1
|
Carra A, Wijerathna-Yapa A, Pathirana R, Carimi F. Development and Applications of Somatic Embryogenesis in Grapevine ( Vitis spp.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3131. [PMID: 39599340 PMCID: PMC11597845 DOI: 10.3390/plants13223131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method. The paper provides a comprehensive overview of the different steps involved in the grapevine SE process, including callus induction, maintenance of embryogenic cultures, and the production of plantlets. Additionally, the review explores the development of high-health plant material through SE; the molecular and biochemical mechanisms underlying SE, including the regulation of gene expression, hormone signaling pathways, and metabolic pathways; as well as its use in crop improvement programs. The review concludes by highlighting the future directions for grapevine SE research, including the development of new and improved protocols, the integration of SE with other plant tissue culture techniques, and the application of SE for the production of elite grapevine cultivars, for the conservation of endangered grapevine species as well as for cultivars with unique traits that are valuable for breeding programs.
Collapse
Affiliation(s)
- Angela Carra
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Recerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.C.); (F.C.)
| | - Akila Wijerathna-Yapa
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Ranjith Pathirana
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus Research Precinct—S120, Main Waite Bldg., Waite Rd, Urrbrae, SA 5064, Australia
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Recerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.C.); (F.C.)
| |
Collapse
|
2
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
3
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:123-136. [PMID: 34038809 DOI: 10.1016/j.plaphy.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Apples are economically valuable and widely consumed fruits. The adventitious roots (ARs) formation is gridlock for apple trees mass propagation. The possible function of multiple hormones and sugar signaling pathways regulating ARs formation has not been completely understood in apple. In this study, B9 stem cuttings were treated with KCl treatment, where the highest root numbers (220) and maximum root length of 731.2 cm were noticed in KCl-treated cuttings, which were 98.2% and 215% higher than control cuttings. The content of endogenous hormones: IAA, ZR, JA, GA, and ABA were detected higher in response to KCl at most time-points. To figure out the molecular mechanisms underlying this effect, we investigated transcriptome analysis. In total, 4631 DEGs were determined, from which about 202 DEGs were considerably enriched in pathways associated with hormone signaling, sugar metabolism, root development, and cell cycle-related and were thereupon picked out on their potential involvements in ARs formation. Though, IAA accumulation and up-regulation of various genes contribute to induce AR formation. These results suggest that AR formation is a complex biological process in apple rootstocks, influenced mainly by the auxin signaling pathway and sugar metabolism.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shiyue Chen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyan Ma
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shaohuan Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Yun Shao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Abdullah Shalmani
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Lu Bao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
5
|
Meira FS, Luis ZG, Cardoso IMAS, Scherwinski-Pereira JE. Somatic embryogenesis from leaf tissues of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.]. AN ACAD BRAS CIENC 2020; 92:e20180709. [PMID: 33206795 DOI: 10.1590/0001-3765202020180709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
A somatic embryogenesis protocol was developed from the immature leaves of adult plants of the macaw palm. Leaf explants from different regions of the palm heart were used for callus initiation in a modified Y3 medium, supplemented with 2,4-D or Picloram at 450 μM. Calli were separated from the leaf explants at 6-, 9- and 12-month periods and transferred to a fresh culture medium of the same composition. They were multiplied for up to 120 days. Reduced concentrations of 2,4-D and Picloram were used to differentiate somatic embryos. They were then germinated in a medium without plant growth regulators. Morphological and anatomical analyses were conducted at different stages of the embryogenic process. The best results for callus induction were achieved by Picloram, when explants were maintained for up to 9 months on culture medium (64.9%). The farthest portions of the apical meristem were those that provided the biggest calli formation. The formation of the somatic embryos was observed from the calli multiplication phase. Reduction in concentrations of growth regulators failed to promote the formation of complete plants. Picloram at 450 μM promotes high callogenesis in leaf tissues of macaw palm, with a potential for somatic embryo formation.
Collapse
Affiliation(s)
- Filipe S Meira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília/UNB, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Rede Pró-Centro-Oeste, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Zanderluce G Luis
- Universidade Federal do Sul e Sudeste do Pará/UNIFESSPA, Instituto de Estudo em Saúde e Biológicas/IESB, Residencial Total Ville, Nova Marabá, 68507-590 Marabá, PA, Brazil
| | - InaÊ MariÊ A S Cardoso
- Pós-Doutoranda, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte (final), PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| |
Collapse
|
6
|
Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU. Symplasmic isolation marks cell fate changes during somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2612-2628. [PMID: 31974549 PMCID: PMC7210756 DOI: 10.1093/jxb/eraa041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
Collapse
Affiliation(s)
- Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Kulinska-Lukaszek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mercedes Soriano
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mengfan Li
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Karol Malota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in KatowiceKatowice, Poland
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Ewa U Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
de Araújo Silva-Cardoso IM, Meira FS, Gomes ACMM, Scherwinski-Pereira JE. Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. PHYSIOLOGIA PLANTARUM 2020; 168:845-875. [PMID: 31517991 DOI: 10.1111/ppl.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis in palm trees is, in general, a slow and highly complex process, with a predominance of the indirect route and, consequently, a lack of knowledge about the direct route. We present new knowledge related to the morphological, histochemical and ultrastructural aspects of the transition from somatic to embryogenic cells and direct formation of somatic embryos from mature zygotic embryos of Syagrus oleracea, a palm tree. The results support the general concept that 2,4-dichlorophenoxyacetic acid plays a critical role for the formation of somatic embryos of direct and multicellular origin. Seven days in medium with auxin were enough for the identification of embryogenic cells. These cells had a set of characteristics corresponding to totipotent stem cells. At 14 days on induction medium, nodular formations were observed in the distal region of inoculated embryos, which evolved into globular somatic embryos. At 120 days on induction medium, the quality of the somatic embryos was compromised. The dynamics of the mobilization of reserve compounds was also demonstrated, with emphasis on starch and protein as energy sources required for the embryogenic process. This study shows for the first time the anatomical and ultrastructural events involved in direct somatic embryogenesis in a palm tree and incites the scientific community to return to the discussion of classical concepts related to direct somatic embryogenesis, especially regarding the characteristics and location of determined pre-embryogenic cells.
Collapse
Affiliation(s)
- Inaê M de Araújo Silva-Cardoso
- Department of Forest Engineering, University of Brasília, Brasília, DF, Brazil
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Filipe S Meira
- Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Ana C M M Gomes
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
8
|
Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. Int J Mol Sci 2018; 19:ijms19082201. [PMID: 30060517 PMCID: PMC6121287 DOI: 10.3390/ijms19082201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (AR) play an important role in the vegetative propagation of apple rootstocks. The potential role of hormone, wounding, and sugar signalling pathways in mediating AR formation has not been adequately explored and the whole co-expression network in AR formation has not been well established in apple. In order to identify the molecular mechanisms underlying AR formation in 'T337' apple rootstocks, transcriptomic changes that occur during four stages of AR formation (0, 3, 9 and 16 days) were analyzed using high-throughput sequencing. A total of 4294 differentially expressed genes were identified. Approximately 446 genes related to hormones, wounding, sugar signaling, root development, and cell cycle induction pathways were subsequently selected based on their potential to be involved in AR formation. RT-qPCR validation of 47 genes with known functions exhibited a strong positive correlation with the RNA-seq data. Interestingly, most of the candidate genes involved in AR formation that were identified by transcriptomic sequencing showed auxin-responsive expression patterns in an exogenous Indole-3-butyric acid (IBA)-treatment assay: Indicating that endogenous and exogenous auxin plays key roles in regulating AR formation via similar signalling pathways to some extent. In general, AR formation in apple rootstocks is a complex biological process which is mainly influenced by the auxin signaling pathway. In addition, multiple hormones-, wounding- and sugar-signaling pathways interact with the auxin signaling pathway and mediate AR formation in apple rootstocks.
Collapse
|
9
|
Jafari S, Alizadeh H, Davoodi D, Jonoubi P, Majd A, Shobbar ZS, Zamani M. Changes in Cytomorphology, Expression of Retinoblastoma Related Gene, and Superoxide Dismutase Enzyme Activity in Maize Cell Culture Exposed to Silver Nanoparticles. IEEE Trans Nanobioscience 2018; 17:380-386. [PMID: 30028712 DOI: 10.1109/tnb.2018.2856512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ever-increasing use of silver nanoparticles (nAg) in various products necessitates investigation of the behavior of biological systems encountering these particles. In this paper, considering maize as a biological model, the effects of colloidal nAg (<80nm) on its cell culture were investigated. For comparison purposes, silver nitrate was used as a representative of silver ion (Ag+). After stabilization of cell suspensions, they were treated with nAg and Ag+ (1 mg/l), then cell suspension growth was measured and the microscopic analysis and a cell viability test were performed. In addition, the activity of superoxide dismutase (SOD) enzyme was explored. Owing to the key role of retinoblastoma-related protein (RBR) in cell cycle as well as in development and differentiation processes, the relative expression of ZmRBR1 was studied in nAg and Ag+ exposure. Microscopic analyses revealed that cells in suspensions treated by nAg and Ag+ were morphologically classified into five types: embryogenic; larvae-like; long; swollen; and polarized. The results showed an increase in percentages of large and live cells in the treated suspensions. Remarkably, we observed some cells which were differentiated into trichomes along with some stages of trichome development in the treated cell suspensions. Moreover, exposure to nAg and Ag+ did not elevate the activity of SOD enzyme in the treated cells. Also, the relative expression of ZmRBR1 was slightly reduced in the treated cells. The findings of these experimentations indicated that nAg affected maize suspension-cultured cells in the same manner as Ag+.
Collapse
|
10
|
Horstman A, Bemer M, Boutilier K. A transcriptional view on somatic embryogenesis. ACTA ACUST UNITED AC 2017; 4:201-216. [PMID: 29299323 PMCID: PMC5743784 DOI: 10.1002/reg2.91] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Somatic embryogenesis is a form of induced plant cell totipotency where embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis can be induced in vitro by exposing explants to stress or growth regulator treatments. Molecular genetics studies have also shown that ectopic expression of specific embryo‐ and meristem‐expressed transcription factors or loss of certain chromatin‐modifying proteins induces spontaneous somatic embryogenesis. We begin this review with a general description of the major developmental events that define plant somatic embryogenesis and then focus on the transcriptional regulation of this process in the model plant Arabidopsis thaliana (arabidopsis). We describe the different somatic embryogenesis systems developed for arabidopsis and discuss the roles of transcription factors and chromatin modifications in this process. We describe how these somatic embryogenesis factors are interconnected and how their pathways converge at the level of hormones. Furthermore, the similarities between the developmental pathways in hormone‐ and transcription‐factor‐induced tissue culture systems are reviewed in the light of our recent findings on the somatic embryo‐inducing transcription factor BABY BOOM.
Collapse
Affiliation(s)
- Anneke Horstman
- Bioscience Wageningen University and Research Wageningen The Netherlands.,Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Kim Boutilier
- Bioscience Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
11
|
Abstract
The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.
Collapse
|
12
|
Smertenko A, Bozhkov PV. Somatic embryogenesis: life and death processes during apical-basal patterning. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1343-60. [PMID: 24622953 DOI: 10.1093/jxb/eru005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is a process of differentiation of cells into a plant bypassing the fusion of gametes. As such, it represents a very powerful tool in biotechnology for propagation of species with a long reproductive cycle or low seed set and production of genetically modified plants with improved traits. SE is also a versatile model to study cellular and molecular mechanisms of plant embryo patterning. The morphology and molecular regulation of SE resemble those of zygotic embryogenesis and begin with establishment of apical-basal asymmetry. The apical domain, the embryo proper, proliferates and eventually gives rise to the plantlet, while the basal part, the embryo suspensor, is terminally differentiated and gradually removed via vacuolar programmed cell death (PCD). This PCD is essential for normal development of the apical domain. Emerging evidence demonstrates that signalling events in the apical and basal domains share homologous components. Here we provide an overview of the main pathways controlling the life and death events during SE.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
13
|
The Life and Death Signalling Underlying Cell Fate Determination During Somatic Embryogenesis. PLANT CELL MONOGRAPHS 2014. [DOI: 10.1007/978-3-642-41787-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Zheng Q, Zheng Y, Perry SE. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. PLANT PHYSIOLOGY 2013; 161:2113-27. [PMID: 23457229 PMCID: PMC3613480 DOI: 10.1104/pp.113.216275] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 05/06/2023]
Abstract
Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valuable model for the study of zygotic processes. To better understand the role of the Arabidopsis (Arabidopsis thaliana) MADS factor AGAMOUS-Like15 (AGL15) in the promotion of somatic embryogenesis, direct target genes were identified by chromatin immunoprecipitation-tiling arrays and expression arrays. One potential directly up-regulated target was At5g61590, which encodes a member of the ethylene response factor subfamily B-3 of APETALA2/ethylene response factor transcription factors and is related to Medicago truncatula somatic embryo-related factor1 (MtSERF1), which has been shown to be required for somatic embryogenesis in M. truncatula. Here, we report confirmation that At5g61590 is a directly expressed target of AGL15 and that At5g61590 is essential for AGL15's promotion of somatic embryogenesis. Because At5g61590 is a member of the ethylene response factor family, effects of ethylene on somatic embryogenesis were investigated. Precursors to ethylene stimulate somatic embryogenesis, whereas inhibitors of ethylene synthesis or perception reduce somatic embryogenesis. To extend findings to a crop plant, we investigated the effects of ethylene on somatic embryogenesis in soybean (Glycine max). Furthermore, we found that a potential ortholog of AGL15 in soybean (GmAGL15) up-regulates ethylene biosynthesis and response, including direct regulation of soybean orthologs of At5g61590/MtSERF1 named here GmSERF1 and GmSERF2, in concordance with the M. truncatula nomenclature.
Collapse
Affiliation(s)
| | | | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
15
|
Correia SM, Canhoto JM. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae). PROTOPLASMA 2010; 242:95-107. [PMID: 20336358 DOI: 10.1007/s00709-010-0130-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/23/2010] [Indexed: 05/25/2023]
Abstract
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.
Collapse
Affiliation(s)
- Sandra M Correia
- Laboratory of Plant Biotechnology, Centre for Pharmaceutical Studies, Department of Life Sciences, University of Coimbra, Ap. 3046, 3001-401, Coimbra, Portugal
| | | |
Collapse
|
16
|
Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. THE PLANT CELL 2009; 21:2563-77. [PMID: 19767455 PMCID: PMC2768919 DOI: 10.1105/tpc.109.068890] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/06/2009] [Accepted: 08/23/2009] [Indexed: 05/18/2023]
Abstract
AGAMOUS-Like15 (AGL15) is a MADS domain transcriptional regulator that promotes somatic embryogenesis by binding DNA and regulating gene expression. Chromatin immunoprecipitation (ChIP) analysis previously identified DNA fragments with which AGL15 associates in vivo, and a low-throughput approach revealed a role for AGL15 in gibberellic acid catabolism that is relevant to embryogenesis. However, higher throughput methods are needed to identify targets of AGL15. Here, we mapped AGL15 in vivo binding sites using a ChIP-chip approach and the Affymetrix tiling arrays for Arabidopsis thaliana and found that approximately 2000 sites represented in three biological replicates of the experiment are annotated to nearby genes. These results were combined with high-throughput measurement of gene expression in response to AGL15 accumulation to discriminate responsive direct targets from those further downstream in the network. LEAFY COTYLEDON2, FUSCA3, and ABA INSENSITIVE3, which encode B3 domain transcription factors that are key regulators of embryogenesis, were identified and verified as direct target genes of AGL15. Genes identified as targets of the B3 genes are also targets of AGL15, and we found that INDOLEACETIC ACID-INDUCED PROTEIN30 is involved in promotion of somatic embryo development. The data presented here and elsewhere suggest that much cross-regulation occurs in gene regulatory networks underpinning embryogenesis.
Collapse
Affiliation(s)
- Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Na Ren
- Department of Statistics, University of Kentucky, Lexington, Kentucky 40506-0027
| | - Huai Wang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Arnold J. Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky 40506-0027
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
- Address correspondence to
| |
Collapse
|
17
|
Booz MR, Kerbauy GB, Guerra MP, Pescador R. The role of γ -aminobutyric acid (Gaba) in somatic embryogenesis of Acca sellowiana Berg. (Myrtaceae). ACTA ACUST UNITED AC 2009. [DOI: 10.1590/s1677-04202009000400003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.
Collapse
|
18
|
Grimault V, Helleboid S, Vasseur J, Hilbert JL. Co-Localization of beta-1,3-Glucanases and Callose During Somatic Embryogenesis in Cichorium. PLANT SIGNALING & BEHAVIOR 2007; 2:455-61. [PMID: 19517006 PMCID: PMC2634335 DOI: 10.4161/psb.2.6.4715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/09/2007] [Indexed: 05/12/2023]
Abstract
During direct somatic embryogenesis in leaves of Cichorium hybrid clone '474', 38 kDa beta-1,3-glucanases are accumulated in the culture medium of the embryogenic hybrid to a higher level when compared with a non-embryogenic cultivar. In the same time, embryogenic cells were surrounded by a cell wall that was characterized by the presence of callose. This callosic deposition disappeared as embryos grew. Callose consisted of beta-1,3-glucan linkages and so represented a possible substrate for beta-1,3-glucanases. Using immunolocalization experiments, we demonstrated that from the three types of callose deposits observed during the culturing of Cichorium leaf explants, only the callose present in the walls surrounding reactivated cells seemed specifically related to somatic embryogenesis. Moreover, callose and the 38-kDa beta-1,3-glucanases were co-localized dispersed throughout the thick and swelled walls of reactivated cells and embryo cell walls. This suggests that callose and beta-1,3-glucanases are implicated in the process of somatic embryogenesis since they were always detected in or quite near embryogenic and embryo cell. This also suggested that beta-1,3-glucanases could be involved in the degradation of this callose.
Collapse
Affiliation(s)
- Valérie Grimault
- Université des Sciences et Technologies de Lille; "Stress Abiotiques et Différenciation des Végétaux Cultivés;" Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
19
|
Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X. A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 2007; 90:620-8. [PMID: 17884330 DOI: 10.1016/j.ygeno.2007.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/23/2007] [Accepted: 07/17/2007] [Indexed: 10/22/2022]
Abstract
The complexity of the somatic embryogenesis (SE) transcriptome suggests that numerous molecules are involved. To understand better the functional genomics of complex molecular systems during this important reprogramming process, we used bioinformatics and a pathway database to construct a draft network based on transcriptionally regulated SE-related genes, from functional genomics assays readout to high-level biological data interpretation. Here, a complex molecular system was unraveled by this network. This draft network is a potential reservoir for hundreds of testable predictions about cellular processes in early SE. This work could provide a useful test for modeling of a systems network and may have merit as a study presenting an advanced technology application due to its biological and economical importance. The approach presented here is scalable and can be extended to include additional data types. In particular, this effective system approach will be applied to various targeted gene networks in the future.
Collapse
Affiliation(s)
- Fanchang Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Obert B, Benson EE, Millam S, Pret'ová A, Bremner DH. Moderation of morphogenetic and oxidative stress responses in flax in vitro cultures by hydroxynonenal and desferrioxamine. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:537-47. [PMID: 15940871 DOI: 10.1016/j.jplph.2004.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hypocotyl segments of 7-day old seedlings of flax (Linum usitatissimum L.) cultivars Atalante, Flanders, Jitka, Szegedi 30 and Super were screened for organogenesis (shoot and root induction) and embryo-like structure production. A non-destructive assay for hydroxyl radicals (*OH), utilising DMSO as a radical trap, was used to determine *OH formation during tissue culture and morphogenesis. Desferrioxamine, an inhibitor of Fenton reaction, and 4-hydroxy-2-nonenal, a cytotoxic Lipid peroxidation product, were exogenously applied to flax cultures to determine the effect of antioxidative and prooxidative status on morphogenetic responses induced through the exogenous application of plant growth regulators. Flax genotypes varied in their response to treatments after exposure to different plant hormones. Hydroxyl radical (*OH) formation correlated with morphogenetic responses and this was affected by plant hormones. Desferrioxamine and 4-hydroxy-2-nonenal also moderated morphogenetic responses and influenced hydroxyl radical formation during in vitro propagation.
Collapse
Affiliation(s)
- Bohus Obert
- Conservation and Environmental Science Centre, University of Abertay Dundee, DD1 1HG Dundee, Scotland, UK.
| | | | | | | | | |
Collapse
|
21
|
Somatic Embryogenesis. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-017-0109-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
JIMÉNEZ VÍCTORM. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. ACTA ACUST UNITED AC 2001. [DOI: 10.1590/s0103-31312001000200008] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different aspects of the in vitro somatic embryogenesis regulation are reviewed in this paper.work. A description of g General aspects, such as terminology, uses, stages of development and factors associated with the somatic embryogenesis, are described. is carried out. Although a brief description ofn the effects of the addition of different plant growth regulators to the culture medium wasis given, the article is centereds itself on the effect that the endogenous hormone concentrations in the initial explants and in the tissue cultures derived from them could play oin the induction and expression of somatic embryogenesis. It is significant that few to emphasize the low amount of systematic studies have been conducted, in this subject, in which different species and hormone groups were compared in cultures with and without embryogenic capacity. Moreover, the lack of correlation between the results presented in different studies the distinct works indicates that the hormone content of the cultures is not the only factor involved.
Collapse
|
23
|
Filonova LH, Bozhkov PV, von Arnold S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:249-264. [PMID: 10938831 DOI: 10.1093/jexbot/51.343.249] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several coniferous species can be propagated via somatic embryogenesis. This is a useful method for clonal propagation, but it can also be used for studying how embryo development is regulated in conifers. However, in conifers it is not known to what extent somatic and zygotic embryos develop similarly, because there has been little research on the origin and development of somatic embryos. A time-lapse tracking technique has been set up, and the development of more than 2000 single cells and few-celled aggregates isolated from embryogenic suspension cultures of Norway spruce (Picea abies L. Karst.) and embedded in thin layers of agarose has been traced. Experiments have shown that somatic embryos develop from proembryogenic masses which pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages I, II and III) to transdifferentiate to somatic embryos. Microscopic inspection of different types of structures has revealed that proembryogenic masses are characterized by high interclonal variation of shape and cellular constitution. In contrast, somatic embryos are morphologically conservative structures, possessing a distinct protoderm-like cell layer as well as embryonal tube cells and suspensor. The lack of staining of the arabinogalactan protein epitope recognized by the monoclonal antibody JIM13 was shown to be an efficient marker for distinguishing proembryogenic masses from somatic embryos. The vast majority of cells in proembryogenic masses expressed this epitope and none of cells in the early somatic embryos. The conditions that promote cell proliferation (i.e. the presence of exogenous auxin and cytokinin), inhibit somatic embryo formation; instead, continuous multiplication of stage I proembryogenic masses by unequal division of embryogenic cells with dense cytoplasm is the prevailing process. Once somatic embryos have formed, their further development to mature forms requires abscisic acid and shares a common histodifferentiation pattern with zygotic embryos. Although the earliest stages of somatic embryo development comparable to proembryogeny could not be characterized, the subsequent developmental processes correspond closely to what occurs in the course of early and late zygotic embryogeny. A model for somatic embryogenesis pathways in Picea abies is presented.
Collapse
Affiliation(s)
- L H Filonova
- Department of Forest Genetics, Uppsala Genetic Centre, Swedish University of Agricultural Sciences, Sweden.
| | | | | |
Collapse
|
24
|
Akhtar N, Kumari N, Pandey S, Ara H, Singh M, Jaiswal U, Jaiswal VS, Jain SM. Somatic Embryogenesis in Tropical Fruit Trees. SOMATIC EMBRYOGENESIS IN WOODY PLANTS 2000. [DOI: 10.1007/978-94-017-3030-3_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|