1
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski MP, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-Damage-Sensing-Dependent Cell Protection. Nutrients 2024; 16:1816. [PMID: 38931171 PMCID: PMC11206249 DOI: 10.3390/nu16121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.
Collapse
Affiliation(s)
- Daniel Centeno
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Tatiana Volpari
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | | | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | - Teagan Polotaye
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Michael Greenberg
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Douglas Kung
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Emily Hyde
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Sarah Alshehri
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Tonja Pavlovic
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - William Sullivan
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | - Helin Vakifahmetoglu-Norberg
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Frederick J. Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | | | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | | | - Analisa DiFeo
- Departments of Obstetrics and Gynecology and Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Laura A. Martin
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| |
Collapse
|
2
|
Golovina OA, Torgashina AV, Gorodetskiy VR, Sockol EV, Sagina EG. Combination of Sjögren's syndrome and anti-Ku syndrome complicated by the development of mucosa-associated lymphoid tissue lymphoma: case review and systematic review of the literature. Clin Rheumatol 2024; 43:2145-2152. [PMID: 38652335 DOI: 10.1007/s10067-024-06966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The frequency of antibodies to Ku varies in various autoimmune diseases. In 2019, Spielmann et al. identified two types of anti-Ku syndrome based on a hierarchical clustering analysis. Sjögren's syndrome occurs both in the first type of anti-Ku syndrome and in the second type. Despite the fact that increased tissue expression of Ku proteins was noted in lymphocytic cells with focal sialoadenitis of the minor salivary glands in patients with primary Sjogren's syndrome, only 49 cases of a combination of anti-Ku antibodies and manifestations of Sjogren's syndrome have been described in the literature. Some researchers examined patients for the presence of Sjogren's syndrome only if they had anti-Ro or anti-La antibodies, although in the literature, there are descriptions of Sjogren's syndrome in the presence of only isolated anti-Ku antibodies, as in our case. Literature data on glandular and extraglandular manifestations of Sjögren's syndrome in anti-Ku-positive patients are limited. Below, we present the first case of Sjögren's syndrome in combination with the first type of anti-Ku syndrome complicated by the development of mucosa-associated lymphoid tissue (MALT) lymphoma. The article also provides a systematic review of the literature on the association of Sjögren's syndrome with anti-Ku antibodies.
Collapse
Affiliation(s)
| | - Anna Vasilievna Torgashina
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | - Evgenia Vladimirovna Sockol
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Elena Georgievna Sagina
- Rheumatology Department №5, V. A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
3
|
Sesink A, Becerra M, Ruan JL, Leboucher S, Dubail M, Heinrich S, Jdey W, Petersson K, Fouillade C, Berthault N, Dutreix M, Girard PM. The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer 2024; 6:zcae011. [PMID: 38476631 PMCID: PMC10928987 DOI: 10.1093/narcan/zcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Collapse
Affiliation(s)
- Anouk Sesink
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Margaux Becerra
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Jia-Ling Ruan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Sophie Leboucher
- Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Maxime Dubail
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Sophie Heinrich
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Wael Jdey
- Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France
| | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Charles Fouillade
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Nathalie Berthault
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| |
Collapse
|
4
|
Hassel JC, Zimmer L, Sickmann T, Eigentler TK, Meier F, Mohr P, Pukrop T, Roesch A, Vordermark D, Wendl C, Gutzmer R. Medical Needs and Therapeutic Options for Melanoma Patients Resistant to Anti-PD-1-Directed Immune Checkpoint Inhibition. Cancers (Basel) 2023; 15:3448. [PMID: 37444558 DOI: 10.3390/cancers15133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, 69120 Heidelberg, Germany
| | | | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Friedegund Meier
- Department of Dermatology, Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32429 Minden, Germany
| |
Collapse
|
5
|
Krishnaraj J, Yamamoto T, Ohki R. p53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers (Basel) 2023; 15:3399. [PMID: 37444509 DOI: 10.3390/cancers15133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
6
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Ding J, Li X, Khan S, Zhang C, Gao F, Sen S, Wasylishen AR, Zhao Y, Lozano G, Koul D, Alfred Yung WK. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol 2022; 24:1712-1725. [PMID: 35474131 PMCID: PMC9527520 DOI: 10.1093/neuonc/noac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shayak Sen
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Regan S, Yang X, Finnberg NK, El-Deiry WS, Pu JJ. Occurrence of acute myeloid leukemia in hydroxyurea-treated sickle cell disease patient. Cancer Biol Ther 2019; 20:1389-1397. [PMID: 31423878 DOI: 10.1080/15384047.2019.1647055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hydroxyurea (HU) has been widely used in sickle cell disease. Its potential long-term risk for carcinogenesis or leukemogenic risk remains undefined. Here, we report a 26 y old African-American female with Sickle Cell Disease (SCD) who developed refractory/relapsed acute myeloid leukemia (AML) 6 months after 26 months of HU use. That patient's cytogenetics and molecular genetics analyses demonstrated a complex mutation profile with 5q deletion, trisomy 8, and P53 deletion (deletion of 17p13.1). P53 gene sequence studies revealed a multitude of somatic mutations that most suggest a treatment-related etiology. The above-mentioned data indicates that the patient may have developed acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) as a direct result of HU exposure.
Collapse
Affiliation(s)
- Samuel Regan
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA
| | - Xuebin Yang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , PA , USA
| | | | - Wafik S El-Deiry
- Department of Pathology, Warren Alpert Medical School, Brown University , Providence , Rhode Island , USA
| | - Jeffrey J Pu
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA.,Upstate Cancer Center, Departments of Medicine, Pathology, and Pharmacology, SUNY Upstate Medical University , Syracuse , New York , USA.,Syracuse VA Medical Center, SUNY Upstate Medical University , Syracuse , New York , USA
| |
Collapse
|
9
|
Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Structure 2019; 27:1485-1496.e4. [PMID: 31402222 DOI: 10.1016/j.str.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.
Collapse
Affiliation(s)
- Yeyun Zhou
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tamara Skene-Arnold
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
10
|
Wu L, He Y, Hu Y, Lu H, Cao Z, Yi X, Wang J. Real-time surface plasmon resonance monitoring of site-specific phosphorylation of p53 protein and its interaction with MDM2 protein. Analyst 2019; 144:6033-6040. [DOI: 10.1039/c9an01121h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Real-time monitoring of site-specific phosphorylation of p53 protein and its binding to MDM2 is conducted using dual-channel surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Ling Wu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuhan He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuqing Hu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Hanwen Lu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China 410114
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
| |
Collapse
|
11
|
He Y, Ding Y, Wang D, Zhang W, Chen W, Liu X, Qin W, Qian X, Chen H, Guo Z. HMGB1 bound to cisplatin-DNA adducts undergoes extensive acetylation and phosphorylation in vivo. Chem Sci 2015; 6:2074-2078. [PMID: 29449921 PMCID: PMC5810237 DOI: 10.1039/c4sc03650f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022] Open
Abstract
Cisplatin, one of the most effective anticancer drugs, is a DNA-damaging agent that induces cell death primarily by apoptosis. For many years, HMGB1 has been known to be a recognition protein for cisplatin-DNA lesions. Here, an application of a biomolecular probe based on a peptide-oligonucleotide conjugate is presented as a novel method for investigating this recognition process in vivo. Proteins known to be involved in the recognition of cisplatin-damaged DNA were pulled down and identified, including members of the HMGB family and a number of other proteins. Interestingly, at least 4 subforms of HMGB1 bind to cisplatin-DNA adducts. These proteins were further identified as post-translationally acetylated or phosphorylated forms of HMGB1. These results provide a rich pool of protein candidates whose roles in the mechanism of action of platinum drugs should be explored. These newly discovered molecular components of the DNA damage signalling cascade could serve as novel links between the initial cell responses to DNA damage and the downstream apoptotic or DNA repair pathways.
Collapse
Affiliation(s)
- Yafeng He
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Yin Ding
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Dan Wang
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Weizhong Chen
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Xichun Liu
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Institute of Radiation Medicine , 33 Life Science Park Road, Changping District , Beijing , 102206 P. R. China
| | - Hao Chen
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry , State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , No. 22 Hankou Road , Nanjing , 210093 P. R. China . ;
| |
Collapse
|
12
|
Kanungo J. DNA-dependent protein kinase and DNA repair: relevance to Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2013; 5:13. [PMID: 23566654 PMCID: PMC3706827 DOI: 10.1186/alzrt167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathological hallmark of Alzheimer's disease (AD), the leading cause of senile dementia, involves region-specific neuronal death and an accumulation of neuronal and extracellular lesions termed neurofibrillary tangles and senile plaques, respectively. One of the biochemical abnormalities observed in AD is reduced DNA end-joining activity. The reduced capacity of post-mitotic neurons for some types of DNA repair is further compromised by aging. The predominant mechanism to repair double-strand DNA (dsDNA) breaks (DSB) is non-homologous end joining (NHEJ), which requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kDa DNA-PK catalytic subunit (DNA-PKcs) and the Ku heterodimer consisting of p86 (Ku 80) and p70 (Ku 70) subunits. Ku binds to DNA ends first and then recruits DNA-PKcs during NHEJ. However, in AD brains, reduced NHEJ activity has been reported along with reduced levels of DNA-PKcs and the Ku proteins, indicating a potential link between AD and dsDNA damage. Since age-matched control brains also show a reduction in these protein levels, whether there is a direct link between NHEJ ability and AD remains unknown. Possible mechanisms involving the role of DNA-PK in neurodegeneration, a benchmark of AD, are the focus of this review.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
13
|
Niu S, Wang Z, Ge D, Zhang G, Li Y. Prediction of functional phosphorylation sites by incorporating evolutionary information. Protein Cell 2012; 3:675-90. [PMID: 22802047 DOI: 10.1007/s13238-012-2048-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/27/2012] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.
Collapse
Affiliation(s)
- Shen Niu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
14
|
p53 Ser15 phosphorylation disrupts the p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. Biochem J 2012; 443:811-20. [PMID: 22288499 DOI: 10.1042/bj20111627] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular stressors are known to inhibit the p53-RPA70 (replication protein A, 70 kDa subunit) complex, and RPA70 increases cellular DNA repair in cancer cells. We hypothesized that regulation of RPA70-mediated DNA repair might be responsible for the inhibition of apoptosis in hypoxic tumours. We have shown that, in cancer cells, hypoxia disrupts the p53-RPA70 complex, thereby enhancing RPA70-mediated NER (nucleotide excision repair)/NHEJ (non-homologous end-joining) repair. In normal cells, RPA70 binds to the p53-NTD (N-terminal domain), whereas this binding is disrupted in hypoxia. Phosphorylation of p53-NTD is a crucial event in dissociating both NTD-RPA70 and p53-RPA70 complexes. Serial mutations at serine and threonine residues in the NTD confirm that p53(Ser15) phosphorylation induces dissociation of the p53-RPA70 complex in hypoxia. DNA-PK (DNA-dependent protein kinase) is shown to induce p53(Ser15) phosphorylation, thus enhancing RPA70-mediated NER/NHEJ repair. Furthermore, RPA70 gene silencing induces significant increases in cellular apoptosis in the resistant hypoxic cancer cells. We have thus elucidated a novel pathway showing how DNA-PK-mediated p53(Ser15) phosphorylation dissociates the p53-RPA70 complex, thus enhancing NER/NHEJ repair, which causes resistance to apoptosis in hypoxic cancer cells. This novel finding may open new strategies in developing cancer therapeutics on the basis of the regulation of RPA70-mediated NER/NHEJ repair.
Collapse
|
15
|
Kanungo J. DNA Repair Defects and DNA-PK in Neurodegeneration. CELL & DEVELOPMENTAL BIOLOGY 2012; 1. [PMID: 28066691 DOI: 10.4172/2168-9296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
16
|
Wang H, Zhou W, Zheng Z, Zhang P, Tu B, He Q, Zhu WG. The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst) 2011; 11:146-56. [PMID: 22112863 DOI: 10.1016/j.dnarep.2011.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been proven to be effective therapeutic agents to kill cancer cells through inhibiting HDAC activity or altering the structure of chromatin. As a potent HDAC inhibitor, depsipeptide not only modulates histone deacetylation but also activates non-histone protein p53 to inhibit cancer cell growth. However, the mechanism of depsipeptide-induced p53 transactivity remains unknown. Here, we show that depsipeptide causes DNA damage through induction of reactive oxygen species (ROS) generation, as demonstrated by a comet assay and by detection of the phosphorylation of H2AX. Depsipeptide induced oxidative stress was confirmed to relate to a disturbance in reduction-oxidation (redox) reactions through inhibition of the transactivation of thioredoxin reductase (TrxR) in human cancer cells. Upon treatment with depsipeptide, p53 phosphorylation at threonine 18 (Thr18) was specifically induced. Furthermore, we also demonstrated that phosphorylation of p53 at Thr18 is required for p53 acetylation at lysine 373/382 and for p21 expression in response to depsipeptide treatment. Our results demonstrate that depsipeptide plays an anti-neoplastic role by generating ROS to elicit p53/p21 pathway activation.
Collapse
Affiliation(s)
- Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wu M, Wu RTY, Wang TTY, Cheng WH. Role for p53 in selenium-induced senescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11882-11887. [PMID: 21973212 DOI: 10.1021/jf203012a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. It was previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts. Here, the shRNA knockdown approach and other DNA damage assays are employed to test the hypothesis that p53 plays a role in selenium-induced senescence. In MRC-5 cells treated with methylseleninic acid (MSeA, 0-10 μM), depletion of p53 hampers senescence-associated expression of β-galactosidase, disrupts the otherwise S and G2/M cell cycle arrest, desensitizes such cells to MSeA treatment, and increases genome instability. Pretreatment with KU55933, an ATM kinase inhibitor, or NU7026, an inhibitor of DNA-dependent protein kinase, desensitizes MSeA cytotoxicity in scrambled but not p53 shRNA MRC-5 cells. These results suggest that p53 is critical for senescence induction in the response of MRC-5 noncancerous cells to selenium compounds.
Collapse
Affiliation(s)
- Min Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | |
Collapse
|
18
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | |
Collapse
|
19
|
Abstract
In response to stress, p53 is accumulated and activated to induce appropriate growth inhibitory responses. This requires the release of p53 from the constraints of its negative regulators Mdm2 and Mdm4. A key event in this dissociation is the phosphorylation of p53 at threonine residue (Thr18) within the Mdm2/4-binding domain. Casein kinase 1 (CK1) plays a major role in this phosphorylation. The promyelocytic leukemia protein (PML) regulates certain modifications of p53 in response to DNA damage. Here, we investigated the role of PML in the regulation of Thr18 phosphorylation. We found that PML enhances Thr18 phosphorylation of endogenous p53 in response to stress. On DNA damage, CK1 accumulates in the cell, with a proportion concentrated in the nucleus together with p53 and PML. Furthermore, CK1 interacts with endogenous p53 and PML, and this interaction is enhanced by genotoxic stress. Inhibition of CK1 impairs the protection of p53 by PML from Mdm2-mediated degradation. Our findings support a role for PML in the regulation of p53 by CK1. We propose that following DNA damage, PML facilitates Thr18 phosphorylation by recruiting p53 and CK1 into PML nuclear bodies, thereby protecting p53 from inhibition by Mdm2, leading to p53 activation.
Collapse
|
20
|
Arai S, Matsushita A, Du K, Yagi K, Okazaki Y, Kurokawa R. Novel homeodomain-interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Lett 2007; 581:5649-57. [DOI: 10.1016/j.febslet.2007.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/02/2007] [Accepted: 11/04/2007] [Indexed: 11/28/2022]
|
21
|
Krynetskaia N, Xie H, Vucetic S, Obradovic Z, Krynetskiy E. High mobility group protein B1 is an activator of apoptotic response to antimetabolite drugs. Mol Pharmacol 2007; 73:260-9. [PMID: 17951356 DOI: 10.1124/mol.107.041764] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We explored the role of a chromatin-associated nuclear protein high mobility group protein B1 (HMGB1) in apoptotic response to widely used anticancer drugs. A murine fibroblast model system generated from Hmgb1(+)(/)(+) and Hmgb1(-/-) mice was used to assess the role of HMGB1 protein in cellular response to anticancer nucleoside analogs and precursors, which act without destroying the integrity of DNA. Chemosensitivity experiments with 5-fluorouracil, cytosine arabinoside (araC), and mercaptopurine (MP) demonstrated that Hmgb1(-/-) mouse embryonic fibroblasts (MEFs) were 3 to 10 times more resistant to these drugs compared with Hmgb1(+)(/)(+) MEFs. Hmgb1-deficient cells showed compromised cell cycle arrest and reduced caspase activation after treatment with MP and araC. Phosphorylation of p53 at Ser12 (corresponding to Ser9 in human p53) and Ser18 (corresponding to Ser15 in human p53), as well as phosphorylation of H2AX after drug treatment, was reduced in Hmgb1-deficient cells. trans-Activation experiments demonstrated diminished activation of proapoptotic promoters Bax, Puma, and Noxa in Hmgb1-deficient cells after treatment with MP or araC, consistent with reduced transcriptional activity of p53. We have demonstrated for the first time that Hmgb1 is an essential activator of cellular response to genotoxic stress caused by chemotherapeutic agents (thiopurines, cytarabine, and 5-fluorouracil), which acts at early steps of antimetabolite-induced stress by stimulating phosphorylation of two DNA damage markers, p53 and H2AX. This finding makes HMGB1 a potential target for modulating activity of chemotherapeutic antimetabolites. Identification of proteins sensitive to DNA lesions that occur without the loss of DNA integrity provides new insights into the determinants of drug sensitivity in cancer cells.
Collapse
Affiliation(s)
- Natalia Krynetskaia
- Temple University School of Pharmacy, 3307 North Broad Street Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
22
|
Jeyakumar M, Liu XF, Erdjument-Bromage H, Tempst P, Bagchi MK. Phosphorylation of thyroid hormone receptor-associated nuclear receptor corepressor holocomplex by the DNA-dependent protein kinase enhances its histone deacetylase activity. J Biol Chem 2007; 282:9312-9322. [PMID: 17242407 DOI: 10.1074/jbc.m609009200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well documented that unliganded thyroid hormone receptor (TR) functions as a transcriptional repressor of specific cellular target genes by acting in concert with a corepressor complex harboring histone deacetylase (HDAC) activity. To fully explore the cofactors that interact with the transcriptionally repressive form of TR, we biochemically isolated a multiprotein complex that assembles on a TR.retinoid X receptor (RXR) heterodimer in HeLa nuclear extracts and identified its polypeptide components by mass spectrometry. A subset of TR.RXR-associated polypeptides included NCoR, SMRT, TBL1, and HDAC3, which represent the core components of a previously described NCoR/SMRT corepressor complex. We also identified several polypeptides that constitute a DNA-dependent protein kinase (DNA-PK) enzyme complex, a regulator of DNA repair, recombination, and transcription. These polypeptides included the catalytic subunit DNA-PKcs, the regulatory subunits Ku70 and Ku86, and the poly(ADP-ribose) polymerase 1. Density gradient fractionation and immunoprecipitation analyses provided evidence for the existence of a high molecular weight TR.RXR.corepressor holocomplex containing both NCoR/SMRT and DNA-PK complexes. Chromatin immunoprecipitation studies confirmed that unliganded TR.RXR recruits both complexes to the triiodothyronine-responsive region of growth hormone gene in vivo. Interestingly, DNA-PKcs, a member of the phosphatidylinositol 3-kinase family, was found to phosphorylate HDAC3 when the purified TR.RXR.corepressor holocomplex was incubated with ATP. This phosphorylation was accompanied by a significant enhancement of the HDAC activity of this complex. Collectively, our results indicated that DNA-PK promotes the establishment of a repressive chromatin at a TR target promoter by enhancing the HDAC activity of the receptor-bound NCoR/SMRT corepressor complex.
Collapse
Affiliation(s)
- M Jeyakumar
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | - Xue-Feng Liu
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | | | - Paul Tempst
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
23
|
Schild-Poulter C, Shih A, Tantin D, Yarymowich NC, Soubeyrand S, Sharp PA, Haché RJG. DNA-PK phosphorylation sites on Oct-1 promote cell survival following DNA damage. Oncogene 2007; 26:3980-8. [PMID: 17213819 DOI: 10.1038/sj.onc.1210165] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Octamer transcription factor-1 (Oct-1) has recently been shown to function as a stress sensor that promotes cell survival subsequent to DNA damage. Here, we show that the survival signal imparted by Oct-1 following exposure to ionizing radiation (IR) is dependent upon DNA-dependent protein kinase (DNA-PK)-dependent phosphorylation of a cluster of 13 specific ser/thr residues within the N-terminal transcriptional regulatory domain of Oct-1. Although IR treatment did not affect the recruitment of Oct-1 to the histone H2B promoter, the recruitment of RNA polymerase II, TATA-binding protein and histone H4 acetylation were strongly reduced, consistent with a decrease in Oct-1 transcriptional regulatory potential following IR exposure. Ser/Thr-Ala substitution of 13 sites present in Oct-1 transcriptional regulatory domain eliminated Oct-1 phosphorylation subsequent to IR exposure. Further, these substitutions prevented Oct-1 from rescuing the survival of IR-treated Oct-1-/- murine embryonic fibroblasts, providing a direct link between DNA-PK-dependent phosphorylation and the contribution of Oct-1 to cell survival. These results implicate Oct-1 as a primary effector in a DNA-PK-dependent cell survival pathway that is activated by double-stranded DNA breaks.
Collapse
Affiliation(s)
- C Schild-Poulter
- Department of Medicine, The Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Soubeyrand S, Pope L, De Chasseval R, Gosselin D, Dong F, de Villartay JP, Haché RJG. Artemis Phosphorylated by DNA-dependent Protein Kinase Associates Preferentially with Discrete Regions of Chromatin. J Mol Biol 2006; 358:1200-11. [PMID: 16600297 DOI: 10.1016/j.jmb.2006.02.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/17/2006] [Accepted: 02/23/2006] [Indexed: 12/21/2022]
Abstract
Artemis is a nuclear phosphoprotein required for genomic integrity whose phosphorylation is increased subsequent to DNA damage. Artemis phosphorylation by the DNA-dependent protein kinase (DNA-PK) and the association of Artemis with DNA-PK catalytic subunit (DNA-PKcs) have been proposed to be crucial for the variable, diversity, joining (V(D)J) reaction, genomic stability and cell survival in response to double-stranded DNA breaks. The exact nature of the effectors of Artemis phosphorylation is presently being debated. Here, we have delimited the interface on Artemis required for its association with DNA-PKcs and present the characterization of six DNA-PK phosphorylation sites on Artemis whose phosphorylation shows dependence on its association with DNA-PKcs and is induced by double-stranded DNA damage. Surprisingly, DNA-PKcs Artemis association appeared to be dispensable in a V(D)J recombination assay with stably integrated DNA substrates. Phosphorylation at two of the sites on Artemis, S516 and S645, was verified in vivo using phosphospecific antibodies. Basal Artemis S516 and S645 phosphorylation in vivo showed a significant dependence on DNA-PKcs association. However, regardless of its association with DNA-PKcs, phosphorylation of Artemis at both S516 and S645 was stimulated in response to the double-stranded DNA-damaging agent bleomycin, albeit to a lesser extent. This suggests that additional factors contribute to promote DNA damage-induced Artemis phosphorylation. Intriguingly, pS516/pS645 Artemis was concentrated in chromatin-associated nuclear foci in naïve cells. These foci were maintained upon DNA damage but failed to overlap with the damage-induced gammaH2AX. These results provide the expectation of a specific role for DNA-PK-phosphorylated Artemis in both naïve and damaged cells.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- The Ottawa Health Research Institute, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ont., Canada K1Y 4E9
| | | | | | | | | | | | | |
Collapse
|
25
|
Abe Y, Takeuchi T, Imai Y, Murase R, Kamei Y, Fujibuchi T, Matsumoto S, Ueda N, Ogasawara M, Shigemoto K, Kito K. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK. Biochem Biophys Res Commun 2006; 344:377-85. [PMID: 16600182 DOI: 10.1016/j.bbrc.2006.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/12/2006] [Indexed: 01/31/2023]
Abstract
PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.
Collapse
Affiliation(s)
- Yasuhito Abe
- Department of Pathology, Division of Molecular Pathology, National University Corporation, Ehime University School of Medicine, Toh-on, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kohn KW, Pommier Y. Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-On switch of p53 in response to DNA damage. Biochem Biophys Res Commun 2005; 331:816-27. [PMID: 15865937 DOI: 10.1016/j.bbrc.2005.03.186] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 01/17/2023]
Abstract
The molecular network that controls responses to genotoxic stress is centered at p53 and Mdm2. Recent findings have shown this network to be more complex than previously envisioned. Using a notation specifically designed for circuit diagram-like representations of bioregulatory networks, we have prepared an updated molecular interaction map of the immediate connections of p53 and Mdm2, which are described as logic elements of the network. We use the map as the basis for a comprehensive review of current concepts of signal processing by these logic elements (an interactive version of the maps-eMIMs can be examined at ). We also used molecular interaction maps to propose a p53 Off-On switch in response to DNA damage.
Collapse
Affiliation(s)
- Kurt W Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
27
|
Hass R, von Wasielewski R, Fazekas U, Bartels H, Jans E, Lück HJ. Dual signaling mechanisms of estrogen: Phosphorylation of P53 at Ser15in aging HMEC in the absence of estrogen receptor. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/sita.200400038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|