1
|
Zhang WH, Zhou Y, Dibley KE, Tyerman SD, Furbank RT, Patrick JW. Review: Nutrient loading of developing seeds. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:314-331. [PMID: 32689358 DOI: 10.1071/fp06271] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/30/2007] [Indexed: 05/03/2023]
Abstract
Interest in nutrient loading of seeds is fuelled by its central importance to plant reproductive success and human nutrition. Rates of nutrient loading, imported through the phloem, are regulated by transport and transfer processes located in sources (leaves, stems, reproductive structures), phloem pathway and seed sinks. During the early phases of seed development, most control is likely to be imposed by a low conductive pathway of differentiating phloem cells serving developing seeds. Following the onset of storage product accumulation by seeds, and, depending on nutrient species, dominance of path control gives way to regulation by processes located in sources (nitrogen, sulfur, minor minerals), phloem path (transition elements) or seed sinks (sugars and major mineral elements, such as potassium). Nutrients and accompanying water are imported into maternal seed tissues and unloaded from the conducting sieve elements into an extensive post-phloem symplasmic domain. Nutrients are released from this symplasmic domain into the seed apoplasm by poorly understood membrane transport mechanisms. As seed development progresses, increasing volumes of imported phloem water are recycled back to the parent plant by process(es) yet to be discovered. However, aquaporins concentrated in vascular and surrounding parenchyma cells of legume seed coats could provide a gated pathway of water movement in these tissues. Filial cells, abutting the maternal tissues, take up nutrients from the seed apoplasm by membrane proteins that include sucrose and amino acid/H+ symporters functioning in parallel with non-selective cation channels. Filial demand for nutrients, that comprise the major osmotic species, is integrated with their release and phloem import by a turgor-homeostat mechanism located in maternal seed tissues. It is speculated that turgors of maternal unloading cells are sensed by the cytoskeleton and transduced by calcium signalling cascades.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Yuchan Zhou
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2238, Australia
| | - Katherine E Dibley
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2238, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, Adelaide University, Waite Campus, PMB #1, Glen Osmond, SA 5064, Australia
| | - Robert T Furbank
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2238, Australia
| |
Collapse
|
2
|
Soudek P, Tykva R, Vanek T. Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. CHEMOSPHERE 2004; 55:1081-1087. [PMID: 15051376 DOI: 10.1016/j.chemosphere.2003.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 09/02/2003] [Accepted: 12/17/2003] [Indexed: 05/24/2023]
Abstract
The 137Cs uptake by three plant species (Phragmites australis L., Heliantus annus L., Populus simonii L.) was analyzed in a hydroponic medium (14 MBql(-1); 0.5 mM CsCl) during cultivation. The radioactivity disappearance from the medium was measured after 2, 4, 8, 16 and 32 days of cultivation. Radioactivity distribution within the plant was determined by autoradiography. We did not find differences between uptake of radioactive and stable caesium isotopes. Relations between the uptake of 137Cs and concentration of potassium and ammonium ions in medium were also tested. The highest uptake of radiocaesium by sunflower was obtained for medium with 1 mM K2SO4 (14.2%) and in case of ammonium ions for concentration ratio 6 mM NH4Cl : 3 mM NH4NO3 (13.2%). The obtained results make it possible to compare the capability and rate of 137Cs phytoremediation of different plant species.
Collapse
Affiliation(s)
- Petr Soudek
- Department of Plant Tissue Cultures, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | | | | |
Collapse
|
3
|
Majore I, Wilhelm B, Marten I. Identification of K(+) channels in the plasma membrane of maize subsidiary cells. PLANT & CELL PHYSIOLOGY 2002; 43:844-52. [PMID: 12198186 DOI: 10.1093/pcp/pcf104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.
Collapse
Affiliation(s)
- Ingrida Majore
- Institut für Biophysik, Universität Hannover, Herrenhäuserstrasse 2, D-30419 Hannover, Germany
| | | | | |
Collapse
|
4
|
Abstract
Nonselective cation channels are a diverse group of ion channels characterized by their low discrimination between many essential and toxic cations. They are ubiquitous in plant tissues and are active in the plasma membrane, tonoplast, and other endomembranes. Members of this group are likely to function in low-affinity nutrient uptake, in distribution of cations within and between cells, and as plant Ca2+ channels. They are gated by diverse mechanisms, which can include voltage, cyclic nucleotides, glutamate, reactive oxygen species, and stretch. These channels dominate tonoplast cation transport, and the selectivity and gating mechanisms of tonoplast nonselective cation channels are comprehensively reviewed here. This review presents the first classification of plant nonselective cation channels and the first full description of nonselective cation channel candidate sequences in the Arabidopsis genome.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom.
| | | | | |
Collapse
|
5
|
Dietrich P, Sanders D, Hedrich R. The role of ion channels in light-dependent stomatal opening. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1959-67. [PMID: 11559731 DOI: 10.1093/jexbot/52.363.1959] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.
Collapse
Affiliation(s)
- P Dietrich
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
6
|
Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R. VFK1, a Vicia faba K(+) channel involved in phloem unloading. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001. [PMID: 11576440 DOI: 10.1046/j.1365-313x.2001.t01-1-01116.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In search of a K(+) channel involved in phloem transport we screened a Vicia faba cotyledon cDNA library taking advantage of a set of degenerated primers, flanking regions conserved among K(+) uptake channels. We cloned VFK1 (for Vicia faba K(+) channel 1) characterised by a structure known from the Shaker family of plant K(+) channels. When co-expressed with a KAT1 mutant in Xenopus oocytes, heteromers revealed the biophysical properties of a K(+) selective, proton-blocked channel. Northern blot analyses showed high levels of expression in cotyledons, flowers, stem and leaves. Using in situ PCR techniques we could localise the K(+) channel mRNA in the phloem. In the stem VFK1 expression levels were higher in the lower internodes. There channel transcripts increased in the light and thus under conditions of increased photosynthate allocation. VFK1 transcripts are elevated in sink leaves, and rise in source leaves during the experimental transition into sinks. Fructose- rather than sucrose- or glucose-feeding via the petiole induced VFK1 gene activity. We therefore monitored the fructose sensitivity of the sieve tube potential through cut aphid stylets. In response to an 1 h fructose treatment the sieve tube potential shift increased from 19 mV to 53 mV per 10-fold change in K(+) concentration. Under these conditions K(+) channels dominated the electrical properties of the plasma membrane. Based on the phloem localisation and expression patterns of VFK1 we conclude that this K(+) channel is involved in sugar unloading and K(+) retrieval.
Collapse
Affiliation(s)
- P Ache
- Julius-von-Sachs-Institut, Molekulare Pflanzenphysiologie und Biophysik, Lehrstuhl Botanik I, Universität Würzburg, D-97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. GUARD CELL SIGNAL TRANSDUCTION. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:627-658. [PMID: 11337411 DOI: 10.1146/annurev.arplant.52.1.627] [Citation(s) in RCA: 657] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Guard cells surround stomatal pores in the epidermis of plant leaves and stems. Stomatal pore opening is essential for CO2 influx into leaves for photosynthetic carbon fixation. In exchange, plants lose over 95% of their water via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate hormonal stimuli, light signals, water status, CO2, temperature, and other environmental conditions to modulate stomatal apertures for regulation of gas exchange and plant survival under diverse conditions. Stomatal guard cells have become a highly developed model system for characterizing early signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. In this review we focus on recent advances in understanding signal transduction mechanisms in guard cells.
Collapse
Affiliation(s)
- Julian I Schroeder
- Division of Biology, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116; e-mail:
| | | | | | | | | |
Collapse
|
8
|
Tode K, Lüthen H. Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11283169 DOI: 10.1093/jexbot/52.355.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The dependence of growth induced by the fungal toxin fusicoccin (FC) on the K+ content of the incubation medium was investigated in abraded maize coleoptiles. If the divalent ion Ca2+ was included in the bathing medium, no FC-induced growth occurred in the absence of K+, whereas a strong response was detected in presence of K+. The optimal K+ concentration was in the range of 1-10 mM. With the exception of Rb+, none of the other alkali ions (Na+, Li+, Cs+) could replace for K+ in sustaining FC-induced growth. The potassium channel blocker tetraethylammonium (TEA) reversibly inhibited FC-induced growth. As shown earlier for auxin-induced growth, no strict potassium dependence of FC-triggered elongation was observed in Ca2+ -free media. However, TEA abolished this apparently K+ independent FC-induced growth. It is concluded that FC-induced growth, like auxin-induced growth, requires K+ uptake through K+ channels.
Collapse
Affiliation(s)
- K Tode
- Institut für Allgemeine Botanik der Universität, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | | |
Collapse
|
9
|
Sattelmacher B. The apoplast and its significance for plant mineral nutrition. THE NEW PHYTOLOGIST 2001; 149:167-192. [PMID: 33874640 DOI: 10.1046/j.1469-8137.2001.00034.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has only recently become apparent that the apoplast plays a major role in a diverse range of processes, including intercellular signalling, plant-microbe interactions and both water and nutrient transport. Broadly defined, the apoplast constitutes all compartments beyond the plasmalemma - the interfibrillar and intermicellar space of the cell walls, and the xylem, including its gas- and water-filled intercellular space - extending to the rhizoplane and cuticle of the outer plant surface. The physico-chemical properties of cell walls influence plant mineral nutrition, as nutrients do not simply pass through the apoplast to the plasmalemma but can also be adsorbed or fixed to cell-wall components. Here, current progress in understanding the significance of the apoplast in plant mineral nutrition is reviewed. The contribution of the root apoplast to short-distance transport and nutrient uptakes is examined particularly in relation to Na+ toxicity and Al3+ tolerance. The review extends to long-distance transport and the role of the apoplast as a habitat for microorganisms. In the leaf, the apoplast might have benefits over the vacuole as a site for short-term nutrient storage and solute exchange with the atmosphere. Contents Summary 167 I. Introduction 168 II. The properties of the apoplast and its implication for solute movement 168 1. The middle lamella 168 2. The primary wall 168 3. The secondary cell wall 169 III. The root apoplast - nutrient uptake and short-distance transport 170 IV. The apoplast as a compartment for long distance transport 174 V. The apoplast - habitat for microorganisms 175 VI. The apoplast of leaves - a compartment of storage and of reactions 177 1. Transport routes in the leaf apoplast 177 2. Methods of studying apoplastic solutes 177 3. Solute relations in the leaf apoplast 178 4. Concentration gradients in the leaf apoplast 179 5. Ion relations in the leaf apoplast and symptoms of deficiency and toxicity 179 6. Ion relations in the leaf apoplast - influence of nutrient supply 180 7. The leaf apoplast - compartment for transient ion storage 180 8. Ion fluxes between apoplast and symplast 181 9. Apoplastic ion balance 181 10. Leaf apoplast - interaction with the atmosphere 183 VII. Conclusions 183 Acknowledgements 183 References 183.
Collapse
Affiliation(s)
- Burkhard Sattelmacher
- Institute for Plant Nutrition and Soil Science, University Kiel, Oshausenstr. 40 D-24118 Kiel, Germany
| |
Collapse
|
10
|
Zhu YG, Smolders E. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1635-1645. [PMID: 11053452 DOI: 10.1093/jexbot/51.351.1635] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soil contamination with radiocaesium (Cs) has a long-term radiological impact because it is readily transferred through food chains to human beings. Plant uptake is the major pathway for the migration of radiocaesium from soil to human diet. The plant-related factors that control the uptake of radiocaesium are reviewed. Of these, K supply exerts the greatest influence on Cs uptake from solution. It appears that the uptake of radiocaesium is operated mainly by two transport pathways on plant root cell membranes, namely the K(+) transporter and the K(+) channel pathway. Cationic interactions between K and Cs on isolated K-channels or K transporters are in agreement with studies using intact plants. The K(+) transporter functioning at low external potassium concentration (often <0.3 mM) shows little discrimination against Cs(+), while the K(+) channel is dominant at high external potassium concentration with high discrimination against Cs(+). Caesium has a high mobility within plants. Although radiocaesium is most likely taken up by the K transport systems within the plant, the Cs:K ratio is not uniform within the plant. Difference in internal Cs concentration (when expressed on a dry mass basis) may vary by a factor of 20 between different plant species grown under similar conditions. Phytoremediation may be a possible option to decontaminate radiocaesium-contaminated soils, but its major limitation is that it takes an excessively long time (tens of years) and produces large volumes of waste.
Collapse
Affiliation(s)
- Y G Zhu
- Department of Soil and Water, and CRC for Molecular Plant Breeding, The University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
11
|
Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T. Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 2000; 78:1255-69. [PMID: 10692314 PMCID: PMC1300727 DOI: 10.1016/s0006-3495(00)76682-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The guard cell K(+) channel KAT1, cloned from Arabidopsis thaliana, is activated by hyperpolarization and regulated by a variety of physiological factors. Low internal pH accelerated the activation kinetics of the KAT1 channel expressed in Xenopus oocytes with a pK of approximately 6, similar to guard cells in vivo. Mutations of histidine-118 located in the putative cytoplasmic linker between the S2 and S3 segments profoundly affected the gating behavior and pH dependence. At pH 7.2, substitution with a negatively charged amino acid (glutamate, aspartate) specifically slowed the activation time course, whereas that with a positively charged amino acid (lysine, arginine) accelerated. These mutations did not alter the channel's deactivation time course or the gating behavior after the first opening. Introducing an uncharged amino acid (alanine, asparagine) at position 118 did not have any obvious effect on the activation kinetics at pH 7.2. The charged substitutions markedly decreased the sensitivity of the KAT1 channel to internal pH in the physiological range. We propose a linear kinetic scheme to account for the KAT1 activation time course at the voltages where the opening transitions dominate. Changes in one forward rate constant in the model adequately account for the effects of the mutations at position 118 in the S2-S3 linker segment. These results provide a molecular and biophysical basis for the diversity in the activation kinetics of inward rectifiers among different plant species.
Collapse
Affiliation(s)
- X D Tang
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
12
|
Brüggemann L, Dietrich P, Becker D, Dreyer I, Palme K, Hedrich R. Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proc Natl Acad Sci U S A 1999; 96:3298-302. [PMID: 10077678 PMCID: PMC15936 DOI: 10.1073/pnas.96.6.3298] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potassium uptake by higher plants is the result of high- or low-affinity transport accomplished by different sets of transporters. Although K+ channels were thought to mediate low-affinity uptake only, the molecular mechanism of the high-affinity, proton-dependent K+ uptake system is still scant. Taking advantage of the high-current resolution of the patch-clamp technique when applied to the small Arabidopsis thaliana guard cells densely packed with voltage-dependent K+ channels, we could directly record channels working in the concentration range of high-affinity K+ uptake systems. Here we show that the K+ channel KAT1 expressed in Arabidopsis guard cells and yeast is capable of mediating potassium uptake from media containing as little as 10 microM of external K+. Upon reduction of the external K+ content to the micromolar level the voltage dependence of the channel remained unaffected, indicating that this channel type represents a voltage sensor rather than a K+-sensing valve. This behavior results in K+ release through K+ uptake channels whenever the Nernst potential is negative to the activation threshold of the channel. In contrast to the H+-coupled K+ symport shown to account for high-affinity K+ uptake in roots, pH-dependent K+ uptake into guard cells is a result of a shift in the voltage dependence of the K+ channel. We conclude that plant K+ channels activated by acid pH may play an essential role in K+ uptake even from dilute solutions.
Collapse
Affiliation(s)
- L Brüggemann
- Julius-von-Sachs-Insititut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Roos, Evers, Hieke, Tschope, Schumann. Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids . Phytoalexin biosynthesis in cultured cells of eschscholtzia californica. PLANT PHYSIOLOGY 1998; 118:349-64. [PMID: 9765521 PMCID: PMC34811 DOI: 10.1104/pp.118.2.349] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/1998] [Accepted: 06/30/1998] [Indexed: 05/21/2023]
Abstract
Cultured cells of Eschscholtzia californica (Californian poppy) respond to a yeast elicitor preparation or Penicillium cyclopium spores with the production of benzophenanthridine alkaloids, which are potent phytoalexins. Confocal pH mapping with the probe carboxy-seminaphthorhodafluor-1-acetoxymethylester revealed characteristic shifts of the pH distribution in challenged cells: within a few minutes after elicitor contact a transient acidification of cytoplasmic and nuclear areas occurred in parallel with an increase of the vacuolar pH. The change of proton concentration in the vacuole and in the extravacuolar area showed a nearly constant relation, indicating an efflux of vacuolar protons into the cytosol. A 10-min treatment with 2 mM butyric or pivalic acid caused a transient acidification of the cytoplasm comparable to that observed after elicitor contact and also induced alkaloid biosynthesis. Experimental depletion of the vacuolar proton pool reversibly prevented both the elicitor-triggered pH shifts and the induction of alkaloid biosynthesis. pH shifts and induction of alkaloid biosynthesis showed a similar dependence on the elicitor concentration. Net efflux of K+, alkalinization of the outer medium, and browning of the cells were evoked only at higher elicitor concentrations. We suggest that transient acidification of the cytoplasm via efflux of vacuolar protons is both a necessary and sufficient step in the signal path toward biosynthesis of benzophenanthridine alkaloids in Californian poppy cells.
Collapse
Affiliation(s)
- Roos
- Martin-Luther-University Halle-Wittenberg, College of Pharmacy, Pharmaceutical Biology, Department of Cellular Physiology/Biotechnology, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
14
|
Pearson GA. A model for signal transduction during gamete release in the fucoid alga pelvetia compressa. PLANT PHYSIOLOGY 1998; 118:305-13. [PMID: 9733550 PMCID: PMC34869 DOI: 10.1104/pp.118.1.305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fucoid algae release gametes into seawater following an inductive light period (potentiation), and gamete expulsion from potentiated receptacles of Pelvetia compressa began about 2 min after a light-to-dark transition. Agitation of the medium reversed potentiation, with an exponential time course completed in about 3 h. Light regulated two signaling pathways during potentiation and gamete expulsion: a photosynthetic pathway and a photosynthesis-independent pathway in which red light was active but blue light was not. Uptake of K+ appears to have an important role in potentiation, because a 50% inhibition of potentiation occurred in the presence of the tetraethylammonium ion, a K+-channel blocker. A central role of anion channels in the maintenance of potentiation is suggested by the premature release of gametes in the light when receptacles were incubated with inhibitors of slow-type anion channels. An inhibitor of tyrosine kinases, tyrphostin A63, also inhibited potentiation. A model for gamete release from P. compressa is presented that proposes that illumination results in the accumulation of ions (e.g. K+) throughout the cells of the receptacle during potentiation, which then move into the extracellular matrix during gamete expulsion to generate osmomechanical force, resulting in gamete release.
Collapse
Affiliation(s)
- GA Pearson
- Department of Plant Biology and Pathology, University of Maine, Orono, Maine 04469-5722, USA
| |
Collapse
|
15
|
Dreyer I, Becker D, Bregante M, Gambale F, Lehnen M, Palme K, Hedrich R. Single mutations strongly alter the K+-selective pore of the K(in) channel KAT1. FEBS Lett 1998; 430:370-6. [PMID: 9688573 DOI: 10.1016/s0014-5793(98)00694-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Voltage-dependent potassium uptake channels represent the major pathway for K+ accumulation underlying guard cell swelling and stomatal opening. The core structure of these Shaker-like channels is represented by six transmembrane domains and an amphiphilic pore-forming region between the fifth and sixth domain. To explore the effect of point mutations within the stretch of amino acids lining the K+ conducting pore of KAT1, an Arabidopsis thaliana guard cell K(in) channel, we selected residues deep inside and in the periphery of the pore. The mutations on positions 256 and 267 strongly altered the interaction of the permeation pathway with external Ca2+ ions. Point mutations on position 256 in KAT1 affected the affinity towards Ca2+, the voltage dependence as well as kinetics of the Ca2+ blocking reaction. Among these T256S showed a Ca2+ phenotype reminiscent of an inactivation-like process, a phenomenon unknown for K(in) channels so far. Mutating histidine 267 to alanine, a substitution strongly affecting C-type inactivation in Shaker, this apparent inactivation could be linked to a very slow calcium block. The mutation H267A did not affect gating but hastened the Ca2+ block/unblock kinetics and increased the Ca2+ affinity of KAT1. From the analysis of the presented data we conclude that even moderate point mutations in the pore of KAT1 seem to affect the pore geometry rather than channel gating.
Collapse
Affiliation(s)
- I Dreyer
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik I-Molekulare Pflanzenphysiologie und Biophysik, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Zimmermann S, Talke I, Ehrhardt T, Nast G, Müller-Röber B. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. PLANT PHYSIOLOGY 1998; 116:879-90. [PMID: 9501121 PMCID: PMC35090 DOI: 10.1104/pp.116.3.879] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/1997] [Accepted: 12/03/1997] [Indexed: 05/18/2023]
Abstract
A cDNA encoding a novel, inwardly rectifying K+ (K+in) channel protein, SKT1, was cloned from potato (Solanum tuberosum L.). SKT1 is related to members of the AKT family of K+in channels previously identified in Arabidopsis thaliana and potato. Skt1 mRNA is most strongly expressed in leaf epidermal fragments and in roots. In electrophysiological, whole-cell, patch-clamp measurements performed on baculovirus-infected insect (Spodoptera frugiperda) cells, SKT1 was identified as a K+in channel that activates with slow kinetics by hyperpolarizing voltage pulses to more negative potentials than -60 mV. The pharmacological inhibitor Cs+, when applied externally, inhibited SKT1-mediated K+in currents half-maximally with an inhibitor concentration (IC50) of 105 microM. An almost identical high Cs+ sensitivity (IC50 = 90 microM) was found for the potato guard-cell K+in channel KST1 after expression in insect cells. SKT1 currents were reversibly activated by a shift in external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+in channels. Comparative studies revealed generally higher current amplitudes for KST1-expressing cells than for SKT1-expressing insect cells, which correlated with a higher targeting efficiency of the KST1 protein to the insect cell's plasma membrane, as demonstrated by fusions to green fluorescence protein.
Collapse
Affiliation(s)
- S Zimmermann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Karl-Liebknecht-Strasse 25, Haus 20, D-14476 Golm/Potsdam, Germany
| | | | | | | | | |
Collapse
|
17
|
|