1
|
Boon L, Ugarte-Berzal E, Martens E, Fiten P, Vandooren J, Janssens R, Blanter M, Yu K, Boon M, Struyf S, Proost P, Opdenakker G. Citrullination as a novel posttranslational modification of matrix metalloproteinases. Matrix Biol 2020; 95:68-83. [PMID: 33157227 DOI: 10.1016/j.matbio.2020.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases (MMPs) are enzymes with critical roles in biology and pathology. Glycosylation, nitrosylation and proteolysis are known posttranslational modifications (PTMs) regulating intrinsically the activities of MMPs. We discovered MMP citrullination by peptidyl arginine deiminases (PADs) as a new PTM. Upon hypercitrullination, MMP-9 acquired a higher affinity for gelatin than control MMP-9. Furthermore, hypercitrullinated proMMP-9 was more efficiently activated by MMP-3 compared to control MMP-9. JNJ0966, a specific therapeutic inhibitor of MMP-9 activation, inhibited the activation of hypercitrullinated proMMP-9 by MMP-3 significantly less in comparison with control proMMP-9. The presence of citrullinated/homocitrullinated MMP-9 was detected in vivo in neutrophil-rich sputum samples of cystic fibrosis patients. In addition to citrullination of MMP-9, we report efficient citrullination of MMP-1 and lower citrullination levels of MMP-3 and MMP-13 by PAD2 in vitro. In conclusion, citrullination of MMPs is a new PTM worthy of additional biochemical and biological studies.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium
| | - Erik Martens
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium
| | - Pierre Fiten
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium
| | - Rik Janssens
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Marfa Blanter
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Karen Yu
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Mieke Boon
- University Hospitals Leuven, Department of Pediatrics and Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Paul Proost
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1044, Leuven 3000, Belgium.
| |
Collapse
|
2
|
Qiu Z, Zhang F, Gong C, Xu H, Hu J. Fusion Peptides CPU1 and CPU2 Inhibit Matrix Metalloproteinases and Protect Mice from Endotoxin Shock Within a Strict Time Window. Inflammation 2016; 38:2092-104. [PMID: 26111477 DOI: 10.1007/s10753-015-0192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endotoxin shock induction in mice is a commonly used animal model to evaluate the protective effect of biologically active reagents. After an lipopolysaccharides (LPS) stimulus, matrix metalloproteinase-8 (MMP-8) and matrix metalloproteinase-9 (MMP-9) are rapidly degranulated and released by neutrophils, aside other enzymes and effector molecules. MMPs cleave extracellular matrix components and cytokines, and such processes contribute to shock syndrome development. CPU1 and CPU2 are two peptide MMP inhibitors with different in vitro IC50 values to several key enzymes, including MMP-8 and MMP-9. In vivo work confirmed that CPU1 and CPU2 protected mice from endotoxin shock after intravenous and intraperitoneal injections. Furthermore, their minimal effective dose after an intravenous injection and the maximum time interval between intraperitoneal peptide injection (150 mg/kg) and intravenous LPS injection were determined. With the use of an indirect competitive ELISA, plasma CPU1 and CPU2 concentrations in different experimental settings were measured. In addition, the acuteness of MMP-9 release in the mouse circulation after an intravenous LPS injection was confirmed with the zymography technique. Our findings reinforce previous work with other inhibitors about a strict time window within which effective MMP inhibition is needed to obtain significant survival rate improvements and also show that, with strict pharmacokinetic monitoring, potent protease inhibitors may in the future become life-savers in shock conditions.
Collapse
Affiliation(s)
- Zheng Qiu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China.
| | - Fengguo Zhang
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China.
| | - Chengxin Gong
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China. .,The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China.
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China. .,The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China.
| | - Jialiang Hu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China. .,The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China.
| |
Collapse
|
3
|
Hadler-Olsen E, Solli AI, Hafstad A, Winberg JO, Uhlin-Hansen L. Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol 2015; 230:160-9. [PMID: 24905939 DOI: 10.1002/jcp.24694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 05/29/2014] [Indexed: 02/03/2023]
Abstract
Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme implicated in motility, differentiation, and regeneration of skeletal muscle fibers through processing of extracellular substrates. Although MMP-2 has been found to be localized intracellularly in cardiomyocytes where the enzyme is thought to contribute to post-ischemic loss of contractility, little is known about intracellular MMP-2 activity in skeletal muscle fibers. In the present study we demonstrate intracellular MMP-2 in normal skeletal muscle by immunohistochemical staining. Immunogold electron microscopic analyses indicated that the enzyme was concentrated in Z-lines of the sarcomers, in the nuclear membrane, and in mitochondria. By use of in situ zymography, we found that gelatinolytic activity in muscle fibers was co-localized with immunofluorecent staining for MMP-2. Staining for MMP-9, the other member of the gelatinase group of the MMPs, was negative. The broad-spectrum metalloprotease inhibitor EDTA and the selective gelatinase inhibitor CTT2, but not the cysteine inhibitor E64, strongly reduced the gelatinolytic activity. The intracellular gelatinolytic activity was much more prominent in fast twitch type II fibers than in slow twitch type I fibers, and there was a decrease in intracellular gelatinolytic activity and MMP-2 expression in muscles from mice exposed to high intensity interval training. Together our results indicate that MMP-2 is part of the intracellular proteolytic network in normal skeletal muscle, especially in fast twitch type II fibers. Further, the results suggest that intracellular MMP-2 in skeletal muscle fibers is active during normal homeostasis, and affected by the level of physical activity.
Collapse
Affiliation(s)
- Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
4
|
Li S, Starckx S, Martens E, Dillen C, Lamerant-Fayel N, Berghmans N, Gouwy M, van Pel M, Heremans H, Kieda C, Fibbe WE, Billiau A, Van Damme J, Opdenakker G. Myeloid cells are tunable by a polyanionic polysaccharide derivative and co-determine host rescue from lethal virus infection. J Leukoc Biol 2010; 88:1017-29. [DOI: 10.1189/jlb.1109724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
5
|
Rasch MG, Lund IK, Illemann M, Høyer-Hansen G, Gårdsvoll H. Purification and characterization of recombinant full-length and protease domain of murine MMP-9 expressed in Drosophila S2 cells. Protein Expr Purif 2010; 72:87-94. [PMID: 20214994 DOI: 10.1016/j.pep.2010.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 01/27/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a 92-kDa soluble pro-enzyme implicated in pathological events including cancer invasion. It is therefore an attractive target for therapeutic intervention studies in mouse models. Development of inhibitors requires sufficient amounts of correctly folded murine MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full-length and truncated versions were 5 mg/l and 2 mg/l, respectively. The products were >95% pure after gelatin Sepharose chromatography and possessed proteolytic activity when analyzed by gelatin zymography. Using the purified full-length murine MMP-9 we raised polyclonal antibodies by immunizations of rabbits. These antibodies specifically identified pro-MMP-9 in incisional skin wound extracts from mice when used for Western blotting. Immunohistochemical analysis of paraffin embedded skin wounds from mice showed that MMP-9 protein was localized at the leading-edge keratinocytes in front of the migrating epidermal layer. No immunoreactivity was observed when the antibody was probed against skin wound material from MMP-9 deficient mice. In conclusion, we have generated and purified two proteolytically active recombinant murine MMP-9 protein constructs, which are critical reagents for future cancer drug discovery studies.
Collapse
Affiliation(s)
- Morten G Rasch
- The Finsen Laboratory, Rigshospitalet Section 3735, Copenhagen Biocenter, Ole Maaløes Vej 5, Building 3.3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
6
|
Jilma B, Hergovich N, Homoncik M, Jilma-Stohlawetz P, Kreuzer C, Eichler HG, Zellner M, Pugin J. Granulocyte colony-stimulating factor (G-CSF) downregulates its receptor (CD114) on neutrophils and induces gelatinase B release in humans. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.2000.02320.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Burdon PCE, Martin C, Rankin SM. Migration across the sinusoidal endothelium regulates neutrophil mobilization in response to ELR + CXC chemokines. Br J Haematol 2008; 142:100-8. [PMID: 18477053 DOI: 10.1111/j.1365-2141.2008.07018.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An increase in circulating neutrophils is a characteristic feature of many inflammatory reactions and is a result of the rapid mobilization of neutrophils from the bone marrow, driven by inflammatory mediators, including the ELR + CXC chemokines. In this paper, using a combination of light and electron microscopy and an in situ perfusion system of the rat femoral bone marrow, we examined this mobilization process in detail. We show that mobilization of neutrophils stimulated by the CXC chemokine, rat MIP-2, involves neutrophil migration from the haematopoietic compartment of the bone marrow across the bone marrow sinusoidal endothelium via a transcellular route. The critical role of the bone marrow sinusoidal endothelium in regulating neutrophil mobilization was demonstrated by artificially disrupting the bone marrow endothelial barrier by treatment with cytochalasin D, which results in the non-selective release of leucocytes from the bone marrow. In contrast, inhibiting the activity of p38 mitogen-activated protein kinase, inhibited both MIP-2 stimulated chemotaxis of bone marrow neutrophils in vitro and neutrophil mobilization in situ while, a broad spectrum matrix metalloproteinase inhibitor, BB94, had no effect on neutrophil mobilization. These results support the hypothesis that neutrophil migration drives their mobilization and highlights the function of the sinusoidal endothelium in regulating this process.
Collapse
Affiliation(s)
- Peter C E Burdon
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College, South Kensington, London, UK
| | | | | |
Collapse
|
8
|
Kolaczkowska E, Arnold B, Opdenakker G. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology 2007; 213:109-24. [PMID: 18241695 DOI: 10.1016/j.imbio.2007.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/26/2007] [Accepted: 07/17/2007] [Indexed: 01/22/2023]
Abstract
Neutrophil infiltration during zymosan peritonitis depends on matrix metalloproteinase-9 (MMP-9) activity as it is impaired both in MMP-9(-/-) and gelatinase inhibitor-treated animals. The producer cells of MMP-9 and their relative contribution are not known. The aim of this study was to identify and compare the cellular sources, timing and intensity of MMP-9 induction by zymosan in the murine peritoneal cavity. We detected MMP-9 mRNA in unstimulated peritoneal leukocytes and its levels increased after zymosan administration. To detect MMP-9 by flow cytometry, we selected and compared two specific monoclonal antibodies. We show that MMP-9 protein was absent in control peritoneal macrophages, whereas already at 30min of peritonitis almost all macrophages were producing the enzyme. Conversely, MMP-9 was constitutively present in unstimulated mast cells. Macrophages turned out to be prevalent MMP-9 producers in the early phase of peritonitis. During later stages macrophages kept the high expression of MMP-9 for at least 6h of inflammation. In contrast, the early phase expression of MMP-9 by neutrophils was limited albeit the highest percentage of MMP-9(+) neutrophils was observed at 2h but absolute numbers of the MMP-9 carrying neutrophils were low at that time. In contrast, during the late phase of peritonitis neutrophils became major producers of MMP-9 as they numerously infiltrated peritoneum. In conclusion, the study reports detection of MMP-9 at the single-cell level during peritonitis, demonstrates unexpectedly fast MMP-9 expression in macrophages and reveals quantitatively phase-specific contribution of mast cells, macrophages and neutrophils.
Collapse
Affiliation(s)
- Elzbieta Kolaczkowska
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, ul. Ingardena 6, PL-30-060 Krakow, Poland.
| | | | | |
Collapse
|
9
|
Ramsey KH, Sigar IM, Schripsema JH, Shaba N, Cohoon KP. Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect Immun 2005; 73:6962-73. [PMID: 16177376 PMCID: PMC1230927 DOI: 10.1128/iai.73.10.6962-6973.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The central hypothesis of this study was that matrix metalloproteinases (MMPs) would be enhanced following murine chlamydial infection and that their expression would vary in mouse strains that differ in their susceptibility to chronic chlamydia-induced disease. To address this hypothesis, female C3H/HeN and C57BL/6 mice were infected intravaginally with Chlamydia muridarum. Uterine and oviduct tissues were assessed for transcription of MMP genes and their tissue inhibitors. An increased activity of MMP genes relative to preinfection tissues was observed in the C3H/HeN mice when compared to C57BL/6 mice. Using gelatin zymography, we detected constitutive MMP-2 activity in both strains of mice but an increase in MMP-9. Casein zymography indicated the presence of two elastase-like activities consistent with MMP-12 and possibly MMP-7. Western blotting and antigen capture enzyme-linked immunoassay also confirmed an increase in MMP-9 but constitutive MMP-2 expression subsequent to the infection in both strains of mice. In C57BL/6 mice, MMP-9 was present in monomer and dimer form throughout the 56-day monitoring period. C3H/HeN mice produced dimeric MMP-9, but increases in the monomer form were also observed through day 14. Post-translational modification of MMP-9 between the two strains also differed. Immunohistochemistry revealed neutrophils as a prominent source for MMP-9 in both strains of mice. We conclude that differences in the relative expression and activity of MMPs, particularly MMP-9, occur in mice differing in their susceptibility to the development of chronic chlamydial disease. These differences may account for disparate outcomes with regard to chronic sequelae of the disease.
Collapse
Affiliation(s)
- K H Ramsey
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, IL 60516, USA.
| | | | | | | | | |
Collapse
|
10
|
Hu J, Van den Steen PE, Houde M, Ilenchuk TT, Opdenakker G. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity. Biochem Pharmacol 2004; 67:1001-9. [PMID: 15104254 DOI: 10.1016/j.bcp.2003.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Matrix metalloproteinases form a proteinase family with at least 20 members, which are involved in several pathological conditions and which fulfill a large number of physiological functions. Gelatinase A/MMP-2 is a constitutively produced homeostatic enzyme, whereas gelatinase B/MMP-9 is upregulated in acute and chronic inflammations and forms a target for the development of therapeutic inhibitors. We have used a recently developed assay with fluorescent gelatin to analyze gelatinase inhibitors. A peptidomimetic, based on the consensus sequence of the cleavage sites in type II collagen, and various derivatives of a neutralizing antibody were compared as gelatinase inhibitors. A single-chain variable fragment (scFv) derived from the gelatinase B-selective monoclonal antibody REGA-3G12 was tagged with oligohistidine and was also compared with the untagged scFv. Both scFv derivatives inhibited gelatinase B but the peptidomimetic was inefficient. As an extra control and serendipitously it was found that polyhistidine is an inhibitor of gelatinases, presumably by altering the active site by chelation of the catalytic Zn2+.
Collapse
Affiliation(s)
- Jialiang Hu
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | | | |
Collapse
|
11
|
Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 2004; 103:110-9. [PMID: 12958067 DOI: 10.1182/blood-2003-04-1115] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilized peripheral blood stem cells (PBSCs) are widely used for transplantation, but mechanisms mediating their release from marrow are poorly understood. We previously demonstrated that the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2Delta4 rapidly mobilize PBSC equivalent to granulocyte colony-stimulating factor (G-CSF) and are synergistic with G-CSF. We now show that mobilization by GRObeta/GRObetaT and G-CSF, alone or in combination, requires polymorphonuclear neutrophil (PMN)-derived proteases. Mobilization induced by GRObeta/GRObetaT is associated with elevated levels of plasma and marrow matrix metalloproteinase 9 (MMP-9) and mobilization and MMP-9 are absent in neutrophil-depleted mice. G-CSF mobilization correlates with elevated neutrophil elastase (NE), cathepsin G (CG), and MMP-9 levels within marrow and is partially blocked by either anti-MMP-9 or the NE inhibitor MeOSuc-Ala-Ala-Pro-Val-CMK. Mobilization and protease accumulation are absent in neutrophil-depleted mice. Synergistic PBSC mobilization observed when G-CSF and GRObeta/GRObetaT are combined correlates with a synergistic rise in the level of plasma MMP-9, reduction in marrow NE, CG, and MMP-9 levels, and a coincident increase in peripheral blood PMNs but decrease in marrow PMNs compared to G-CSF. Synergistic mobilization is completely blocked by anti-MMP-9 but not MeOSuc-Ala-Ala-Pro-Val-CMK and absent in MMP-9-deficient or PMN-depleted mice. Our results indicate that PMNs are a common target for G-CSF and GRObeta/GRObetaT-mediated PBSC mobilization and, importantly, that synergistic mobilization by G-CSF plus GRObeta/GRObetaT is mediated by PMN-derived plasma MMP-9.
Collapse
Affiliation(s)
- Louis M Pelus
- Department of Microbiology and Immunology and the Walther Oncology Center, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
12
|
Adams G, Vessillier S, Dreja H, Chernajovsky Y. Targeting cytokines to inflammation sites. Nat Biotechnol 2003; 21:1314-20. [PMID: 14528315 DOI: 10.1038/nbt888] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 08/21/2003] [Indexed: 11/09/2022]
Abstract
To increase the half-life of a cytokine and target its activation specifically to disease sites, we have engineered a latent cytokine using the latency-associated protein (LAP) of transforming growth factor-beta 1 (TGF-beta 1) fused via a matrix metalloproteinase (MMP) cleavage site to interferon (IFN)-beta at either its N or C terminus. The configuration LAP-MMP-IFN-beta resembles native TGF-beta and lacks biological activity until cleaved by MMPs, whereas the configuration IFN-beta-MMP-LAP is active. LAP provides for a disulfide-linked shell hindering interaction of the cytokine with its cellular receptors, conferring a very long half-life of 55 h in vivo. Mutations of the disulfide bonds in LAP abolish this latency. Samples of cerebrospinal fluid (CSF) or synovial fluid from patients with inflammatory diseases specifically activate the latent cytokine, whereas serum samples do not. Intramuscular injection in arthritic mice of plasmid DNA encoding these constructs demonstrated a greater therapeutic effect of the latent as compared to the active forms.
Collapse
Affiliation(s)
- Gill Adams
- Bone and Joint Research Unit, William Harvey Research Institute, St. Bartholomew's and Royal London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
13
|
Rafii S, Avecilla S, Shmelkov S, Shido K, Tejada R, Moore MAS, Heissig B, Hattori K. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci 2003; 996:49-60. [PMID: 12799282 DOI: 10.1111/j.1749-6632.2003.tb03232.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1, Flt-1) is expressed on a subpopulation of human CD34(+) and mouse Lin-Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1 signaling, but not VEGFR2 (Flk-1, KDR), blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Plasma elevation of placental growth factor (PlGF), which signals through VEGFR1, but not VEGFR2, restored hematopoiesis during the early and late phases following BM suppression. The mechanism whereby PlGF enhanced early phases of BM recovery was mediated directly through rapid chemotaxis of readily available VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9 (MMP-9) in the BM, mediating the release of soluble Kit-ligand (sKitL). sKitL increased proliferation and motility of HSCs and progenitor cells, thereby augmenting hematopoietic recovery. PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative microenvironment within the BM, favoring differentiation, mobilization, and reconstitution of hematopoiesis.
Collapse
Affiliation(s)
- Shahin Rafii
- Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Watanabe Y, Haruyama T, Akaike T. Liver-derived matrix metalloproteinase-9 (gelatinase B) recruits progenitor cells from bone marrow into the blood circulation. Biol Pharm Bull 2003; 26:564-8. [PMID: 12673046 DOI: 10.1248/bpb.26.564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in invasive cell behavior, embryonic development and organ remodeling. In this report, we investigated the role of liver-derived MMP-9 in the in vivo system at liver injury. Liver injury induced MMP-9 expression in the liver 3 to 12 h after intravenous administration of anti-Fas antibody, followed by the expression of the activity and the protein detected by zymography and Western blotting, respectively, in the blood circulation. Interestingly, the MMP-9 expression was accompanied by the recruitment of hematopoietic progenitor cells from bone marrow into the circulation. The recruitment was blocked by a specific MMP-9 inhibitor, R94138, which did not affect the Fas-mediated liver injury or induced expression of MMP-9. Compulsive expression of mutant active MMP-9 in the liver also recruited the progenitor cells into the circulation. In contrast, partial hepatectomy, which treatment does not directly injure hepatocytes, did not recruit progenitor cells despite the increased expression of MMP-9 in the circulation. These results suggest that liver-derived MMP-9 induced by liver injury plays an essential role in the recruitment of hematopoietic progenitor cells from bone marrow into the blood circulation.
Collapse
Affiliation(s)
- Yoshifumi Watanabe
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | |
Collapse
|
15
|
Starckx S, Wuyts A, Opsomer I, Van Coillie E, Proost P, Arnold B, Van Damme J, Opdenakker G. Recombinant mouse granulocyte chemotactic protein-2: production in bacteria, characterization, and systemic effects on leukocytes. J Interferon Cytokine Res 2002; 22:965-74. [PMID: 12396718 DOI: 10.1089/10799900260286678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Granulocyte chemotactic protein-2 (GCP-2) is an important neutrophil chemotactic factor in the mouse that belongs to the CXC chemokine family. Although the local tissular effects of chemokines are well known, only recently has the systemic regulation of leukocytes become accepted. To study the pharmacokinetics of mouse GCP-2 and the systemic effects on leukocytes, we expressed a potent natural isoform of mouse GCP-2, GCP-2(9-78), in Escherichia coli and produced electrophoretically pure material. GCP-2(9-78) was 10-fold more potent to chemoattract neutrophils than recombinant GCP-2(5-78). After intravenous (i.v.) injection in mice, GCP-2(9-78) persisted in the circulation with an average half-life of 42 min. When a bolus of 1 mg/kg recombinant mouse GCP-2(9-78) was injected systemically, a significant effect on circulating leukocytes was observed. After a neutropenic phase, at its height at 1 h after injection, neutrophil numbers increased to a maximum at 4 h postinjection, and a concomitant decrease in lymphocyte numbers was observed. In control mice injected with isotonic saline, changes in leukocyte numbers were less pronounced and followed a different kinetic. Whereas tissular neutrophil chemotaxis to GCP-2 is influenced by gelatinase B, the systemic effects on neutrophilia and lymphopenia were not different in gelatinase B-deficient and wild-type mice. These data reinforce the idea that chemokines, including GCP-2, influence the homeostasis of circulating leukocyte numbers.
Collapse
MESH Headings
- Animals
- Chemokine CXCL6
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/pharmacology
- Chemokines, CXC/toxicity
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Cloning, Molecular
- Escherichia coli/metabolism
- Half-Life
- Homeostasis
- Injections, Intravenous
- Leukocyte Count
- Leukocytosis/chemically induced
- Lymphopenia/chemically induced
- Matrix Metalloproteinase 9/deficiency
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/drug effects
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/pharmacology
- Protein Isoforms/toxicity
- Recombinant Fusion Proteins/pharmacokinetics
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/toxicity
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Sofie Starckx
- Rega Institute for Medical Research, Laboratory for Molecular Immunology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109:625-37. [PMID: 12062105 PMCID: PMC2826110 DOI: 10.1016/s0092-8674(02)00754-7] [Citation(s) in RCA: 1281] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stem cells within the bone marrow (BM) exist in a quiescent state or are instructed to differentiate and mobilize to circulation following specific signals. Matrix metalloproteinase-9 (MMP-9), induced in BM cells, releases soluble Kit-ligand (sKitL), permitting the transfer of endothelial and hematopoietic stem cells (HSCs) from the quiescent to proliferative niche. BM ablation induces SDF-1, which upregulates MMP-9 expression, and causes shedding of sKitL and recruitment of c-Kit+ stem/progenitors. In MMP-9-/- mice, release of sKitL and HSC motility are impaired, resulting in failure of hematopoietic recovery and increased mortality, while exogenous sKitL restores hematopoiesis and survival after BM ablation. Release of sKitL by MMP-9 enables BM repopulating cells to translocate to a permissive vascular niche favoring differentiation and reconstitution of the stem/progenitor cell pool.
Collapse
Affiliation(s)
- Beate Heissig
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Koichi Hattori
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Sergio Dias
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Matthias Friedrich
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Barbara Ferris
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Neil R. Hackett
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Ronald G. Crystal
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Peter Besmer
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021
| | - David Lyden
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Malcolm A.S. Moore
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, HSW 1321, 513 Parnassus Avenue, San Francisco, California 94143
| | - Shahin Rafii
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
- Correspondence:
| |
Collapse
|
17
|
Starckx S, Van den Steen PE, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B and chemokines in leukocytosis and stem cell mobilization. Leuk Lymphoma 2002; 43:233-41. [PMID: 11999552 DOI: 10.1080/10428190290005982] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Leukocytosis is a physiopathological mechanism primarily to combat infections, whereas stem cell mobilization is induced for therapeutical purposes. Both processes are dependent on the balance between leukocyte and stem cell retention and mobilization. The retention is mediated by the specific architecture of the bone marrow, adhesion molecules and the production of chemokines in the bone marrow, which attract escaped immature cells to the marrow. Mobilization is the effect of the action of "peripheral" chemokines, such as interleukin-8 (IL-8 or CXCL8) and the remodeling of the matrix and basement membranes by matrix enzymes, such as gelatinase B (MMP-9). Recent studies lead to the conclusion that neutrophils, IL-8/CXCL8 and gelatinase B/MMP-9 play control roles in leukocytosis and stem cell mobilization. Neutrophils are the predominant circulating leukocyte type and IL-8/CXCL8 is the major neutrophil chemoattractant in humans. Gelatinase B and no gelatinase A is rapidly released from prestored granules after activation of neutrophils by IL-8/CXCL8. Moreover, neutrophils do not produce TIMP-1 and can chemically activate latent progelatinase B. Activated gelatinase B catalyses the aminoterminal truncation of IL-8/CXCL8 into a tenfold more potent chemokine. This implies that, when IL-8/CXCL8 appears in the circulation, the bone marrow is instructed to release neutrophils and concomitantly stem cells. These studies suggest that IL-8/CXCL8 and gelatinase B/MMP-9 are targets for the modulation of stem cell mobilization.
Collapse
Affiliation(s)
- S Starckx
- Laboratory of Molecular Immunology, Rega Institute, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Khan KMF, Falcone DJ, Kraemer R. Nerve growth factor activation of Erk-1 and Erk-2 induces matrix metalloproteinase-9 expression in vascular smooth muscle cells. J Biol Chem 2002; 277:2353-9. [PMID: 11698409 DOI: 10.1074/jbc.m108989200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to vascular injury, smooth muscle cells migrate from the media into the intima, where they contribute to the development of neointimal lesions. Increased matrix metalloproteinase (MMP) expression contributes to the migratory response of smooth muscle cells by releasing them from their surrounding extracellular matrix. MMPs may also participate in the remodeling of extracellular matrix in vascular lesions that could lead to plaque weakening and subsequent rupture. Neurotrophins and their receptors, the Trk family of receptor tyrosine kinases, are expressed in neointimal lesions, where they induce smooth muscle cell migration. We now report that nerve growth factor (NGF)-induced activation of the TrkA receptor tyrosine kinase induces MMP-9 expression in both primary cultured rat aortic smooth muscle cells and in a smooth muscle cell line genetically manipulated to express TrkA. The response to NGF was specific for MMP-9 expression, as the expression of MMP-2, MMP-3, or the tissue inhibitor of metalloproteinase-2 was not changed. Activation of the Shc/mitogen-activated protein kinase pathway mediates the induction of MMP-9 in response to NGF, as this response is abrogated in cells expressing a mutant TrkA receptor that does not bind Shc and by pretreatment of cells with the MEK-1 inhibitor, U0126. Thus, these results indicate that the neurotrophin/Trk receptor system, by virtue of its potent chemotactic activity for smooth muscle cells and its ability to induce MMP-9 expression, is a critical mediator in the remodeling that occurs in the vascular wall in response to injury.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enzyme Activation
- Gene Expression Regulation, Enzymologic/drug effects
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Nerve Growth Factor/pharmacology
- RNA, Messenger/genetics
- Rats
- Signal Transduction
- Tissue Inhibitor of Metalloproteinase-2/metabolism
Collapse
Affiliation(s)
- K M Faisal Khan
- Departments of Pathology and Cell Biology and the Center of Vascular Biology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
19
|
Hu B, Kapila YL, Buddhikot M, Shiga M, Kapila S. Coordinate induction of collagenase-1, stromelysin-1 and urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1. Matrix Biol 2000; 19:657-69. [PMID: 11102755 DOI: 10.1016/s0945-053x(00)00114-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific fibronectin (Fn) fragments found in synovial fluid of arthritic joints potentially contribute to the loss of cartilage proteoglycans by inducing matrix metalloproteinase (MMP) expression. However, whether or not the Fn fragment-modulated changes in expression of MMPs result in a net increase in matrix-degradative activity through alterations in the balance between MMP activation and inhibition has not been established. To understand the mechanisms by which proteolytic Fn fragments may contribute to joint degeneration, conditioned medium from fibrocartilaginous cells exposed to Fn, its 30-kDa fragment containing the collagen/gelatin-binding domain, its 120-kDa fragment containing the central cell-binding domain, and the RGD peptide were assayed for MMPs, and MMP activators and inhibitors. We found that the 120-kDa fragment of Fn (but not intact Fn), the 30-kDa fragment, and the RGD peptide, dose-dependently induced procollagenase-1 and prostromelysin-1 and decreased levels of the tissue inhibitor of metalloproteinases (TIMPs) -1 and -2. The alpha5beta1 integrin was implicated in the induction of collagenase by the 120-kDa Fn fragment, since collagenase induction was abrogated in the presence of blocking antibody to this integrin. Conditioned medium from cells exposed to the 120-kDa Fn fragment also demonstrated increased levels of the activated collagenase-1, which resulted in significantly elevated collagen degradative activity. That the urokinase plasminogen activator (uPA) was involved in the activation of procollagenase-1 was suggested by findings that the 120-kDa Fn fragment induced uPA coordinately with procollagenase-1, and the activation of procollagenase-1 was dose-dependently inhibited in the presence of plasminogen activator inhibitor-1. These data demonstrate that the 120-kDa cell-binding fragment of Fn induces a net increase in matrix-degradative activity in fibrocartilaginous cells by concomitantly inducing MMPs and their activator, uPA, while decreasing TIMPs.
Collapse
Affiliation(s)
- B Hu
- Department of Growth and Development, 521 Parnassus Avenue, University of California San Francisco, San Francisco, CA 94143-0640, USA
| | | | | | | | | |
Collapse
|
20
|
Jilma B, Hergovich N, Homoncik M, Jilma-Stohlawetz P, Kreuzer C, Eichler HG, Zellner M, Pugin J. Granulocyte colony-stimulating factor (G-CSF) downregulates its receptor (CD114) on neutrophils and induces gelatinase B release in humans. Br J Haematol 2000; 111:314-20. [PMID: 11091218 DOI: 10.1046/j.1365-2141.2000.02320.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the increasing use of granulocyte colony-stimulating factor (G-CSF) for the mobilization of stem cells and neutrophils, its pharmacodynamic actions are not fully understood. Because of the roles of G-CSF and gelatinase B in leucokinetics, we set out to characterize the interaction of G-CSF with its receptor in humans and its effects on gelatinase B release. G-CSF was infused at bolus doses of 1 microg/kg and 5 microg/kg, and compared to placebo and dexamethasone (1 mg/kg b.i.d), which enhances the plasma levels of endogenous G-CSF. The study was randomized, double-blind, four-way crossover, in eight healthy male volunteers. G-CSF dose-independently induced profound neutropenia (> 95%) within minutes and downregulated its own receptor (CD114) on neutrophils by 75%. The G-CSF/CD114 interaction dose-independently induced degranulation of neutrophils as evidenced by a 300-400% increase in CD11b expression. Degranulation induced up to a 10-fold increase in plasma levels of gelatinase B, an enzyme known to precipitate neutropenia and subsequent neutrophilia in animals. In this study, it was shown that G-CSF downmodulates CD114 expression on the surface of neutrophils in humans and the consequent degranulation enhances gelatinase B release into plasma, which may contribute to mobilization of neutrophils or stem cells.
Collapse
Affiliation(s)
- B Jilma
- Department of Clinical Pharmacology-TARGET, Vienna University School of Medicine, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The methylotrophic yeast Pichia pastoris is now one of the standard tools used in molecular biology for the generation of recombinant protein. P. pastoris has demonstrated its most powerful success as a large-scale (fermentation) recombinant protein production tool. What began more than 20 years ago as a program to convert abundant methanol to a protein source for animal feed has been developed into what is today two important biological tools: a model eukaryote used in cell biology research and a recombinant protein production system. To date well over 200 heterologous proteins have been expressed in P. pastoris. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of these tools coupled with a better understanding of the biology of Pichia species have led to this microbe's value and power in commercial and research labs alike.
Collapse
Affiliation(s)
- J M Cregg
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | | | | | | |
Collapse
|
22
|
D'Haese A, Wuyts A, Dillen C, Dubois B, Billiau A, Heremans H, Van Damme J, Arnold B, Opdenakker G. In vivo neutrophil recruitment by granulocyte chemotactic protein-2 is assisted by gelatinase B/MMP-9 in the mouse. J Interferon Cytokine Res 2000; 20:667-74. [PMID: 10926210 DOI: 10.1089/107999000414853] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Granulocyte chemotactic protein-2 (GCP-2) of the mouse is a potent neutrophil chemotactic and activating factor in vitro and in vivo. Gelatinase B/matrix metalloproteinase-9 is released from neutrophils within 1 h after stimulation with GCP-2. In vitro neutrophil chemotaxis by GCP-2 was not impaired by specific inhibitory monoclonal antibodies (mAb) against gelatinase B, indicating that gelatinase B is not involved in chemotaxis of neutrophils through polycarbonate filters. To investigate if gelatinase B degranulation is involved in in vivo cell migration toward GCP-2, experiments were performed with gelatinase B knockout mice. When mouse GCP-2 was injected intradermally in mice, a dose-dependent neutrophil chemotactic response was observed, and this cell migration was significantly impaired in young mice by genetic gelatinase B knockout. In adult vs. young gelatinase B-deficient mice, such compensatory mechanisms as higher basal neutrophil counts and less impairment of chemotaxis toward local GCP-2 injection were observed. These experiments prove the concept that gelatinase B release under pressure of GCP-2 is a relevant, but not exclusive, effector mechanism of neutrophil chemotaxis in vivo and that known mechanisms, other than the release of gelatinase B, allow for a full-blown chemotactic response and compensate for gelatinase B deficiency in adult life in the mouse.
Collapse
Affiliation(s)
- A D'Haese
- Rega Institute for Medical Research, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 2000; 101:1833-9. [PMID: 10769285 DOI: 10.1161/01.cir.101.15.1833] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) contribute to collagen degradation and remodeling of the extracellular matrix after myocardial infarction; however, their role in myocardial dysfunction immediately after ischemia and reperfusion is unknown. METHODS AND RESULTS We measured the release of MMPs into the coronary effluent of isolated, perfused rat hearts during aerobic perfusion and reperfusion after ischemia. Aerobically perfused control hearts expressed pro-MMP-2 and MMP-2, as well as an unidentified 75-kDa gelatinase. These enzymes were also detected in the coronary effluent. After 20 minutes of global no-flow ischemia, there was a marked increase in pro-MMP-2 in the coronary effluent that peaked within the first minute of reperfusion. The release of pro-MMP-2 into the coronary effluent during reperfusion was enhanced with increasing duration of ischemia and correlated negatively with the recovery of mechanical function during reperfusion (r(2)=0.99). MMP-2 antibody (1.5 to 15 microg/mL) and the inhibitors of MMPs doxycycline (10 to 100 micromol/L) and o-phenanthroline (3 to 100 micromol/L) improved whereas MMP-2 worsened the recovery of mechanical function during reperfusion. CONCLUSIONS These results show that acute release of MMP-2 during reperfusion after ischemia contributes to cardiac mechanical dysfunction. The inhibition of MMPs may be a novel pharmacological strategy for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- P Y Cheung
- Departments of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
During the past 15 years, the methylotrophic yeast Pichia pastoris has developed into a highly successful system for the production of a variety of heterologous proteins. The increasing popularity of this particular expression system can be attributed to several factors, most importantly: (1) the simplicity of techniques needed for the molecular genetic manipulation of P. pastoris and their similarity to those of Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology; (2) the ability of P. pastoris to produce foreign proteins at high levels, either intracellularly or extracellularly; (3) the capability of performing many eukaryotic post-translational modifications, such as glycosylation, disulfide bond formation and proteolytic processing; and (4) the availability of the expression system as a commercially available kit. In this paper, we review the P. pastoris expression system: how it was developed, how it works, and what proteins have been produced. We also describe new promoters and auxotrophic marker/host strain combinations which extend the usefulness of the system.
Collapse
Affiliation(s)
- J L Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road, Beaverton, OR, USA
| | | |
Collapse
|
25
|
Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L, Masure S, Willemze R, Opdenakker G. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci U S A 1999; 96:10863-8. [PMID: 10485917 PMCID: PMC17974 DOI: 10.1073/pnas.96.19.10863] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, we demonstrated that IL-8 induces rapid mobilization of hematopoietic progenitor cells (HPC) from the bone marrow of rhesus monkeys. Because activation of neutrophils by IL-8 induces the release of gelatinase B (MMP-9), which is involved in the degradation of extracellular matrix molecules, we hypothesized that MMP-9 release might induce stem cell mobilization by cleaving matrix molecules to which stem cells are attached. Rhesus monkeys were treated with a single i.v. injection of 0.1 mg/kg human IL-8, which resulted in a 10- to 100-fold increase in HPC within 30 min after injection. Zymographic analysis revealed a dramatic instantaneous increase in the plasma levels of MMP-9, followed by the increase in circulating HPC. Enzyme levels decreased at 2 h after injection of IL-8, simultaneously with the decrease in the numbers of circulating HPC. To test the hypothesis that MMP-9 induction was involved in HPC mobilization, rhesus monkeys were treated with a highly specific inhibitory monoclonal anti-gelatinase B antibody. Anti-gelatinase B at a dose of 1-2 mg/kg completely prevented the IL-8-induced mobilization of HPC, whereas a dose of 0.1 mg/kg had only a limited effect. Preinjection of inhibitory antibodies did not preclude the IL-8-induced production and secretion of MMP-9. Pretreatment with an irrelevant control antibody did not affect IL-8-induced mobilization, showing that the inhibition by the anti-gelatinase B antibody was specific. In summary, IL-8 induces the rapid systemic release of MMP-9 with concurrent mobilization of HPC that is prevented by pretreatment with an inhibitory anti-gelatinase B antibody, indicating that MMP-9 is involved as a mediator of the IL-8-induced mobilization of HPC.
Collapse
Affiliation(s)
- J F Pruijt
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aoudjit F, Masure S, Opdenakker G, Potworowski EF, St-Pierre Y. Gelatinase B (MMP-9), but not its inhibitor (TIMP-1), dictates the growth rate of experimental thymic lymphoma. Int J Cancer 1999; 82:743-7. [PMID: 10417774 DOI: 10.1002/(sici)1097-0215(19990827)82:5<743::aid-ijc19>3.0.co;2-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysregulation of metalloproteinase production at tumor sites contributes to the modification of local stromal tissue necessary for tumor development. Gelatinase B (matrix metalloproteinase-9, MMP-9) is one of the key enzymes that have been associated with the progression of several tumors. Paradoxically, MMP-9 expression by tumor cells, most notably by lymphoma cells, is concomitant with the expression of its physiological inhibitor, TIMP-1. Not only are both genes often co-expressed in the most aggressive forms of lymphomas but also both are up-regulated upon contact with stromal cells. Since TIMP-1 is known to regulate growth in several cell types and some aggressive lymphoma cells express TIMP-1 constitutively without MMP-9, it is unclear whether the over-expression of MMP-9 is counterbalanced by TIMP-1 and whether TIMP-1 expression alone could favor the development of lymphoma. To gain further insight into the respective roles of MMP-9 and TIMP-1 in lymphoma, we generated lymphoma cell lines expressing constitutively high levels of MMP-9 or TIMP-1 and compared these cells for the ability to form thymic lymphoma in vivo. Moreover, we generated lymphoma cell lines expressing constitutively high levels of both MMP-9 and TIMP-1 to reproduce the net physiological balance resulting from the expression of both genes simultaneously and to determine which gene overrides the other. Our results show that mice injected with lymphoma cells expressing MMP-9 constitutively developed thymic lymphoma more rapidly than those injected with control lymphoma cells. Over-expression of TIMP-1 alone did not significantly influence tumor progression of lymphoma nor did it delay the capacity of MMP-9 to accelerate the development of thymic lymphoma.
Collapse
Affiliation(s)
- F Aoudjit
- Centre de Recherche en Santé Humaine, INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | | | | | |
Collapse
|
27
|
Roy N, Padmanabhan S, Smith M, Shi L, Navre M, Das G. Expression of human gelatinase B in Pichia pastoris. Protein Expr Purif 1999; 16:324-30. [PMID: 10419828 DOI: 10.1006/prep.1999.1073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Full-length human gelatinase B (FLGelB) and its C-terminal truncated form (dGelB) were expressed in Pichia pastoris strain GS115, using the Saccharomyces cerevisiae Mat alpha signal peptide. In both cases, a high level of the secreted protein could be detected by SDS-PAGE. The truncated gene was also expressed using the human gelatinase B native signal peptide. Secretion using the Mat alpha signal peptide was significantly greater than that from the native signal peptide. The recombinant products were purified and characterized biochemically. The recombinant proteins, FLGelB and dGelB, were found to have similar biochemical properties and activity to that of the human gelatinase B native protein.
Collapse
Affiliation(s)
- N Roy
- Syngene Intl. Pvt. Ltd., Bangalore, 561229, India
| | | | | | | | | | | |
Collapse
|
28
|
Pruijt JF, Willemze R, Fibbe WE. Mechanisms underlying hematopoietic stem cell mobilization induced by the CXC chemokine interleukin-8. Curr Opin Hematol 1999; 6:152-8. [PMID: 10226735 DOI: 10.1097/00062752-199905000-00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The CXC chemokine interleukin-8 induces rapid mobilization of hematopoietic progenitor cells in mice and monkeys. Antibodies against the beta 2-integrin leukocyte function-associated antigen-1 completely blocked interleukin-8-induced mobilization. This was not due to a direct effect on the hematopoietic progenitor cells, as leukocyte function-associated antigen-1 was found not to be expressed on hematopoietic progenitor cells. Additional experiments showed that interleukin-8 induces the rapid release of the metalloproteinase gelatinase B, concurrent with the mobilization of hematopoietic progenitor cells. Mobilization could be completely prevented by anti-gelatinase B antibodies. Because neutrophils express leukocyte function-associated antigen-1 and high affinity interleukin-8 receptors, and release gelatinase B upon stimulation with interleukin-8, we hypothesized that neutrophils are key mediators in interleukin-8-induced stem cell mobilization. Further studies showed that mobilization by interleukin-8 was completely absent in mice rendered neutropenic with anti-granulocytic antibodies. Taken together, these data are consistent with an essential role for neutrophils in interleukin-8-induced stem cell mobilization.
Collapse
Affiliation(s)
- J F Pruijt
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
29
|
Cuzner ML, Opdenakker G. Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 1999; 94:1-14. [PMID: 10376931 DOI: 10.1016/s0165-5728(98)00241-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of extracellular proteolysis in inflammatory demyelination, originally hypothesized as a mechanism for myelin degradation, is increasingly recognized as a pathogenetic step and as a target for therapy in human demyelinating disease. The activation of ubiquitous plasminogen by urokinase (u-PA) and tissue-type plasminogen activator (t-PA), which is associated with various neuropathologies, including multiple sclerosis (MS), is the key initiator of the activation cascade of the four classes of matrix metalloproteinases (MMPs): collagenases, stromelysins, membrane-type metalloproteinases and gelatinases. Spatiotemporal protein and mRNA expression of gelatinase B (MMP-9) and matrilysin (MMP-7) have been documented respectively in MS lesions and in the central nervous system (CNS) of animals developing experimental autoimmune encephalomyelitis (EAE). A close interaction between disease-promoting cytokines and extracellularly acting proteases is deduced from in vitro experiments. Cytokines regulate the balance between the proteases and their respective specific inhibitors at the transcriptional level, while proteolysis is a reciprocal mechanism to enhance (by activation) or downmodulate (by degradation) the specific activities of cytokines. In acute inflammation the contribution of chemokines is hierarchically organised, interleukin-8 (IL-8) and related CXC-chemokines inducing a rapid influx of neutrophils in the acute lesions and an instantaneous exocytosis of gelatinase B granules. This results in sudden and extensive damage to the CNS. In chronic disease involving autoimmune processes CC-chemokines that act mainly on mononuclear cell types appear to be more strictly regulated. As MMPs modify matrix components, promoting extravasation of lymphocytes and monocytes/macrophages and have the potential to generate encephalitogenic peptides from myelin basic protein, novel treatments for demyelinating diseases may be predicted by specific inhibition of these enzymes. Here we review plasminogen activators and the MMP family, in the context of their role in CNS inflammation and demyelination and highlight studies in which intervention in these protease cascades are and may be used to treat demyelinating diseases.
Collapse
Affiliation(s)
- M L Cuzner
- Department of Neurochemistry, Institute of Neurology, University of College London, UK
| | | |
Collapse
|
30
|
Van den Steen P, Rudd PM, Proost P, Martens E, Paemen L, Küster B, van Damme J, Dwek RA, Opdenakker G. Oligosaccharides of recombinant mouse gelatinase B variants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:587-98. [PMID: 9838222 DOI: 10.1016/s0304-4165(98)00113-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gelatinase B (matrix metalloproteinase-9, MMP-9) contains three N-glycosylation sites and a Ser/Thr/Pro-rich type V collagen domain with repetitive attachment sites for O-linked sugars. Recombinant mouse gelatinase B was expressed in the yeast Pichia pastoris and the N-linked oligosaccharides of the truncated glycoprotein variants were analysed by in gel enzymatic release followed by mass spectrometry and normal phase HPLC. This technology, despite of the limiting amount of material, allowed the analysis of the formula of N- and O-linked sugars of the different glycoprotein variants. The 112/99- and 88-kDa gelatinase B forms each contained an oligomannose series (Man8GlcNAc2 to Man15GlcNAc2). Analysis of the hydrazine-released sugars showed that the O-linked oligosaccharides contained alpha1-2, alpha1-3 or alpha1-6 linked mannoses. These results were confirmed by lectin blot analysis of intact and glycosidase-treated enzyme variants.
Collapse
Affiliation(s)
- P Van den Steen
- Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Penheiter AR, Klucas RV, Sarath G. Purification and characterization of a soybean root nodule phosphatase expressed in Pichia pastoris. Protein Expr Purif 1998; 14:125-30. [PMID: 9758760 DOI: 10.1006/prep.1998.0935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soybean root nodules possess a developmentally regulated acid phosphatase (ACP) that exhibits the highest specificity for purine 5'-nucleoside monophosphates. The enzyme is a glycosylated dimer of 28- and 31-kDa subunits, which appear to be products of the same gene but differ in posttranslational modifications. In order to perform directed mutagenesis and more extensive biochemical characterization, a means of producing recombinant ACP was needed. Several attempts were made to express ACP in Escherichia coli, but all conditions employed resulted in protein that was found entirely in inclusion bodies, and resolubilization experiments were unsuccessful. Therefore, the methyltrophic yeast Pichia pastoris was chosen as a eukaryotic expression host. The coding sequence of ACP was cloned into the pPIC9 vector to create a fusion with the yeast alpha mating factor secretion signal. The ACP:pPIC9 construct was integrated into P. pastoris strain GS115. Expression of ACP was under the control of an alcohol oxidase methanol-inducible promoter. Methanol induction resulted in secretion of ACP to a level of 10 mg/L. The recombinant ACP was purified 550-fold to homogeneity by phenyl-Sepharose, hydroxyapatite, and MonoS chromatography. The purified enzyme had Km values of 0.08 and 0.12 for 5'-AMP and 5'-GMP. These values were similar to those obtained for the native ACP heterodimer purified from soybean (0.08 and 0.15 mM for 5'-AMP and 5'-GMP). The specific activity of the recombinant enzyme for all substrates tested was 1.6- to 1.8-fold higher than the values for the purified soybean heterodimer.
Collapse
Affiliation(s)
- A R Penheiter
- Department of Biochemistry, University of Nebraska-Lincoln, Nebraska, Lincoln, 68588-0664, USA
| | | | | |
Collapse
|
32
|
Dubois B, Peumans WJ, Van Damme EJ, Van Damme J, Opdenakker G. Regulation of gelatinase B (MMP-9) in leukocytes by plant lectins. FEBS Lett 1998; 427:275-8. [PMID: 9607327 DOI: 10.1016/s0014-5793(98)00449-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The stimulatory or inhibitory effects of plant lectins on the production of gelatinase A (MMP-2) and gelatinase B (MMP-9) by mononuclear white blood cells was investigated by substrate zymography. Leukocyte cultures from 24-h old buffy coats were spontaneously activated and produced high levels of gelatinase B. Using such cultures the suppressing activity of the Datura stramonium, Viscum album, Bauhinia purpurea, Triticum aestivum and Maackia amurensis lectins on gelatinase B induction were demonstrated. When fresh leukocyte preparations from single blood donors were used, low levels of gelatinase B were produced. The induction of gelatinase B was confirmed for concanavalin A and phytohaemagglutinin (PHA-L4). In addition, the Urtica dioica, Calystegia sepium, Convolvulus arvensis and Colchicum autumnale lectins were documented as novel and potent inducers of gelatinase B. Since high circulating gelatinase B levels are associated with specific pathologies, including shock syndromes, the acute toxicity of many lectins might be partially mediated or influenced by gelatinase induction.
Collapse
Affiliation(s)
- B Dubois
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
33
|
Abstract
The function of any known gene is often found by DNA or protein homology scanning. Conversely, it is equally rewarding to search for the genetic basis behind a known function. Here, Ghislain Opdenakker and colleagues examine the known and possible novel genes and molecular events underlying the phenomenon of leukocytosis, one of the most common clinical manifestations of inflammatory problems.
Collapse
Affiliation(s)
- G Opdenakker
- Rega Institute for Medical Research, University of Leuven, Belgium
| | | | | |
Collapse
|