the current study, we have screened the peptide inhibitors for subtilisin by employing the in vitro mRNA display technique. It is a sensitive screening technique with a high library capacity. The affinity screening was performed between the biotin-modified subtilisin immobilized on the streptavidin magnetic beads and the cDNA-mRNA-peptide fusion molecular library acquired from the in vitro translation and reverse transcription. The candidate peptides with high affinity were obtained after multiple rounds of screening. Furthermore, the inhibitory effect was evaluated, showing that some candidate peptides had inhibitory effects, but the isothermal titration calorimetry and time dependent experiments ultimately proved that these candidate peptides were not stable inhibitors. However, the in vitro mRNA display method explored in this study can be used as a preliminary screening method to provide candidate peptides for the screening of subtilisin inhibitors.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ping Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yufa Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuqi Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
14
|
Hibi K, Amikura K, Sugiura N, Masuda K, Ohno S, Yokogawa T, Ueda T, Shimizu Y. Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs. Commun Biol 2020; 3:350. [PMID: 32620935 PMCID: PMC7334211 DOI: 10.1038/s42003-020-1074-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Entire reconstitution of tRNAs for active protein production in a cell-free system brings flexibility into the genetic code engineering. It can also contribute to the field of cell-free synthetic biology, which aims to construct self-replicable artificial cells. Herein, we developed a system equipped only with in vitro transcribed tRNA (iVTtRNA) based on a reconstituted cell-free protein synthesis (PURE) system. The developed system, consisting of 21 iVTtRNAs without nucleotide modifications, is able to synthesize active proteins according to the redesigned genetic code. Manipulation of iVTtRNA composition in the system enabled genetic code rewriting. Introduction of modified nucleotides into specific iVTtRNAs demonstrated to be effective for both protein yield and decoding fidelity, where the production yield of DHFR reached about 40% of the reaction with native tRNA at 30°C. The developed system will prove useful for studying decoding processes, and may be employed in genetic code and protein engineering applications. Keita Hibi et al. develop a system to reconstitute cell-free protein synthesis using only in vitro transcribed tRNA (iVTtRNAs). They use 21 iVTtRNAs with and without nucleotide modifications to successfully synthesize functional proteins with about 40% production yield. Their system will be useful to study gene and protein engineering.
Collapse
Affiliation(s)
- Keita Hibi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Naoki Sugiura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Tokyo, Shinjuku, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
15
|
Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab Eng 2020; 62:95-105. [PMID: 32540392 DOI: 10.1016/j.ymben.2020.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 μg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.
Collapse
|
16
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Higuchi K, Yabuki T, Ito M, Kigawa T. Cold shock proteins improve
E. coli
cell‐free synthesis in terms of soluble yields of aggregation‐prone proteins. Biotechnol Bioeng 2020; 117:1628-1639. [DOI: 10.1002/bit.27326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kae Higuchi
- Laboratory for Cellular Structural BiologyRIKEN Center for Biosystems Dynamics Research Yokohama Kanagawa Japan
| | - Takashi Yabuki
- Laboratory for Cellular Structural BiologyRIKEN Center for Biosystems Dynamics Research Yokohama Kanagawa Japan
- SI Innovation Center, Taiyo Nippon Sanso Corporation Tama‐shi Tokyo Japan
| | - Masahiro Ito
- Laboratory for Cellular Structural BiologyRIKEN Center for Biosystems Dynamics Research Yokohama Kanagawa Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural BiologyRIKEN Center for Biosystems Dynamics Research Yokohama Kanagawa Japan
| |
Collapse
|
18
|
Kojima R, Uchiya K, Manshio H, Masuda K. Cell-free synthesis of functionally active HSPB5. Cell Stress Chaperones 2020; 25:287-301. [PMID: 31960264 PMCID: PMC7058722 DOI: 10.1007/s12192-020-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022] Open
Abstract
Human αB-crystallin (HSPB5) is frequently modified post-translationally by UV radiation, oxidation, and age-associated processes, which complicates functional analyses of the protein using natural sources. Thus, determining the biological function of HSPB5 at the molecular structure level requires unmodified protein. Here, we employed an Escherichia coli cell-free protein synthesis system to prepare unmodified, functionally active human HSPB5. An S30 extract prepared from E. coli strain BL21 (DE3) was used for HSPB5 synthesis. The efficacy of protein synthesis was assessed by monitoring influencing factors, such as the concentrations of Mg2+ and other reaction mixture constituents, and by evaluating batch and/or dialysis synthesis systems. Chaperone-like activity of synthesized HSPB5 was assayed using alcohol dehydrogenase (ADH) under thermal stress. The amount of HSPB5 synthesized using the cell-free system depended significantly on the concentration of Mg2+ in the reaction mixture. Use of condensed S30 extract and increased levels of amino acids promoted HSPB5 production. Compared with the batch system, HSPB5 synthesis was markedly increased using the dialysis system. The construction vector played a critical role in regulating the efficacy of protein synthesis. HSPB5 synthesized using the cell-free system had a native molecular mass, as determined by mass spectrometry analysis. The co-presence of synthesized HSPB5 suppressed heat-associated denaturation of ADH. Human HSPB5 synthesized using the cell-free system thus retains functional activity as a molecular chaperone.
Collapse
Affiliation(s)
- Ryoji Kojima
- Laboratory of Analytical Pharmacology, Meijo University, Nagoya, 468-8503, Japan.
| | - Keiichi Uchiya
- Laboratory of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Hiroyuki Manshio
- Laboratory of Analytical Pharmacology, Meijo University, Nagoya, 468-8503, Japan
| | - Kastuyoshi Masuda
- Suntory Institute for Bioorganic Research, 1-1 Wakayamadai, Shimamoto, Osaka, 618-8503, Japan
| |
Collapse
|
19
|
Abstract
A functional characterization of channel proteins has been performed using planar lipid bilayers as the following procedure. For bacterial channels, such as the KcsA potassium channel, channel proteins were synthesized in Escherichia coli, followed by solubilization, purification, and incorporation into liposomes. Similarly, channel proteins were synthesized using an in vitro transcription/translation kit in the presence of liposomes. Then, these liposome-incorporated channels were served for electrophysiological recordings after liposome fusion into a preformed planar lipid bilayer. Here, we established a straightforward method for concurrent channel synthesis and functional measurement using a water-in-oil bubble bilayer system. Channel proteins were synthesized in vitro within a water-in-oil bubble, having a lipid bilayer at the contact with another bubble (in bulla synthesis). The channels were spontaneously incorporated into the lipid bilayer under application of the membrane potential, and we successfully detected nascent channel activities. This way our experiment has mimicked bacterial synthetic membrane in the presence of a resting membrane potential. Technical details for establishing the in bulla expression system are described.
Collapse
|
20
|
Lopreside A, Wan X, Michelini E, Roda A, Wang B. Comprehensive Profiling of Diverse Genetic Reporters with Application to Whole-Cell and Cell-Free Biosensors. Anal Chem 2019; 91:15284-15292. [PMID: 31690077 PMCID: PMC6899433 DOI: 10.1021/acs.analchem.9b04444] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Whole-cell
and cell-free transcription-translation biosensors have
recently become favorable alternatives to conventional detection methods,
as they are cost-effective, environmental friendly, and easy to use.
Importantly, the biological responses from the biosensors need to
be converted into a physicochemical signal for easy detection, and
a variety of genetic reporters have been employed for this purpose.
Reporter gene selection is vital to a sensor performance and application
success. However, it was largely based on trial and error with very
few systematic side-by-side investigations reported. To address this
bottleneck, here we compared eight reporters from three reporter categories,
i.e., fluorescent (gfpmut3, deGFP, mCherry, mScarlet-I), colorimetric
(lacZ), and bioluminescent (luxCDABE from Aliivibrio fischeri and Photorhabdus
luminescens, NanoLuc) reporters, under the
control of two representative biosensors for mercury- and quorum-sensing
molecules. Both whole-cell and cell-free formats were investigated
to assess key sensing features including limit of detection (LOD),
input and output dynamic ranges, response time, and output visibility.
For both whole-cell biosensors, the lowest detectable concentration
of analytes and the fastest responses were achieved with NanoLuc.
Notably, we developed, to date, the most sensitive whole-cell mercury
biosensor using NanoLuc as reporter, with an LOD ≤ 50.0 fM
HgCl2 30 min postinduction. For cell-free biosensors, overall, NanoLuc and deGFP led to shorter response
time and lower LOD than the others. This comprehensive profile of
diverse reporters in a single setting provides a new important benchmark
for reporter selection, aiding the rapid development of whole-cell
and cell-free biosensors for various applications in the environment
and health.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | | | - Elisa Michelini
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum , University of Bologna , 40126 Bologna , Italy
| | | |
Collapse
|
21
|
DeLorenzo DM, Moon TS. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in Rhodococcus opacus PD630. ACS Synth Biol 2019; 8:1921-1930. [PMID: 31362487 DOI: 10.1021/acssynbio.9b00213] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhodococcus opacus PD630 (R. opacus) is a nonmodel, Gram-positive bacterium that holds promise as a biological catalyst for the conversion of lignocellulosic biomass to value-added products. In particular, it demonstrates both a high tolerance for and an ability to consume inhibitory lignin-derived aromatics, generates large quantities of lipids, exhibits a relatively rapid growth rate, and has a growing genetic toolbox for engineering. However, the availability of genetic parts for tunable, high-activity gene expression is still limited in R. opacus. Furthermore, genetic logic circuits for sophisticated gene regulation have never been demonstrated in Rhodococcus spp. To address these shortcomings, two inducible T7 RNA polymerase-based expression systems were implemented for the first time in R. opacus and applied to the construction of AND and NAND genetic logic gates. Additionally, three isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible promoters were created by inserting LacI binding sites into newly characterized constitutive promoters. Furthermore, four novel aromatic sensors for 4-hydroxybenzoic acid, vanillic acid, sodium benzoate, and guaiacol were developed, expanding the gene expression toolbox. Finally, the T7 RNA polymerase platform was combined with a synthetic IPTG-inducible promoter to create an IMPLY logic gate. Overall, this work represents the first demonstration of a heterologous RNA polymerase system and synthetic genetic logic in R. opacus, enabling complex and tunable gene regulation in this promising nonmodel host for bioproduction.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
23
|
Byun JY, Lee KH, Shin YB, Kim DM. Cascading Amplification of Immunoassay Signal by Cell-Free Expression of Firefly Luciferase from Detection Antibody-Conjugated DNA in an Escherichia coli Extract. ACS Sens 2019; 4:93-99. [PMID: 30582797 DOI: 10.1021/acssensors.8b00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expression immunoassay is a powerful technique that combines unique features of immunosorbent assays and cell-free protein synthesis. The main advantage of the expression immunoassay is a greatly amplified signal, whereas a conventional enzyme-linked immunosorbent assay (ELISA) employs a single enzyme molecule conjugated to a detection antibody to produce a measurable signal. Expression immunoassays utilize a DNA molecule conjugated to a target-bound antibody to generate multiple enzyme molecules that then produce the signal. To date, expression immunoassays have not been widely adopted due to the limited availability of efficient methods for translating antibody-conjugated DNA. We developed a highly efficient translation module for expression immunoassays using an Escherichia coli extract-based cell-free protein synthesis system. When we used our immunoassay technique to detect α-fetoprotein, we achieved a limit of detection of 7 fM. Given the outstanding sensitivity that can be obtained with only minimal modifications to the procedure of standard ELISA, we believe that this method will open up new possibilities for widespread application of expression immunoassays to ultrasensitive detection and diagnostics.
Collapse
Affiliation(s)
- Ju-Young Byun
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Yong-Beom Shin
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
25
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
26
|
Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. N Biotechnol 2017; 39:199-205. [DOI: 10.1016/j.nbt.2017.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
|
27
|
Jang YJ, Lee KH, Yoo TH, Kim DM. Complementary Cell-Free Translational Assay for Quantification of Amino Acids. Anal Chem 2017; 89:9638-9642. [PMID: 28776976 DOI: 10.1021/acs.analchem.7b01956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we present a simple and economical method that enables rapid quantification of amino acids based on their polymerization into a signal-generating protein. This method harnesses amino acid-deficient cell-free protein synthesis systems that generate fluorescence signals in response to exogenous amino acids. When premixed with assay samples containing the amino acids in question, incubation of the cell-free synthesis reaction mixture rapidly resulted in the production of sfGFP, the fluorescence intensity of which was linearly proportional to the concentration of the amino acids. The assay method achieved a limit of detection as low as ∼100 nM and was successfully applied to the quantification of disease-related amino acids in biological samples. Compared with standard methods in current use that require chemical derivatization of amino acids and chromatographic equipment, the complementation assay method developed in this work enables the direct translation of amino acid titer into measurable biofluorescence intensity in a much shorter period, providing a more affordable and flexible option for the quantification of amino acids.
Collapse
Affiliation(s)
- Yeon-Jae Jang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University , 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
28
|
Moore SJ, MacDonald JT, Freemont PS. Cell-free synthetic biology for in vitro prototype engineering. Biochem Soc Trans 2017; 45:785-791. [PMID: 28620040 PMCID: PMC5473021 DOI: 10.1042/bst20170011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells.
Collapse
Affiliation(s)
- Simon J Moore
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - James T MacDonald
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - Paul S Freemont
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K.
| |
Collapse
|
29
|
Li J, Wang H, Kwon YC, Jewett MC. Establishing a high yieldingstreptomyces-based cell-free protein synthesis system. Biotechnol Bioeng 2017; 114:1343-1353. [DOI: 10.1002/bit.26253] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Li
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
| | - He Wang
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
- Masters in Biotechnology Program; Northwestern University; Evanston Illinois
| | - Yong-Chan Kwon
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
- Masters in Biotechnology Program; Northwestern University; Evanston Illinois
- Chemistry of Life Processes Institute; Northwestern University; Evanston Illinois
- Member; Robert H. Lurie Comprehensive Cancer Center; Northwestern University; Chicago Illinois
- Simpson Querrey Institute; Northwestern University; Chicago Illinois. Center for Synthetic Biology; Northwestern University; Evanston Illinois
| |
Collapse
|
30
|
Thoring L, Wüstenhagen DA, Borowiak M, Stech M, Sonnabend A, Kubick S. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives. PLoS One 2016; 11:e0163670. [PMID: 27684475 PMCID: PMC5042383 DOI: 10.1371/journal.pone.0163670] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/11/2016] [Indexed: 11/18/2022] Open
Abstract
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.
Collapse
Affiliation(s)
- Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Doreen A. Wüstenhagen
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Maria Borowiak
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Marlitt Stech
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
| | - Andrei Sonnabend
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Branch Bioanalysis and Bioprocesses, Fraunhofer-Institute for Cell Therapy and Immunology (IZI-BB), Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Lee KH, Catherine C, Kim DM. Enhanced production of unnatural amino acid-containing proteins in a cell-free protein synthesis system. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Fritz BR, Jamil OK, Jewett MC. Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction. Nucleic Acids Res 2015; 43:4774-84. [PMID: 25897121 PMCID: PMC4482083 DOI: 10.1093/nar/gkv329] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
In vitro construction of Escherichia coli ribosomes could elucidate a deeper understanding of these complex molecular machines and make possible the production of synthetic variants with new functions. Toward this goal, we recently developed an integrated synthesis, assembly and translation (iSAT) system that allows for co-activation of ribosomal RNA (rRNA) transcription and ribosome assembly, mRNA transcription and protein translation without intact cells. Here, we discovered that macromolecular crowding and reducing agents increase overall iSAT protein synthesis; the combination of 6% w/v Ficoll 400 and 2 mM DTBA yielded approximately a five-fold increase in overall iSAT protein synthesis activity. By utilizing a fluorescent RNA aptamer, fluorescent reporter proteins and ribosome sedimentation analysis, we showed that crowding agents increase iSAT yields by enhancing translation while reducing agents increase rRNA transcription and ribosome assembly. Finally, we showed that iSAT ribosomes possess ∼70% of the protein synthesis activity of in vivo-assembled E. coli ribosomes. This work improves iSAT protein synthesis through the addition of crowding and reducing agents, provides a thorough understanding of the effect of these additives within the iSAT system and demonstrates how iSAT allows for manipulation and analysis of ribosome biogenesis in the context of an in vitro transcription-translation system.
Collapse
Affiliation(s)
- Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Osman K Jamil
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
34
|
Kwon YC, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 2015; 5:8663. [PMID: 25727242 PMCID: PMC4345344 DOI: 10.1038/srep08663] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/24/2022] Open
Abstract
Crude extract based cell-free protein synthesis (CFPS) has emerged as a powerful technology platform for high-throughput protein production and genetic part characterization. Unfortunately, robust preparation of highly active extracts generally requires specialized and costly equipment and can be labor and time intensive. Moreover, cell lysis procedures can be hard to standardize, leading to different extract performance across laboratories. These challenges limit new entrants to the field and new applications, such as comprehensive genome engineering programs to improve extract performance. To address these challenges, we developed a generalizable and easily accessible high-throughput crude extract preparation method for CFPS based on sonication. To validate our approach, we investigated two Escherichia coli strains: BL21 Star™ (DE3) and a K12 MG1655 variant, achieving similar productivity (defined as CFPS yield in g/L) by varying only a few parameters. In addition, we observed identical productivity of cell extracts generated from culture volumes spanning three orders of magnitude (10 mL culture tubes to 10 L fermentation). We anticipate that our rapid and robust extract preparation method will speed-up screening of genomically engineered strains for CFPS applications, make possible highly active extracts from non-model organisms, and promote a more general use of CFPS in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Yong-Chan Kwon
- 1] Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA [2] Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- 1] Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA [2] Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA [3] Robert H. Lurie Comprehensive Cancer Center, Medicine Northwestern University, Chicago, IL 60611, USA [4] Institute of Bionanotechnology in Medicine Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Fritz BR, Jewett MC. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction. Nucleic Acids Res 2014; 42:6774-85. [PMID: 24792158 PMCID: PMC4041470 DOI: 10.1093/nar/gku307] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In vitro ribosome construction could enable studies of ribosome assembly and function, provide a route toward constructing minimal cells for synthetic biology, and permit the construction of ribosome variants with new functions. Toward these long-term goals, we recently reported on an integrated, one-pot ribosomal RNA synthesis (rRNA), ribosome assembly, and translation technology (termed iSAT) for the construction of Escherichia coli ribosomes in crude ribosome-free S150 extracts. Here, we aimed to improve the activity of iSAT through transcriptional tuning. Specifically, we increased transcriptional efficiency through 3′ modifications to the rRNA gene sequences, optimized plasmid and polymerase concentrations, and demonstrated the use of a T7-promoted rRNA operon for stoichiometrically balanced rRNA synthesis and native rRNA processing. Our modifications produced a 45-fold improvement in iSAT protein synthesis activity, enabling synthesis of 429 ± 15 nmol/l green fluorescent protein in 6 h batch reactions. Further, we show that the translational activity of ribosomes purified from iSAT reactions is about 20% the activity of native ribosomes purified directly from E. coli cells. Looking forward, we believe iSAT will enable unique studies to unravel the systems biology of ribosome biogenesis and open the way to new methods for making and studying ribosomal variants.
Collapse
Affiliation(s)
- Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Interdepartmental Program in Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA Northwestern Institute on Complex Systems, Northwestern University, 600 Foster Street, Evanston, IL 60208, USA Institute for Bionanotechnology in Medicine, Northwestern University, 303 E. Superior, Chicago, IL 60611, USA Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| |
Collapse
|
37
|
|
38
|
Catherine C, Lee KH, Oh SJ, Kim DM. Cell-free platforms for flexible expression and screening of enzymes. Biotechnol Adv 2013; 31:797-803. [DOI: 10.1016/j.biotechadv.2013.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/06/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
|
39
|
Bechlars S, Wüstenhagen DA, Drägert K, Dieckmann R, Strauch E, Kubick S. Cell-free synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus. Toxicon 2013; 76:132-42. [PMID: 24060377 DOI: 10.1016/j.toxicon.2013.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Vibrio parahaemolyticus is a recognized enteropathogen causing diarrhea in humans and is one of the major causes of seafoodborne gastroenteritis. An important virulence factor is thermostable direct hemolysin (TDH), a pore-forming toxin, which is able to lyse eukaryotic cells. The active toxin is a tetramer of four identical protein subunits, which is secreted by the pathogen after cleavage of a signal peptide. To establish diagnostic detection systems for TDH we expressed the hemolysin with and without the signal peptide in a prokaryotic cell-free system to obtain pure toxin. In order to purify and to facilitate the isolation from cell lysates we synthesized TDH variants with different tags. Important regulatory sequences for cell-free protein synthesis as well as sequences for N-terminal Strep-tag and C-terminal 6xHis-tag were added by a two-step PCR. For the expression in the cell-free system these linear tdh templates were subjected directly to prokaryotic cell extracts. Protein yields were in the range of 500-600 μg/ml for the preproteins and approx. 300-400 μg/ml for the mature proteins. The identities of expressed proteins were further confirmed by SDS-PAGE, immunological and MALDI-TOF mass spectrometric analyses. The functionality of newly synthesized toxin variants was tested by performing qualitative and semiquantitative hemolysis assays. Cell-free produced mature TDH and its variants were active while the preprotein and its derivatives lacked hemolytic activity. A C-terminal 6xHis-tag showed less influence on functionality compared to the N-terminal Strep-tag.
Collapse
|
40
|
Byun JY, Shin YB, Li T, Park JH, Kim DM, Choi DH, Kim MG. The use of an engineered single chain variable fragment in a localized surface plasmon resonance method for analysis of the C-reactive protein. Chem Commun (Camb) 2013; 49:9497-9. [DOI: 10.1039/c3cc45046e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Kwon YC, Oh IS, Lee N, Lee KH, Yoon YJ, Lee EY, Kim BG, Kim DM. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase. Biotechnol Bioeng 2012; 110:1193-200. [DOI: 10.1002/bit.24785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/07/2022]
|
42
|
Enhanced in vitro translation at reduced temperatures using a cold-shock RNA motif. Biotechnol Lett 2012; 35:389-95. [DOI: 10.1007/s10529-012-1091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
43
|
Rapid biochemical synthesis of 11C-labeled single chain variable fragment antibody for immuno-PET by cell-free protein synthesis. Bioorg Med Chem 2012; 20:6579-82. [DOI: 10.1016/j.bmc.2012.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 11/19/2022]
|
44
|
Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. Biotechniques 2012; 53:163-74. [DOI: 10.2144/0000113924] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli-based cell extract is a vital component of inexpensive and high-yielding cell-free protein synthesis reactions. However, effective preparation of E. coli cell extract is limited to high-pressure (French press-style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. Here we report the viability of E. coli cell extract prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples. Specifically, we assessed the low-capital-cost lysis techniques of: (i) sonication, (ii) bead vortex mixing, (iii) freeze-thaw cycling, and (iv) lysozyme incubation to prepare E. coli cell extract for cell-free protein synthesis (CFPS). We also used simple shake flask fermentations with a commercially available E. coli strain. In addition, RNA polymerase was overexpressed in the E. coli cells prior to lysis, thus eliminating the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high-yielding E. coli-based extract was prepared using equipment requiring a reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing.
Collapse
|
45
|
Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Res 2012; 40:10576-84. [PMID: 22909996 PMCID: PMC3488234 DOI: 10.1093/nar/gks786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNAAla variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.
Collapse
Affiliation(s)
- Akio Kawahara-Kobayashi
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A multiphysics model of in vitro transcription coupling enzymatic reaction and precipitation formation. Biophys J 2012; 102:221-30. [PMID: 22339858 DOI: 10.1016/j.bpj.2011.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022] Open
Abstract
Multiphysics modeling, which integrates the models studied in different disciplines so far, is an indispensable approach toward a comprehensive understanding of biological systems composed of diverse phenomena. However, the variety of the models is narrower than the actual diverse phenomena because of the difficulty in coupling independent models separately studied in different disciplines for the actual coupled phenomena. In this study, we develop a mathematical model coupling an enzymatic reaction and mineralization formation. As a test case, we selected an in vitro transcription system where a transcription reaction occurs along with the precipitation formation of magnesium pyrophosphate (Mg(2)PPi). To begin, we experimentally elucidated how the transcription reaction and the precipitation formation are coupled. In the analysis, we applied a Michaelis-Menten-type equation to the transcription reaction and a semiempirical equation describing the correlation between the induction period and the supersaturation ratio to the precipitation formation, respectively. Based on the experimental results, we then integrated these two models. These models were connected by supersaturation that increases as the transcription reaction proceeds and becomes the driving force of the precipitation. We believe that our modeling approach could significantly contribute to the development of newer multiphysics models in systems biology such as bone metabolic networks.
Collapse
|
47
|
Freischmidt A, Liss M, Wagner R, Kalbitzer HR, Horn G. RNA secondary structure and in vitro translation efficiency. Protein Expr Purif 2012; 82:26-31. [DOI: 10.1016/j.pep.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/01/2023]
|
48
|
Cell-Free Protein Synthesis Using E. coli Cell Extract for NMR Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:167-77. [DOI: 10.1007/978-94-007-4954-2_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Takeda M, Kainosho M. 1.12 Labeling Techniques. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151895 DOI: 10.1016/b978-0-12-374920-8.00116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current status of isotope-assisted multidimensional nuclear magnetic resonance (NMR) spectroscopy for protein structural studies is reviewed. After introducing various classic isotope labeling methods, some new emerging technologies, such as the stereo-array isotope labeling method, are described. The concomitant development of advanced stable isotope labeling strategies, NMR instrumentation, sophisticated NMR measurements, spectral analysis, and structural calculation algorithms is essential to overcome the current limitations restricting the use of protein NMR spectroscopy.
Collapse
|
50
|
Abstract
The cell-free expression system using an Escherichia coli extract is a practical method for producing isotope-labeled proteins. The advantage of the cell-free system over cellular expression is that any isotope-labeled amino acid can be incorporated into the target protein with minimal scrambling, thus providing opportunities for advanced isotope labeling of proteins. We have modified the standard protocol for E. coli cell-free expression to cope with two problems specific to NMR sample preparation. First, endogenous amino acids present in the E. coli S30 extract lead to dilution of the added isotope. To minimize the content of the remaining amino acids, a gel filtration step is included in the preparation of the E. coli extract. Second, proteins produced by the cell-free system are not necessarily homogeneous due to incomplete processing of the N-terminal formyl-methionine residue, which complicates NMR spectra. Therefore, the protein of interest is engineered to contain a cleavable N-terminal histidine-tag, which generates a homogeneous protein after the digestion of the tag. Here, we describe the protocol for modified E. coli cell-free expression.
Collapse
|