1
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Fazleen A, Wilkinson T. The emerging role of proteases in α 1-antitrypsin deficiency and beyond. ERJ Open Res 2021; 7:00494-2021. [PMID: 34820446 PMCID: PMC8607071 DOI: 10.1183/23120541.00494-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
α1-Antitrypsin deficiency (AATD) has been historically under-recognised and under-diagnosed; recently it has begun to receive greater interest in terms of attempts at deeper elucidation of pathology and treatment options. However, the concept of disease phenotypes within AATD (emphysema, chronic bronchitis, bronchiectasis or a combination of phenotypes) has not been proposed or studied. Of the three neutrophil serine proteases, neutrophil elastase was historically believed to be the sole contributor to disease pathology in AATD. Recently, Proteinase-3 has been increasingly studied as an equal, if not greater, contributor to the disease process. Cathepsin G, however, has not been extensively evaluated in this area. Matrix metalloproteinases have also been mentioned in the pathogenesis of AATD but have not been widely explored. This article considers the available evidence for differential protease activity in patients with AATD, including the contribution to distinct phenotypes of the disease. Owing to limited literature in this area, extrapolations from studies of other chronic lung diseases with similar phenotypes, including COPD and bronchiectasis, have been made. We consider a new framework of understanding defined by protease-driven endotypes of disease which may lead to new opportunities for precision medicine.
Collapse
Affiliation(s)
- Aishath Fazleen
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Wilkinson
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Miyagawa T, Asano Y, Saigusa R, Hirabayashi M, Yamashita T, Taniguchi T, Takahashi T, Nakamura K, Miura S, Yoshizaki A, Miyagaki T, Sato S. A potential contribution of trappin‐2 to the development of vasculopathy in systemic sclerosis. J Eur Acad Dermatol Venereol 2019; 33:753-760. [DOI: 10.1111/jdv.15387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
Affiliation(s)
- T. Miyagawa
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Y. Asano
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - R. Saigusa
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - M. Hirabayashi
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - T. Yamashita
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - T. Taniguchi
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - T. Takahashi
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - K. Nakamura
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - S. Miura
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - A. Yoshizaki
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - T. Miyagaki
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - S. Sato
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| |
Collapse
|
4
|
Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res 2018; 19:180. [PMID: 30236095 PMCID: PMC6149181 DOI: 10.1186/s12931-018-0883-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common, multifactorial lung disease which results in significant impairment of patients' health and a large impact on society and health care burden. It is believed to be the result of prolonged, destructive neutrophilic inflammation which results in progressive damage to lung structures. During this process, large quantities of neutrophil serine proteinases (NSPs) are released which initiate the damage and contribute towards driving a persistent inflammatory state.Neutrophil elastase has long been considered the key NSP involved in the pathophysiology of COPD. However, in recent years, a significant role for Proteinase 3 (PR3) in disease development has emerged, both in COPD and other chronic inflammatory conditions. Therefore, there is a need to investigate the importance of PR3 in disease development and hence its potential as a therapeutic target. Research into PR3 has largely been confined to its role as an autoantigen, but PR3 is involved in triggering inflammatory pathways, disrupting cellular signalling, degrading key structural proteins, and pathogen response.This review summarises what is presently known about PR3, explores its involvement particularly in the development of COPD, and indicates areas requiring further investigation.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK.
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| |
Collapse
|
5
|
Giovannoni MP, Schepetkin IA, Quinn MT, Cantini N, Crocetti L, Guerrini G, Iacovone A, Paoli P, Rossi P, Bartolucci G, Menicatti M, Vergelli C. Synthesis, biological evaluation, and molecular modelling studies of potent human neutrophil elastase (HNE) inhibitors. J Enzyme Inhib Med Chem 2018; 33:1108-1124. [PMID: 29969929 PMCID: PMC6032016 DOI: 10.1080/14756366.2018.1480615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report the synthesis and biological evaluation of a new series of 3- or 4-(substituted)phenylisoxazolones as HNE inhibitors. Due to tautomerism of the isoxazolone nucleus, two isomers were obtained as final compounds (2-NCO and 5-OCO) and the 2-NCO derivatives were the most potent with IC50 values in the nanomolar range (20–70 nM). Kinetic experiments indicated that 2-NCO 7d and 5-OCO 8d are both competitive HNE inhibitors. Molecular modelling on 7d and 8d suggests for the latter a more crowded region about the site of the nucleophilic attack, which could explain its lowered activity. In addition molecular dynamics (MD) simulations showed that the isomer 8d appears more prone to form H-bond interactions which, however, keep the reactive sites quite distant for the attack by Ser195. By contrast the amide 7d appears more mobile within the active pocket, since it makes single H-bond interactions affording a favourable orientation for the nucleophilic attack.
Collapse
Affiliation(s)
- Maria Paola Giovannoni
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Igor A Schepetkin
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Mark T Quinn
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Niccolò Cantini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Letizia Crocetti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Gabriella Guerrini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Antonella Iacovone
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Paola Paoli
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Patrizia Rossi
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Gianluca Bartolucci
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Marta Menicatti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Claudia Vergelli
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
6
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
7
|
Guillon A, Brea D, Morello E, Tang A, Jouan Y, Ramphal R, Korkmaz B, Perez-Cruz M, Trottein F, O'Callaghan RJ, Gosset P, Si-Tahar M. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense. Virulence 2017; 8:810-820. [PMID: 27792459 PMCID: PMC5626239 DOI: 10.1080/21505594.2016.1253658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022] Open
Abstract
The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Eric Morello
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Youenn Jouan
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Reuben Ramphal
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Brice Korkmaz
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
| | - Magdiel Perez-Cruz
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Francois Trottein
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Richard J. O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Philippe Gosset
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| |
Collapse
|
8
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2017; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
9
|
Mkaouar H, Akermi N, Mariaule V, Boudebbouze S, Gaci N, Szukala F, Pons N, Marquez J, Gargouri A, Maguin E, Rhimi M. Siropins, novel serine protease inhibitors from gut microbiota acting on human proteases involved in inflammatory bowel diseases. Microb Cell Fact 2016; 15:201. [PMID: 27894344 PMCID: PMC5127057 DOI: 10.1186/s12934-016-0596-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/08/2016] [Indexed: 02/05/2023] Open
Abstract
Background In eukaryotes, the serpins constitute a wide family of protease inhibitors regulating many physiological pathways. Many reports stressed the key role of serpins in several human physiopathologies including mainly the inflammatory bowel diseases. In this context, eukaryotic serpins were largely studied and their use to limit inflammation was reported. In comparison to that, bacterial serpins and mainly those from human gut microbiota remain poorly studied. Results The two genes encoding for putative serpins from the human gut bacterium Eubacterium sireaum, display low sequence identities. These genes were overexpressed and the encoded proteins, named Siropins, were purified. Activity studies demonstrated that both purified proteins inhibited serine proteases but surprisingly they preferentially inhibited two human serine proteases (Human Neutrophil Elastase and Proteinase3). The biochemical characterization of these Siropins revealed that Siropin 1 was the most active and stable at low pH values while Siropin 2 was more thermoactive and thermostable. Kinetic analysis allowed the determination of the stoichiometry of inhibition (SI) which was around 1 and of the association rate constants of 7.7 × 104 for the Human Neutrophil Elastase and 2.6 × 105 for the Proteinase3. Moreover, both Siropins displayed the ability to inhibit proteases usually present in fecal waters. Altogether our data indicate the high efficiency of Siropins and their probable involvement in the control of the overall intestine protease activity. Conclusions Here we report the purification and the biochemical characterization of two novel serpins originated from Eubacterium sireaum, a human gastro-intestinal tract commensal bacteria. These proteins that we called Siropins, efficiently inhibited two human proteases reported to be associated with inflammatory bowel diseases. The determination of the biochemical properties of these enzymes revealed different temperature and pH behaviours that may reflect adaptation of this human commensal bacterium to different ecological environments. To the best of our knowledge, it is the first bacterial serpins showing an attractive inhibition of fecal proteases recovered from a mice group with chemically induced inflammation. Altogether our data highlight the interesting potential of Siropins, and serpins from the human gut microbiota in general, to be used as new alternative to face inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0596-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Héla Mkaouar
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Nizar Akermi
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Vincent Mariaule
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Cedex 9, Grenoble, France
| | - Samira Boudebbouze
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nadia Gaci
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Florette Szukala
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, Institut National de la Recherche Agronomique, US 1367 Metagenopolis, Jouy-en-Josas, France
| | - Josan Marquez
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Cedex 9, Grenoble, France
| | - Ali Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Emmanuelle Maguin
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Moez Rhimi
- UMR 1319 Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
10
|
Di Cesare Mannelli L, Micheli L, Cinci L, Maresca M, Vergelli C, Pacini A, Quinn MT, Paola Giovannoni M, Ghelardini C. Effects of the neutrophil elastase inhibitor EL-17 in rat adjuvant-induced arthritis. Rheumatology (Oxford) 2016; 55:1285-94. [PMID: 27032424 PMCID: PMC5009473 DOI: 10.1093/rheumatology/kew055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/18/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Neutrophil elastase (NE), a granule-associated enzyme, participates in connective tissue breakdown and promotes cytokine release and specific receptor activation during various inflammatory diseases like RA. NE is increased in the SF and cartilage of RA patients and represents a target for the development of new therapeutic possibilities. The present research aimed to evaluate the preclinical pharmacological profile of the N-benzoylpyrazole derivative EL-17, a potent and selective NE inhibitor, in a rat model of RA. METHODS Complete Freund's Adjuvant (CFA) was injected in the tibiotarsal joint and the effect of acute or repeated treatments with EL-17 (1-30 mg/kg by mouth) were evaluated. RESULTS On day 14 after CFA injection, a single administration of EL-17 significantly reduced CFA-dependent hypersensitivity to mechanical noxious stimuli and the postural unbalance related to spontaneous pain. To evaluate the preventive efficacy, EL-17 was administered daily starting from the day of CFA treatment. Behavioural measurements performed on days 7 and 14 showed a progressive efficacy of EL-17 against hypersensitivity to mechanical noxious and non-noxious stimuli, as well as a decrease of hind limb weight-bearing alterations. Histological evaluation of the tibiotarsal joint (day 14) demonstrated significant prevention of articular derangement after EL-17 (30 mg/kg) treatment. The protective effects of EL-17 directly correlated with a complete reversion of the plasma NE activity increase induced by CFA. CONCLUSIONS The NE inhibitor EL-17 relieved articular pain after acute administration. Furthermore, repeated treatment reduced the development of hypersensitivity and protected joint tissue, revealing a disease-modifying profile.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section
| | - Claudia Vergelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmaceutical and Nutraceutical Section
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, DMSC, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Maria Paola Giovannoni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmaceutical and Nutraceutical Section
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section
| |
Collapse
|
11
|
Loth K, Alami SAI, Habès C, Garrido S, Aucagne V, Delmas AF, Moreau T, Zani ML, Landon C. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:223-226. [PMID: 26878852 DOI: 10.1007/s12104-016-9671-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France.
| | - Soha Abou Ibrahim Alami
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Chahrazed Habès
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Solène Garrido
- Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Faculté de Médecine, INSERM U1100, 10 Bd Tonnellé, 37032, Tours Cedex, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Thierry Moreau
- Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Faculté de Médecine, INSERM U1100, 10 Bd Tonnellé, 37032, Tours Cedex, France
| | - Marie-Louise Zani
- Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Faculté de Médecine, INSERM U1100, 10 Bd Tonnellé, 37032, Tours Cedex, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| |
Collapse
|
12
|
Kaschwich M, Lützen U, Zhao Y, Tjiong A, Marx M, Haenisch S, Wiedow O, Preuss S, Culman J, Zuhayra M. Biodistribution and pharmacokinetics of the (99m)Tc labeled human elastase inhibitor, elafin, in rats. Drug Metab Pharmacokinet 2016; 31:146-55. [PMID: 26948953 DOI: 10.1016/j.dmpk.2016.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Abstract
Elafin is a potent reversible inhibitor of the pro-inflammatory proteases leukocyte elastase and protease 3. It is currently in clinical development for the use in postoperative inflammatory diseases. We investigated the pharmacokinetics of (99m)Tc-labeled elafin ((99m)Tc-Elafin) in blood and individual organs in rat after bolus intravenous injection using the single photon emission tomography (SPECT). (99m)Tc-Elafin predominantly accumulated in the kidney reaching a maximum of 8.5% ± 0.1% of the injected dose per gram (ID/g) at 5 min post injection (p.i) and decreased only slowly during 24 h. In contrast, the initially high radio activity recorded in the other organs rapidly decreased parallel to the radioactivity detected in blood. The blood kinetics fits to a two compartment kinetics model. The radio activity in the dissected kidney was 4.98 ± 1.24%ID/g 24 h p.i, while in other organs, including the brain, no accumulation of (99m)Tc-Elafin was detected. At this time point 30% of the detected radioactivity in the kidney was identified to be not metabolized (99m)Tc-Elafin. In conclusion, the blood and organ-specific kinetic data provide a basis for planning of adequate dosing regimens and the high accumulation of intact elafin in the kidney favors clinical developments targeting inflammatory kidney diseases, such as chronic allograft nephropathy after kidney transplantation.
Collapse
Affiliation(s)
- Mark Kaschwich
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Arnold-Heller-Strasse 3, D-24105 Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Karl Lennert Cancer Center North, Feldstrasse 21, D-24105, Germany
| | - Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Karl Lennert Cancer Center North, Feldstrasse 21, D-24105, Germany
| | - Angelina Tjiong
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Karl Lennert Cancer Center North, Feldstrasse 21, D-24105, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Karl Lennert Cancer Center North, Feldstrasse 21, D-24105, Germany
| | - Sierk Haenisch
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Arnold-Heller-Strasse 3, D-24105 Kiel, Germany
| | - Oliver Wiedow
- Department of Dermatology, Venereology and Allergology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Schittenhelmstrasse 7, D-24105 Kiel, Germany
| | - Stefanie Preuss
- Department of General Pediatrics, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Arnold-Heller-Strasse 9, D-24105 Kiel, Germany
| | - Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Arnold-Heller-Strasse 3, D-24105 Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Karl Lennert Cancer Center North, Feldstrasse 21, D-24105, Germany.
| |
Collapse
|
13
|
Meyer M, Jaspers I. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1189-201. [PMID: 25888573 PMCID: PMC4587599 DOI: 10.1152/ajplung.00028.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The respiratory epithelium functions as a central orchestrator to initiate and organize responses to inhaled stimuli. Proteases and antiproteases are secreted from the respiratory epithelium and are involved in respiratory homeostasis. Modifications to the protease/antiprotease balance can lead to the development of lung diseases such as emphysema or chronic obstructive pulmonary disease. Furthermore, altered protease/antiprotease balance, in favor for increased protease activity, is associated with increased susceptibility to respiratory viral infections such as influenza virus. However, nutritional antioxidants induce antiprotease expression/secretion and decrease protease expression/activity, to protect against viral infection. As such, this review will elucidate the impact of this balance in the context of respiratory viral infection and lung disease, to further highlight the role epithelial cell-derived proteases and antiproteases contribute to respiratory immune function. Furthermore, this review will offer the use of nutritional antioxidants as possible therapeutics to boost respiratory mucosal responses and/or protect against infection.
Collapse
Affiliation(s)
- Megan Meyer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
García-Fernández R, Perbandt M, Rehders D, Ziegelmüller P, Piganeau N, Hahn U, Betzel C, Chávez MDLÁ, Redecke L. Three-dimensional Structure of a Kunitz-type Inhibitor in Complex with an Elastase-like Enzyme. J Biol Chem 2015; 290:14154-65. [PMID: 25878249 DOI: 10.1074/jbc.m115.647586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Elastase-like enzymes are involved in important diseases such as acute pancreatitis, chronic inflammatory lung diseases, and cancer. Structural insights into their interaction with specific inhibitors will contribute to the development of novel anti-elastase compounds that resist rapid oxidation and proteolysis. Proteinaceous Kunitz-type inhibitors homologous to the bovine pancreatic trypsin inhibitor (BPTI) provide a suitable scaffold, but the structural aspects of their interaction with elastase-like enzymes have not been elucidated. Here, we increased the selectivity of ShPI-1, a versatile serine protease inhibitor from the sea anemone Stichodactyla helianthus with high biomedical and biotechnological potential, toward elastase-like enzymes by substitution of the P1 residue (Lys(13)) with leucine. The variant (rShPI-1/K13L) exhibits a novel anti-porcine pancreatic elastase (PPE) activity together with a significantly improved inhibition of human neuthrophil elastase and chymotrypsin. The crystal structure of the PPE·rShPI-1/K13L complex determined at 2.0 Å resolution provided the first details of the canonical interaction between a BPTI-Kunitz-type domain and elastase-like enzymes. In addition to the essential impact of the variant P1 residue for complex stability, the interface is improved by increased contributions of the primary and secondary binding loop as compared with similar trypsin and chymotrypsin complexes. A comparison of the interaction network with elastase complexes of canonical inhibitors from the chelonian in family supports a key role of the P3 site in ShPI-1 in directing its selectivity against pancreatic and neutrophil elastases. Our results provide the structural basis for site-specific mutagenesis to further improve the binding affinity and/or direct the selectivity of BPTI-Kunitz-type inhibitors toward elastase-like enzymes.
Collapse
Affiliation(s)
- Rossana García-Fernández
- From the Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, 20146 Habana, Cuba
| | - Markus Perbandt
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany, the Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany, and
| | - Dirk Rehders
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| | - Patrick Ziegelmüller
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Nicolas Piganeau
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Ulrich Hahn
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | - Christian Betzel
- the Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 22761 Hamburg, Germany
| | | | - Lars Redecke
- the Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany, and Institute of Biochemistry, University of Lübeck, c/o Deutsches Elektronen Synchrotron (DESY), 22603 Hamburg, Germany
| |
Collapse
|
15
|
Small DM, Zani ML, Quinn DJ, Dallet-Choisy S, Glasgow AMA, O'Kane C, McAuley DF, McNally P, Weldon S, Moreau T, Taggart CC. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation. Mol Ther 2014; 23:24-31. [PMID: 25189740 DOI: 10.1038/mt.2014.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.
Collapse
Affiliation(s)
- Donna M Small
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Derek J Quinn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Arlene M A Glasgow
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Cecilia O'Kane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Danny F McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McNally
- 1] Our Lady's Hospital for Sick Children, Dublin, Ireland [2] National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Sinéad Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Thierry Moreau
- CEPR, INSERM U1100/EA6305, University of Tours, Tours, France
| | - Clifford C Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
16
|
Barros SC, Louro RO, Micaêlo NM, Martins JA, Marcos JC, Cavaco-Paulo A. NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Xue X, Zheng Q, Wu H, Zou L, Li P. Different responses to mechanical injury in neonatal and adult ovine articular cartilage. Biomed Eng Online 2013; 12:53. [PMID: 23773399 PMCID: PMC3691644 DOI: 10.1186/1475-925x-12-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2013] [Indexed: 12/25/2022] Open
Abstract
Background Articular cartilage injury remains a major challenge in orthopedic surgery. This study aimed to identify differences in gene expression and molecular responses between neonatal and adult articular cartilage during the healing of an injury. Methods An established in vitro model was used to compare the transcriptional response to cartilage injury in neonatal and adult sheep by microarray analysis of gene expression. Total RNA was isolated from tissue samples, linearly amplified, and 15,208 ovine probes were applied to cDNA microarray. Validation for selected genes was obtained by real-time quantitative polymerase chain reaction (RT-qPCR). Results We found 1,075 (11.6%) differentially expressed probe sets in adult injured cartilage relative to normal cartilage. A total of 1,016 (11.0%) probe sets were differentially expressed in neonatal injured cartilage relative to normal cartilage. A total of 1,492 (16.1%) probe sets were differentially expressed in adult normal cartilage relative to neonatal normal cartilage. A total of 1,411 (15.3%) probe sets were differentially expressed in adult injured cartilage relative to neonatal injured cartilage. Significant functional clusters included genes associated with wound healing, articular protection, inflammation, and energy metabolism. Selected genes (PPARG, LDH, TOM, HIF1A, SMAD7, and NF-κB) were also found and validated by RT-qPCR. Conclusions There are significant differences in gene expression between neonatal and adult ovine articular cartilage following acute injury. They are partly due to intrinsic differences in the process of development, and partly to different biological responses to mechanical trauma between neonatal and adult articular cartilage.
Collapse
Affiliation(s)
- Xuhong Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
18
|
Hunt KK, Wingate H, Yokota T, Liu Y, Mills GB, Zhang F, Fang B, Su CH, Zhang M, Yi M, Keyomarsi K. Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Breast Cancer Res 2013; 15:R3. [PMID: 23320734 PMCID: PMC3672770 DOI: 10.1186/bcr3374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/03/2013] [Indexed: 12/23/2022] Open
Abstract
Introduction Elafin is an elastase-specific inhibitor with increased transcription in normal mammary epithelial cells compared to mammary carcinoma cells. In this report, we test the hypothesis that inhibition of elastase, through induction of elafin, leads to inhibition of human breast cancer cell viability and, therefore, predicts survival in breast cancer patients. Methods Panels of normal and immortalized breast epithelial cells, along with breast carcinoma cells, were used to examine the impact of adenoviral-mediated elafin expression or shRNA-mediated inhibition of elastase on the growth of cells and xenografts in nude mice. To determine the prognostic significance of decreased elafin in patients with invasive breast cancer, previously published gene array datasets were interrogated. Results Elafin expression had no effect on non-tumorigenic cells but resulted in marked inhibition of cell growth in breast cancer cell lines. Control-treated xenografts generated a tumor burden that necessitated sacrifice within one month of initial treatment, whereas xenograft-bearing mice treated with Ad-Elafin were alive at eight months with marked reduction in tumor growth. Elastase inhibition mimicked these results, showing decreased tumor cell growth in vitro and in vivo. Low expression of elafin gene correlated with significantly reduced time to relapse, and when combined with high expression of elastase gene was associated with decreased survival in breast cancer patients. Conclusion Our data suggest that elafin plays a direct role in the suppression of tumors through inhibition of elastase and thus serves as a prognostic indicator for breast cancer patients.
Collapse
|
19
|
Tanga A, Saidi A, Jourdan ML, Dallet-Choisy S, Zani ML, Moreau T. Protection of lung epithelial cells from protease-mediated injury by trappin-2 A62L, an engineered inhibitor of neutrophil serine proteases. Biochem Pharmacol 2012; 83:1663-73. [DOI: 10.1016/j.bcp.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
|
20
|
Alam SR, Newby DE, Henriksen PA. Role of the endogenous elastase inhibitor, elafin, in cardiovascular injury. Biochem Pharmacol 2012; 83:695-704. [DOI: 10.1016/j.bcp.2011.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 02/05/2023]
|
21
|
SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2012; 39:1441-6. [PMID: 21936830 DOI: 10.1042/bst0391441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).
Collapse
|
22
|
War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans 2012; 39:1427-32. [PMID: 21936827 DOI: 10.1042/bst0391427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite tremendous advances in our understanding of HIV/AIDS since the first cases were reported 30 years ago, we are still a long way from understanding critical steps of HIV acquisition, pathogenesis and correlates of protection. Our new understanding of the importance of the mucosa as a target for HIV infection, as well as our recent observations showing that altered expression and responses of innate pattern recognition receptors are significantly associated with pathogenesis and resistance to HIV infection, indicate that correlates of immunity to HIV are more likely to be associated with mucosal and innate responses. Most of the heterosexual encounters do not result in productive HIV infection, suggesting that the female genital tract is protected against HIV by innate defence molecules, such as antiproteases, secreted mucosally. The present review highlights the role and significance of the serine protease inhibitors SLPI (secretory leucocyte protease inhibitor), trappin-2, elafin and ps20 (prostate stromal protein 20 kDa) in HIV susceptibility and infection. Interestingly, in contrast with SLPI, trappin-2 and elafin, ps20 has been shown to enhance HIV infectivity. Thus understanding the balance and interaction of these factors in mucosal fluids may significantly influence HIV infection.
Collapse
|
23
|
Laugisch O, Schacht M, Guentsch A, Kantyka T, Sroka A, Stennicke HR, Pfister W, Sculean A, Potempa J, Eick S. Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Mol Oral Microbiol 2011; 27:45-56. [PMID: 22230465 DOI: 10.1111/j.2041-1014.2011.00631.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In periodontitis, an effective host-response is primarily related to neutrophils loaded with serine proteases, including elastase (NE) and protease 3 (PR3), the extracellular activity of which is tightly controlled by endogenous inhibitors. In vitro these inhibitors are degraded by gingipains, cysteine proteases produced by Porphyromonas gingivalis. The purpose of this study was to determine the level of selected protease inhibitors in gingival crevicular fluid (GCF) in relation to periodontal infection. The GCF collected from 31 subjects (nine healthy controls, seven with gingivitis, five with aggressive periodontitis and 10 with chronic periodontitis) was analyzed for the levels of elafin and secretory leukocyte protease inhibitor (SLPI), two main tissue-derived inhibitors of neutrophil serine proteases. In parallel, activity of NE, PR3 and arginine-specific gingipains (Rgps) in GCF was measured. Finally loads of P. gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola were determined. The highest values of elafin were found in aggressive periodontitis and the lowest in controls. The quantity of elafin correlated positively with the load of P. gingivalis, Ta. forsythia and Tr. denticola, as well as with Rgps activity. In addition, NE activity was positively associated with the counts of those bacterial species, but not with the amount of elafin. In contrast, the highest concentrations of SLPI were found in periodontally healthy subjects whereas amounts of this inhibitor were significantly decreased in patients infected with P. gingivalis. Periodontopathogenic bacteria stimulate the release of NE and PR3, which activities escape the control through degradation of locally produced inhibitors (SLPI and elafin) by host-derived and bacteria-derived proteases.
Collapse
Affiliation(s)
- O Laugisch
- Department of Periodontology, Dental School, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baranger K, Zani ML, Labas V, Dallet-Choisy S, Moreau T. Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate. PLoS One 2011; 6:e20976. [PMID: 21687692 PMCID: PMC3110255 DOI: 10.1371/journal.pone.0020976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.
Collapse
Affiliation(s)
- Kévin Baranger
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Marie-Louise Zani
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Valérie Labas
- Laboratoire de spectrométrie de masse, Plateau d'analyse intégrative des biomarqueurs cellulaires et moléculaires, INRA, Tours-Nouzilly, France
| | - Sandrine Dallet-Choisy
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Thierry Moreau
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
- * E-mail:
| |
Collapse
|
25
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 604] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
26
|
Guyot N, Bergsson G, Butler MW, Greene CM, Weldon S, Kessler E, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases. Biol Chem 2010; 391:705-16. [PMID: 20370321 DOI: 10.1515/bc.2010.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P. aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P. aeruginosa metalloproteinases, which can affect different biological functions of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Department of Medicine, Pulmonary Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
28
|
Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery. Br J Pharmacol 2010; 158:1048-58. [PMID: 19845686 DOI: 10.1111/j.1476-5381.2009.00448.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|
29
|
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18:579-94. [PMID: 19241385 DOI: 10.1002/pro.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin-2 are endogeneous low-molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol-based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin-2 variant, trappin-2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin-2 A62L are tight-binding inhibitors of all three NSPs with subnanomolar K(i)s, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane-bound forms of all three NSPs. The trappin-2 A62L and elafin-SLPI chimeras, like wild-type elafin and trappin-2, can be covalently cross-linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Marie-Louise Zani
- Inserm U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie Fonctionnelle, University of Tours, France
| | | | | | | | | |
Collapse
|
30
|
Guyot N, Butler MW, McNally P, Weldon S, Greene CM, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J Biol Chem 2008; 283:32377-85. [PMID: 18799464 PMCID: PMC2583315 DOI: 10.1074/jbc.m803707200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/19/2008] [Indexed: 12/15/2022] Open
Abstract
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Pulmonary Research Division, Department of Medicine, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baranger K, Zani ML, Chandenier J, Dallet-Choisy S, Moreau T. The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J 2008; 275:2008-20. [PMID: 18341586 DOI: 10.1111/j.1742-4658.2008.06355.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trappin-2 (also known as pre-elafin) is an endogenous inhibitor of neutrophil serine proteases and is involved in the control of excess proteolysis, especially in inflammatory events, along with the structurally related secretory leucocyte proteinase inhibitor. Secretory leucocyte proteinase inhibitor has been shown to have antibacterial and antifungal properties, whereas recent data indicate that trappin-2 has antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In the present study, we tested the antibacterial properties of trappin-2 towards other respiratory pathogens. We found that trappin-2, at concentrations of 5-20 microm, has significant activity against Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Branhamella catarrhalis and the pathogenic fungi Aspergillus fumigatus and Candida albicans, in addition to P. aeruginosa and S. aureus. A similar antimicrobial activity was observed with trappin-2 A62D/M63L, a trappin-2 variant that has lost its antiprotease properties, indicating that trappin-2 exerts its antibacterial effects through mechanisms independent from its intrinsic antiprotease capacity. Furthermore, the antibacterial and antifungal activities of trappin-2 were sensitive to NaCl and heparin, demonstrating that its mechanism of action is most probably dependent on its cationic nature. This enables trappin-2 to interact with the membranes of target organisms and disrupt them, as shown by our scanning electron microscopy analyses. Thus, trappin-2 not only provides an antiprotease shield, but also may play an important role in the innate defense of the human lungs and mucosae against pathogenic microorganisms.
Collapse
Affiliation(s)
- Kévin Baranger
- INSERM U618, Université François Rabelais, Tours, France
| | | | | | | | | |
Collapse
|
32
|
Nukumi N, Iwamori T, Kano K, Naito K, Tojo H. Whey acidic protein (WAP) regulates the proliferation of mammary epithelial cells by preventing serine protease from degrading laminin. J Cell Physiol 2007; 213:793-800. [PMID: 17541952 DOI: 10.1002/jcp.21155] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Whey acidic protein (WAP) is a major whey protein in milk that has structural similarity to the family of serine protease inhibitors with WAP motif domains characterized by a four-disulfide core. We previously reported that enforced expression of the mouse WAP transgene in mammary epithelial cells inhibits their proliferation in vitro and in vivo by means of suppressing cyclin D1 expression (Nukumi et al., 2004, Dev Biol 274: 31-44). This study was conducted in order to clarify the molecular mechanism of the inhibitory function of WAP in HC11 cells, a mammary epithelial cell line. The assembly of laminin, a component in the extracellular matrix, was much more prominent around WAP-clonal HC11 cells that stably expressed the WAP transgene than around mock-clonal HC11 cells, and the proliferation of WAP-clonal HC11 cells was particularly inhibited in the presence of laminin. A laminin degradation assay demonstrated that WAP inhibited the activity of the pancreatic elastase-mediated cleavage of laminin B1 and the phosphorylation of ERK1/2. ERK1/2 phosphorylation was blocked by an inhibitor of the epidermal growth factor (EGF) receptor AG1478. Treatment with pancreatic elastase was found to enhance the proliferation of mock-clonal HC11 cells, but had no effect on that of WAP-clonal HC11 cells. The proliferation of WAP-clonal HC11 cells was recovered by the addition of exogenous EGF. We concluded that WAP plays some role in regulating the proliferation of mammary epithelial cells by preventing elastase-type serine protease from carrying out laminin degradation and thereby suppressing the MAP kinase signal pathway.
Collapse
Affiliation(s)
- Naoko Nukumi
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
33
|
Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 2007; 90:227-42. [PMID: 18021746 DOI: 10.1016/j.biochi.2007.10.009] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/19/2007] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils form a primary line of defense against bacterial infections using complementary oxidative and non-oxidative pathways to destroy phagocytized pathogens. The three serine proteases elastase, proteinase 3 and cathepsin G, are major components of the neutrophil primary granules that participate in the non-oxidative pathway of intracellular pathogen destruction. Neutrophil activation and degranulation results in the release of these proteases into the extracellular medium as proteolytically active enzymes, part of them remaining exposed at the cell surface. Extracellular neutrophil serine proteases also help kill bacteria and are involved in the degradation of extracellular matrix components during acute and chronic inflammation. But they are also important as specific regulators of the immune response, controlling cellular signaling through the processing of chemokines, modulating the cytokine network, and activating specific cell surface receptors. Neutrophil serine proteases are also involved in the pathogenicity of a variety of human diseases. This review focuses on the structural and functional properties of these proteases that may explain their specific biological roles, and facilitate their use as molecular targets for new therapeutic strategies.
Collapse
|
34
|
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2007; 90:284-95. [PMID: 17964057 DOI: 10.1016/j.biochi.2007.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/07/2007] [Indexed: 12/31/2022]
Abstract
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.
Collapse
Affiliation(s)
- Thierry Moreau
- INSERM U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie fonctionnelle, Université François Rabelais, Tours, France.
| | | | | | | | | | | |
Collapse
|
35
|
Doucet A, Bouchard D, Janelle M, Bellemare A, Gagné S, Tremblay G, Bourbonnais Y. Characterization of human pre-elafin mutants: full antipeptidase activity is essential to preserve lung tissue integrity in experimental emphysema. Biochem J 2007; 405:455-63. [PMID: 17489739 PMCID: PMC2267300 DOI: 10.1042/bj20070020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pre-elafin is a tight-binding inhibitor of neutrophil elastase and myeloblastin; two enzymes thought to contribute to tissue damage in lung emphysema. Previous studies have established that pre-elafin is also an effective anti-inflammatory molecule. However, it is not clear whether both functions are linked to the antipeptidase activity of pre-elafin. As a first step toward elucidating the structure/function relationship of this protein, we describe here the construction and characterization of pre-elafin variants with attenuated antipeptidase potential. In these mutants, the P1' methionine residue of the inhibitory loop is replaced by either a lysine (pre-elafinM25K) or a glycine (pre-elafinM25G) residue. Both mutated variants are stable and display biochemical properties undistinguishable from WT (wild-type) pre-elafin. However, compared with WT pre-elafin, their inhibitory constants are increased by one to four orders of magnitude toward neutrophil elastase, myeloblastin and pancreatic elastase, depending on the variants and enzymes tested. As suggested by molecular modelling, this attenuated inhibitory potential correlates with decreased van der Waals interactions between the variants and the enzymes S1' subsite. In elastase-induced experimental emphysema in mice, only WT pre-elafin protected against tissue destruction, as assessed by the relative airspace enlargement measured using lung histopathological sections. Pre-elafin and both mutants prevented transient neutrophil alveolitis. However, even the modestly affected pre-elafinM25K mutant, as assayed in vitro with small synthetic substrates, was a poor inhibitor of the neutrophil elastase and myeloblastin elastolytic activity measured with insoluble elastin. We therefore conclude that full antipeptidase activity of pre-elafin is essential to protect against lung tissue lesions in this experimental model.
Collapse
Affiliation(s)
- Alain Doucet
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Dominique Bouchard
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Marie France Janelle
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Audrey Bellemare
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Stéphane Gagné
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Guy M. Tremblay
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Yves Bourbonnais
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Attucci S, Gauthier A, Korkmaz B, Delépine P, Martino MFD, Saudubray F, Diot P, Gauthier F. EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J Pharmacol Exp Ther 2006; 318:803-9. [PMID: 16627747 DOI: 10.1124/jpet.106.103440] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EPI-hNE4 (depelstat) is a potent inhibitor of human neutrophil elastase derived from human inter-alpha-trypsin inhibitor and designed to control the excess proteolytic activity in the sputum of cystic fibrosis patients. We analyzed its resistance to the proteolysis it is likely to encounter at inflammatory sites in vivo. EPI-hNE4 resisted hydrolysis by neutrophil matrix metalloproteases (MMPs) and serine proteases that are released from activated neutrophils in inflammatory lung secretions, including MMP-8 and MMP-9, and the elastase-related protease 3 and cathepsin G. It also resisted degradation by epithelial lung cell MMP-7 but was broken down by the Pseudomonas aeruginosa metalloelastase pseudolysin, when used in a purified system, but not when this protease competed with equimolar amounts of neutrophil elastase. We also investigated the inhibitory properties of EPI-hNE4 at the surface of purified blood neutrophils and in the sputum of cystic fibrosis patients where neutrophil elastase is in both a soluble and a gel phase. The elastase at the neutrophil surface was fully inhibited by EPI-hNE4 and formed soluble complexes. The elastase in cystic fibrosis sputum supernatants was inhibited by stoichiometric amounts of EPI-hNE4, allowing titration of the protease. But the percentage of inhibition in whole sputum homogenates varied from 50 to 100%, depending on the sample tested. EPI-hNE4 was rapidly cleaved by the digestive protease pepsin in vitro. Therefore, EPI-hNE4 seems to be an elastase inhibitor suitable for use in aerosols to treat patients with cystic fibrosis.
Collapse
Affiliation(s)
- Sylvie Attucci
- Institut National de la Santé et de la Recherche Médicale U618 (Protéases et Vectorisation Pulmonaires), Université François Rabelais, 10 Bd Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bouchard D, Morisset D, Bourbonnais Y, Tremblay GM. Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol 2006; 7:167-74. [PMID: 16455481 DOI: 10.1016/s1470-2045(06)70579-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of early diagnosis to reduce the morbidity and mortality from cancer has led to a search for new sensitive and specific tumour markers. Molecular techniques developed over the past few years allow simultaneous screening of thousands of genes, and have been applied to different cancers to identify many genes that are modulated in various cancers. Of these, attention has focused on genes coding for a family of proteins with whey-acidic-protein (WAP) motifs. Most notably, the genes coding for elafin, antileukoproteinase 1 (previously called secretory leucocyte proteinase inhibitor, SLPI), WAP four disulphide core domain protein 1 (previously called prostate stromal protein 20 kDa, PS20), and WAP four disulphide core domain protein 2 (previously called major human epididymis-specific protein E4, HE4), have been identified as candidate molecular markers for several cancers. In this review, we assess data for an association between cancer and human WAP proteins, and discuss their potential role in tumour progression. We also propose a new mechanism by which WAP proteins might have a role in carcinogenesis.
Collapse
Affiliation(s)
- Dominique Bouchard
- Laval Hospital, Laval University Institute of Pneumology and Cardiology, Quebec, Canada
| | | | | | | |
Collapse
|
38
|
Martin SL, Downey D, Bilton D, Keogan MT, Edgar J, Elborn JS. Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol 2006; 41:177-83. [PMID: 16372352 DOI: 10.1002/ppul.20345] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neutrophil elastase (NE) is thought to be the most important protease which damages the cystic fibrosis (CF) lung. Attempts have been made to suppress this activity using the plasma-derived inhibitor, alpha(1)-antitrypsin (AAT). In this pilot study, the safety and efficacy of inhaled recombinant human AAT (rAAT) as a treatment for CF were investigated. Thirty-nine patients participated in a prospective, double-blinded, randomized, placebo-controlled phase II trial to examine the effect of rAAT (500, 250, and 125 mg) on sputum NE activity. Sputum myeloperoxidase (MPO), interleukin-8, tumor necrosis factor receptors, sputum and plasma NE/AAT complexes, and safety parameters were also measured. Subjects were randomized to receive nebulized treatment once a day for 4 weeks, followed by 2-4 weeks with no study treatment, and then a 2-week rechallenge phase. Trends toward a reduction in NE activity were observed in patients treated with 500 mg and 250 mg of rAAT compared to placebo. Sputum NE/AAT complex and MPO levels were lower on rAAT compared to placebo. No major adverse events and, in particular, no allergic reactions to rAAT were observed. Although significant differences between rAAT and placebo for sputum NE activity were not observed, some improvements were found for secondary efficacy variables. This study demonstrated that nebulized rAAT is safe and well-tolerated, but has a limited effect on NE activity and other markers of inflammation.
Collapse
Affiliation(s)
- S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Nobar SM, Zani ML, Boudier C, Moreau T, Bieth JG. Oxidized elafin and trappin poorly inhibit the elastolytic activity of neutrophil elastase and proteinase 3. FEBS J 2005; 272:5883-93. [PMID: 16279952 DOI: 10.1111/j.1742-4658.2005.04988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophil proteinase-mediated lung tissue destruction is prevented by inhibitors, including elafin and its precursor, trappin. We wanted to establish whether neutrophil-derived oxidants might impair the inhibitory function of these molecules. Myeloperoxidase/H(2)O(2) and N-chlorosuccinimide oxidation of the inhibitors was checked by mass spectrometry and enzymatic methods. Oxidation significantly lowers the affinities of the two inhibitors for neutrophil elastase (NE) and proteinase 3 (Pr3). This decrease in affinity is essentially caused by an increase in the rate of inhibitory complex dissociation. Oxidized elafin and trappin have, however, reasonable affinities for NE (K(i) = 4.0-9.2 x 10(-9) M) and for Pr3 (K(i) = 2.5-5.0 x 10(-8) M). These affinities are theoretically sufficient to allow the oxidized inhibitors to form tight binding complexes with NE and Pr3 in lung secretions where their physiological concentrations are in the micromolar range. Yet, they are unable to efficiently inhibit the elastolytic activity of the two enzymes. At their physiological concentration, fully oxidized elafin and trappin do not inhibit more than 30% of an equimolar concentration of NE or Pr3. We conclude that in vivo oxidation of elafin and trappin strongly impairs their activity. Inhibitor-based therapy of inflammatory lung diseases must be carried out using oxidation-resistant variants of these molecules.
Collapse
Affiliation(s)
- Shila M Nobar
- Laboratoire d'Enzymologie, INSERM U392, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
40
|
Guyot N, Zani ML, Berger P, Dallet-Choisy S, Moreau T. Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): evidence for tryptase-mediated generation of elafin. Biol Chem 2005; 386:391-9. [PMID: 15899702 DOI: 10.1515/bc.2005.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of serine, cysteine, metallo- and acid proteases were evaluated for their ability to proteolytically cleave the serine protease inhibitor trappin-2, also known as pre-elafin, and to release elafin from its precursor. None of the metalloproteases or acid proteases examined cleaved trappin-2, while serine and cysteine proteases preferentially cleaved trappin-2 within its non-inhibitory N-terminal moiety. Cathepsin L, cathepsin K, plasmin, trypsin and tryptase were able to release elafin by cleaving the Lys 38 -Ala 39 peptide bond in trappin-2. However, purified tryptase appeared to be efficient at releasing elafin. Incubation of trappin-2 with purified mast cells first challenged with anti-immunoglobulin E or calcium ionophore A23187 resulted in the rapid generation of elafin. This proteolytic release of elafin from trappin-2 was inhibited in the presence of a tryptase inhibitor, suggesting that this mast cell enzyme was involved in the process. Finally, ex vivo incubation of trappin-2 with sputum from cystic fibrosis patients indicated the production of a proteolytic immunoreactive fragment with the same mass as that of native elafin. This cleavage did not occur when preincubating the sputum with polyclonal antibodies directed against tryptase. Taken together, these findings indicate that tryptase could likely be involved in the maturation of trappin-2 into elafin under physiological conditions.
Collapse
Affiliation(s)
- Nicolas Guyot
- INSERM U618 Protéases et Vectorisation Pulmonaires, and IFR 135 Imagerie Fonctionnelle, Université François Rabelais, 10 Boulevard Tonnellé, BP 3223, F-37032 Tours Cedex, France
| | | | | | | | | |
Collapse
|