1
|
Perlikowski D, Lechowicz K, Pawłowicz I, Arasimowicz-Jelonek M, Kosmala A. Scavenging of nitric oxide up-regulates photosynthesis under drought in Festuca arundinacea and F. glaucescens but reduces their drought tolerance. Sci Rep 2022; 12:6500. [PMID: 35444199 PMCID: PMC9021232 DOI: 10.1038/s41598-022-10299-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) has been proven to be involved in the regulation of many physiological processes in plants. Though the contribution of NO in plant response to drought has been demonstrated in numerous studies, this phenomenon remains still not fully recognized. The research presented here was performed to decipher the role of NO metabolism in drought tolerance and the ability to recover after stress cessation in two closely related species of forage grasses, important for agriculture in European temperate regions: Festuca arundinacea and F. glaucescens. In both species, two genotypes with distinct levels of drought tolerance were selected to compare their physiological reactions to simulated water deficit and further re-watering, combined with a simultaneous application of NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The results clearly indicated a strong relationship between scavenging of NO in leaves and physiological response of both analyzed grass species to water deficit and re-watering. It was revealed that NO generated under drought was mainly located in mesophyll cells. In plants with reduced NO level a higher photosynthetic capacity and delay in stomatal closure under drought, were observed. Moreover, NO scavenging resulted also in the increased membrane permeability and higher accumulation of ROS in cells of analyzed plants both under drought and re-watering. This phenomena indicate that lower NO level might reduce drought tolerance and the ability of F. arundinacea and F. glaucescens to recover after stress cessation.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland.
| | - Katarzyna Lechowicz
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Izabela Pawłowicz
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Arkadiusz Kosmala
- Plant Physiology Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| |
Collapse
|
2
|
Luyckx A, Beghin C, Quinet M, Achadé B, Prodjinoto H, Gandonou CB, Lutts S. Salinity differently affects antioxidant content and amino acid profile in two cultivars of Amaranthus cruentus differing in salinity tolerance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6211-6219. [PMID: 33913529 DOI: 10.1002/jsfa.11272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Amaranthus cruentus is a promising leafy vegetable with high nutritional value and is able to cope with salt stress but the impact of sodium chloride (NaCl) on its main properties have not been studied in detail. Plants from two contrasting cultivars (Rouge: salt-tolerant and Locale: salt-sensitive) were exposed to NaCl (0, 30, 60 and 90 mmol L-1 ) in nutrient solution for 2 weeks. Plant growth, mineral content, oxidative status and antioxidant concentration, salicylic acid concentration, protein content and amino acid profile were analyzed in the harvested leaves. RESULTS Low dose (30 mmol L-1 NaCl) increased plant growth while Na+ accumulated to higher extent in salt-sensitive Locale than in salt-tolerant Rouge. A total of 30 mmol L-1 NaCl increased magnesium (Mg), phosphorus (P) and iron (Fe) content, as well as total antioxidant activity, ascorbate, phenolics, α-tocopherol and carotenoids content to higher extent in cultivar (cv.) Rouge than in cv. Locale. Low (30 mmol L-1 ) and moderate salinities (60 mmol L-1 ) increased γ-tocopherol and total protein in cv. Locale. They also increased lysine, valine, methionine and proline concentration as well as chemical score of protein in this cultivar. The highest NaCl (90 mmol L-1 ) dose had a detrimental impact on both cultivars. CONCLUSIONS It is concluded that A. cruentus is a promising plant species for saline agriculture since moderate doses of salt improve both quantitative and qualitative parameters in cultivar dependent manner. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adrien Luyckx
- Groupe de Recherche en Physiologie Végétale - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Camille Beghin
- Groupe de Recherche en Physiologie Végétale - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Brice Achadé
- Laboratoire de Physiologie végétale et d'Etude des Stress Environnementaux, Faculté des Sciences et Techniques (FAST/UAC), Université Abomey-Calavi, Cotonou, Bénin
| | - Hermann Prodjinoto
- Groupe de Recherche en Physiologie Végétale - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Laboratoire de Physiologie végétale et d'Etude des Stress Environnementaux, Faculté des Sciences et Techniques (FAST/UAC), Université Abomey-Calavi, Cotonou, Bénin
| | - Christophe Bernard Gandonou
- Laboratoire de Physiologie végétale et d'Etude des Stress Environnementaux, Faculté des Sciences et Techniques (FAST/UAC), Université Abomey-Calavi, Cotonou, Bénin
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Kolomiiets YV, Grygoryuk IP, Butsenko LM, Emets AI, Blume YB. Sodium Nitroprusside as a Resistance Inducer in Tomato Plants against Pathogens of Bacterial Diseases. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
5
|
Lechowicz K, Pawłowicz I, Perlikowski D, Arasimowicz-Jelonek M, Blicharz S, Skirycz A, Augustyniak A, Malinowski R, Rapacz M, Kosmala A. Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms. Int J Mol Sci 2020; 21:ijms21165639. [PMID: 32781659 PMCID: PMC7460672 DOI: 10.3390/ijms21165639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023] Open
Abstract
Lolium multiflorum/Festuca arundinacea introgression forms have been proved several times to be good models to identify key components of grass metabolism involved in the mechanisms of tolerance to water deficit. Here, for the first time, a relationship between photosynthetic and antioxidant capacities with respect to drought tolerance of these forms was analyzed in detail. Two closely related L. multiflorum/F. arundinacea introgression forms distinct in their ability to re-grow after cessation of prolonged water deficit in the field were selected and subjected to short-term drought in pots to dissect precisely mechanisms of drought tolerance in this group of plants. The studies revealed that the form with higher drought tolerance was characterized by earlier and higher accumulation of abscisic acid, more stable cellular membranes, and more balanced reactive oxygen species metabolism associated with a higher capacity of the antioxidant system under drought conditions. On the other hand, both introgression forms revealed the same levels of stomatal conductance, CO2 assimilation, and consequently, intrinsic water use efficiency under drought and recovery conditions. However, simultaneous higher adjustment of the Calvin cycle to water deficit and reduced CO2 availability, with respect to the accumulation and activity of plastid fructose-1,6-bisphosphate aldolase, were clearly visible in the form with higher drought tolerance.
Collapse
Affiliation(s)
- Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
- Correspondence:
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Sara Blicharz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| |
Collapse
|
6
|
Two Festuca Species- F. arundinacea and F. glaucescens-Differ in the Molecular Response to Drought, While Their Physiological Response Is Similar. Int J Mol Sci 2020; 21:ijms21093174. [PMID: 32365894 PMCID: PMC7246586 DOI: 10.3390/ijms21093174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Impact of photosynthetic and antioxidant capacities on drought tolerance of two closely related forage grasses, Festuca arundinacea and Festuca glaucescens, was deciphered. Within each species, two genotypes distinct in drought tolerance were subjected to a short-term drought, followed by a subsequent re-watering. The studies were focused on: (i) analysis of plant physiological performance, including: water uptake, abscisic acid (ABA) content, membrane integrity, gas exchange, and relative water content in leaf tissue; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); and (iii) analysis of plant antioxidant capacity (reactive oxygen species (ROS) generation; gene expression, protein accumulation and activity of selected enzymes). Though, F. arundinacea and F. glaucescens revealed different strategies in water uptake, and partially also in ABA signaling, their physiological reactions to drought and further re-watering, were similar. On the other hand, performance of the Calvin cycle and antioxidant system differed between the analyzed species under drought and re-watering periods. A stable efficiency of the Calvin cycle in F. arundinacea was crucial to maintain a balanced network of ROS/redox signaling, and consequently drought tolerance. The antioxidant capacity influenced mostly tolerance to stress in F. glaucescens.
Collapse
|
7
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB. The function of S-nitrosothiols during abiotic stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4429-4439. [PMID: 31111892 DOI: 10.1093/jxb/erz197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.
Collapse
Affiliation(s)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | | |
Collapse
|
8
|
Hancock JT. Considerations of the importance of redox state for reactive nitrogen species action. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4323-4331. [PMID: 30793204 DOI: 10.1093/jxb/erz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are immensely important signalling molecules in plants, being involved in a range of physiological responses. However, the exact way in which NO fits into signal transduction pathways is not always easy to understand. Here, some of the issues that should be considered are discussed. This includes how NO may interact directly with other reactive signals, such as reactive oxygen and sulfur species, how NO metabolism is almost certainly compartmentalized, that threshold levels of RNS may need to be reached to have effects, and how the intracellular redox environment may impact on NO signalling. Until better tools are available to understand how NO is generated in cells, where it accumulates, and to what levels it reaches, it will be hard to get a full understanding of NO signalling. The interaction of RNS metabolism with the intracellular redox environment needs further investigation. A changing redox poise will impact on whether RNS species can thrive in or around cells. Such mechanisms will determine whether specific RNS can indeed control the responses needed by a cell.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
9
|
Vromman D, Martínez JP, Kumar M, Šlejkovec Z, Lutts S. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34473-34486. [PMID: 30311113 DOI: 10.1007/s11356-018-3351-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Whole plants and hypocotyl-derived calli of the halophyte plant species Atriplex atacamensis were exposed to 50 μM arsenate (As(V)) or 50 μM arsenite (As(III)). At the whole plant level, As(III) was more toxic than As(V): it reduced plant growth, stomatal conductance, photosystem II efficiency while As(V) did not. In roots, As accumulated to higher level in response to As(III) than in response to As(V). Within root tissues, both arsenate and arsenite were identified in response to each treatment suggesting that oxidation of As(III) may occur. More than 40% of As was bound to the cell wall in the roots of As(V)-treated plants while this proportion strongly decreased in As(III)-treated ones. In leaves, total As and the proportion of As bound to the cell wall were similar in response to As(V) and As(III). Non-protein thiol increased to higher extent in response to As(V) than in response to As(III) while ethylene synthesis was increased in As(III)-treated plants only. Polyamine profile was modified in a contrasting way in response to As(V) and As(III). At the callus level, As(V) and As(III) 50 μM did not reduce growth despite an important As accumulation within tissues. Calli exposed to 50 μM As did not increase the endogenous non-protein thiol. In contrast to the whole plants, arsenite was not more toxic than arsenate at the cell line level and As(V)-treated calli produced higher amounts of ethylene and malondialdehyde. A very high dose of As(V) (1000 μM) strongly reduced callus growth and lead to non-protein thiols accumulation. It is concluded that As(III) was more toxic than As(V) at the plant level but not at the cellular level and that differential toxicity was not fully explained by speciation of accumulated As. Arsenic resistance in A. atacamensis exhibited a cellular component which however did not reflect the behavior of whole plant when exposed to As(V) or As(III).
Collapse
Affiliation(s)
- Delphine Vromman
- Groupe de Recherche en Physiologie végétale-Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Juan-Pablo Martínez
- Instituto de Investigaciones Agropecuarias, INIA-La Cruz, La Cruz, Region de Valparaiso, Chile
| | | | | | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale-Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
10
|
Lindermayr C, Durner J. Nitric oxide sensor proteins with revolutionary potential. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3507-3510. [PMID: 29947809 PMCID: PMC6022558 DOI: 10.1093/jxb/ery193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article comments on: Calvo-Begueria L, Rubio MC, Martínez JI, Pérez-Rontomé C, Delgado MJ, Bedmar EJ, Becana M. 2018. Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes. Journal of Experimental Botany 69, 3703–3714.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, München/Neuherberg, Germany
- Correspondence:
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, München/Neuherberg, Germany
- Lehrstuhl für Biochemische Pflanzenpathologie, Technische Universität München, Freising, Germany
| |
Collapse
|
11
|
Houmani H, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism. Nitric Oxide 2017; 74:93-101. [PMID: 28655650 DOI: 10.1016/j.niox.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
Abstract
Mechanical wounding in plants, which are capable of generating defense responses possibly associated with nitro-oxidative stress, can be caused by (a)biotic factors such as rain, wind, herbivores and insects. Sea rocket (Cakile maritima L.), a halophyte plant belonging to the mustard family Brassicaceae, is commonly found on sandy coasts throughout Europe. Using 7-day-old Cakile maritima L. seedlings, mechanical wounding was induced in hypocotyls by pinching with a striped-tip forceps; after 3 h, several biochemical parameters were analyzed in both the damaged and unwounded organs (green cotyledons and roots). We thus determined NO production, H2O2 content, lipid oxidation as well as protein nitration patterns; we also identified several antioxidant enzymes including catalase, superoxide dismutase (SOD) isozymes, peroxidases, ascorbate-glutathione cycle enzymes and NADP-dehydrogenases. All these parameters were differentially modulated in the damaged (hypocotyls) and unwounded organs, which clearly indicated an induction of CuZnSOD V in the three organs, an increase in protein nitration in green cotyledons and an induction of NADP-isocitrate dehydrogenase activity in roots. On the whole, our results indicate that the wounding of hypocotyls, which showed an active ROS metabolism and oxidative stress, causes long-distance signals that also trigger responses in unwounded tissues with a more active RNS metabolism. These data therefore confirm the existence of local and long-distance responses which counteract negative effects and provide appropriate responses, enabling the wounded seedlings to survive.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
12
|
Marvasi M. Potential use and perspectives of nitric oxide donors in agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1065-1072. [PMID: 27786356 DOI: 10.1002/jsfa.8117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/03/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Massimiliano Marvasi
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| |
Collapse
|
13
|
Chen S, Zhao H, Wang M, Li J, Wang Z, Wang F, Liu A, Ahammed GJ. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1109. [PMID: 28713400 PMCID: PMC5492635 DOI: 10.3389/fpls.2017.01109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/08/2017] [Indexed: 05/11/2023]
Abstract
Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS) or reactive nitrogen species (RNS) metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase) was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, [Formula: see text], MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP). The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA-GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop improvement against biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Shuangchen Chen
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | - Hongjiao Zhao
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Mengmeng Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Jidi Li
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Zhonghong Wang
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
| | - Fenghua Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Airong Liu
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | | |
Collapse
|
14
|
Si T, Wang X, Wu L, Zhao C, Zhang L, Huang M, Cai J, Zhou Q, Dai T, Zhu JK, Jiang D. Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1284. [PMID: 28769973 PMCID: PMC5515872 DOI: 10.3389/fpls.2017.01284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H2O2) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H2O2 accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H2O2 acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H2O2 acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of "photosynthesis" and "signaling." These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H2O2, and further modifications in photosystem and antioxidant system.
Collapse
Affiliation(s)
- Tong Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Lin Wu
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Lini Zhang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, United States
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| |
Collapse
|
15
|
Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. FRONTIERS IN PLANT SCIENCE 2016; 7:154. [PMID: 26904092 PMCID: PMC4751408 DOI: 10.3389/fpls.2016.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 05/29/2023]
Abstract
Cucurbits developed the unique extrafascicular phloem (EFP) as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima). Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint toward a wound-induced shift in the redox status of the EFP. Nitric oxide (NO) is another important player in stress-induced redox signaling in plants. Therefore, we analyzed NO-dependent protein modifications in the EFP. Six to forty eight hours after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1) and Cyclophilin 18 (CYP18) as well as the 26.5 kD isoform of Phloem Protein 2 (PP2) were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP) in the EFP and discuss the possible function of this second messenger in systemic NO and redox signaling within the EFP.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Alexandra C. U. Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Matthias R. Zimmermann
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | - Anja Buhtz
- Department Lothar Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Julia Kehr
- Biocenter Klein Flottbek, University HamburgHamburg, Germany
| | - Hakan Sarioglu
- Department of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University GiessenGiessen, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
16
|
Hu X, Yang J, Li C. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry. Int J Mol Sci 2015; 16:28582-97. [PMID: 26633380 PMCID: PMC4691064 DOI: 10.3390/ijms161226117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022] Open
Abstract
Larix olgensis Henry is an important coniferous species found in plantation forests in northeastern China, but it is vulnerable to pathogens. Nitric oxide (NO) is an important molecule involved in plant resistance to pathogens. To study the regulatory role of NO at the transcriptional level, we characterized the transcriptomic response of L. olgensis seedlings to sodium nitroprusside (SNP, NO donor) using Illumina sequencing and de novo transcriptome assembly. A significant number of putative metabolic pathways and functions associated with the unique sequences were identified. Genes related to plant pathogen infection (FLS2, WRKY33, MAPKKK, and PR1) were upregulated with SNP treatment. This report describes the potential contribution of NO to disease resistance in L. olgensis as induced by biotic stress. Our results provide a substantial contribution to the genomic and transcriptomic resources for L. olgensis, as well as expanding our understanding of the involvement of NO in defense responses at the transcriptional level.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
17
|
Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:1-12. [PMID: 26070063 DOI: 10.1016/j.jplph.2015.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 05/21/2023]
Abstract
Osmopriming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. Brassica napus seeds showed osmopriming-improved germination and seedling growth under salinity stress. To understand the molecular and biochemical mechanisms of osmopriming-induced salinity tolerance, the accumulation of proline, gene expression and activity of enzymes involved in proline metabolism and the level of endogenous hydrogen peroxide were investigated in rape seeds during osmopriming and post-priming germination under control (H2O) and stress conditions (100 mM NaCl). The relationship between gene expression and enzymatic activity of pyrroline-5-carboxylate synthetase (P5CS), ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (PDH) was determined. The improved germination performance of osmoprimed seeds was accompanied by a significant increase in proline content. The accumulation of proline during priming and post-priming germination was associated with strong up-regulation of the P5CSA gene, down-regulation of the PDH gene and accumulation of hydrogen peroxide. The up-regulated transcript level of P5CSA was consistent with the increase in P5CS activity. This study shows, for the first time, the role of priming-induced modulation of activities of particular genes and enzymes of proline turnover, and its relationship with higher content of hydrogen peroxide, in improving seed germination under salinity stress. Following initial stress-exposure, the primed seeds acquired stronger salinity stress tolerance during post-priming germination, a feature likely linked to a 'priming memory'.
Collapse
Affiliation(s)
- Szymon Kubala
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland; Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Łukasz Wojtyla
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Lechowska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Małgorzata Garnczarska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
18
|
Alexou M, Dimitrakopoulos AP. Early physiological consequences of fire as an abiotic stressor in metabolic source and sink of young Brutian pine (Pinus brutia Ten.). TREE PHYSIOLOGY 2014; 34:1388-1398. [PMID: 25430884 DOI: 10.1093/treephys/tpu098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Climatic change causes gradual deforestation, partly through forest fires. However, fire has not been seen as an oxidative stressor on surviving forest trees. In addition, discrimination of stress-induced responses from acclimation steps cannot be examined under prolonged stress. Thus, four young Brutian pine (Pinus brutia Ten.) trees, a fire-related species, were subjected to a simulation of a crown-fire event to evaluate its impact on the availability of soluble carbon (C) and nitrogen (N) and the redox status near fire-afflicted tissue. Total soluble sugars, amino acids and non-structural (NS) proteins in needles and phloem, the antioxidant ascorbic acid (AsA) and reactive oxygen species (ROS) in needles were investigated together with the phloem transport velocity. To examine the temporal progress of these parameters, samples were obtained prior to fire (pre-fire), 2 h after fire, the following day (Day 1) and the following week (Week 1). Findings were categorized into shock reactions (2 h) and acclimation steps. Phloem transport accelerated 2 h postfire by almost 30% and correlated negatively to phloem sugars. At the same time the phloem ratio of sugars/amino acids correlated negatively to needle ROS. The trees' main response at 2 h and particularly on Day 1 was a massive increase in phloem NS proteins. The acclimation process involved also significant increases in needle NS proteins and AsA, as well as significant depletion of phloem amino acids by 65% by Week 1. The highest availability of soluble C and N was recorded on Day 1 in the phloem. Regression models explained significantly the variability of most soluble compounds postfire. Our findings suggest sink control over the source and an advanced role of phloem transport in defense processes.
Collapse
Affiliation(s)
- Maria Alexou
- Laboratory of Forest Protection, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 228, 54124 Thessaloniki, Greece
| | - Alexandros P Dimitrakopoulos
- Laboratory of Forest Protection, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 228, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Bagniewska-Zadworna A, Arasimowicz-Jelonek M, Smoliński DJ, Stelmasik A. New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions. ANNALS OF BOTANY 2014; 113:1235-47. [PMID: 24812251 PMCID: PMC4030819 DOI: 10.1093/aob/mcu063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/06/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. METHODS Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. KEY RESULTS The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole. CONCLUSIONS The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.
Collapse
Affiliation(s)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Dariusz J Smoliński
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
20
|
Sehrawat A, Deswal R. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res 2014; 13:2599-619. [PMID: 24684139 DOI: 10.1021/pr500082u] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive nitrogen species (RNS) including nitric oxide (NO) are important components of stress signaling. However, RNS-mediated signaling in the apoplast remains largely unknown. NO production measured in the shoot apoplast of Brassica juncea seedlings showed nonenzymatic nitrite reduction to NO. Thiol pool quantification showed cold-induced increase in the protein (including S-nitrosothiols) as well as non protein thiols. Proteins from the apoplast were resolved as 109 spots on the 2-D gel, while S-nitrosoglutathione-treated (a NO donor), neutravidin-agarose affinity chromatography-purified S-nitrosylated proteins were resolved as 52 spots. Functional categorization after MALDI-TOF/TOF identification showed 41 and 38% targets to be metabolic/cell-wall-modifying and stress-related, respectively, suggesting the potential role(s) of S-nitrosylation in regulating these responses. Additionally, identification of cold-stress-modulated putative S-nitrosylated proteins by nLC-MS/MS showed that only 38.4% targets with increased S-nitrosylation were secreted by classical pathway, while the majority (61.6%) of these were secreted by unknown/nonclassical pathways. Cold-stress-increased dehydroascorbate reductase and glutathione S-transferase activity via S-nitrosylation and promoted ROS detoxification by ascorbate regeneration and hydrogen peroxide detoxification. Taken together, cold-mediated NO production, thiol pool enrichment, and identification of the 48 putative S-nitrosylated proteins, including 25 novel targets, provided the preview of RNS-mediated cold-stress signaling in the apoplast.
Collapse
Affiliation(s)
- Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi , Delhi 110007, India
| | | |
Collapse
|
21
|
McDowell RE, Amsler CD, Dickinson DA, McClintock JB, Baker BJ. Reactive oxygen species and the Antarctic macroalgal wound response. JOURNAL OF PHYCOLOGY 2014; 50:71-80. [PMID: 26988009 DOI: 10.1111/jpy.12127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/04/2013] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) are commonly produced by algal, vascular plant, and animal cells involved in the innate immune response as cellular signals promoting defense and healing and/or as a direct defense against invading pathogens. The production of reactive species in macroalgae upon injury, however, is largely uncharacterized. In this study, we surveyed 13 species of macroalgae from the Western Antarctic Peninsula and show that the release of strong oxidants is common after macroalgal wounding. Most species released strong oxidants within 1 min of wounding and/or showed cellular accumulation of strong oxidants over an hour post-wounding. Exogenous catalase was used to show that hydrogen peroxide was a component of immediate oxidant release in one of five species, but was not responsible for the entire oxidative wound response as is common in vascular plants. The other component(s) of the oxidant cocktail released upon wounding are unknown. We were unable to detect protein nitration in extracts of four oxidant-producing species flash frozen 30 s after wounding, but a role for reactive nitrogen species such as peroxynitrite cannot be completely ruled out. Two species showed evidence for the production of a catalase-activated oxidant, a mechanism previously known only from the laboratory and from the synthetic drug isoniazid used to kill the human pathogen Mycobacterium tuberculosis. The rhodophyte Palmaria decipiens, which released strong oxidants after wounding, also produced strong oxidants upon grazing by a sympatric amphipod, suggesting that oxidants are involved in the response to grazing.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Charles D Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Dale A Dickinson
- Department of Environmental Health Sciences and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - James B McClintock
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Bill J Baker
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA
| |
Collapse
|
22
|
Groß F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. FRONTIERS IN PLANT SCIENCE 2013; 4:419. [PMID: 24198820 PMCID: PMC3812536 DOI: 10.3389/fpls.2013.00419] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/01/2013] [Indexed: 05/18/2023]
Abstract
In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione-the latter alone or in conjunction with S-nitrosoglutathione reductase-in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD).
Collapse
Affiliation(s)
| | | | - Frank Gaupels
- German Research Center for Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz-Zentrum MünchenMunich, Germany
| |
Collapse
|
23
|
Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J. Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:23-34. [PMID: 23987808 DOI: 10.1016/j.plantsci.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 05/03/2023]
Abstract
In our experimental approach we examined how potato leaves exposed to a chemical agent might induce nitric oxide (NO) dependent biochemical modifications for future mobilization of an effective resistance to Phytophthora infestans. After potato leaf treatment with one of the following SAR inducers, i.e. β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA) or Laminarin, we observed enhanced NO generation concomitant with biochemical changes related to a slight superoxide anion (O2(-)) and hydrogen peroxide (H2O2) accumulation dependent on minimal NADPH oxidase and peroxidase activities, respectively. These rather normoergic changes, linked to the NO message, were mediated by the temporary down-regulation of S-nitrosoglutathione reductase (GSNOR). In turn, after challenge inoculation signal amplification promoted potato resistance manifested in the up-regulation of GSNOR activity tuned with the depletion of the SNO pool, which was observed by our team earlier (Floryszak-Wieczorek et al., 2012). Moreover, hyperergic defense responses related to an early and rapid O2(-)and H2O2 overproduction together with a temporary increase in NADPH oxidase and peroxidase activities were noted. BABA treatment was the most effective against P. infestans resulting in the enhanced activity of β-1,3-glucanase and callose deposition. Our results indicate that NO-mediated biochemical modifications might play an important role in creating more potent defense responses of potato to a subsequent P. infestans attack.
Collapse
Affiliation(s)
- Łukasz Janus
- Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Morkunas I, Formela M, Floryszak-Wieczorek J, Marczak Ł, Narożna D, Nowak W, Bednarski W. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:102-121. [PMID: 23987816 DOI: 10.1016/j.plantsci.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, Poznań, Poland.
| | | | | | | | | | | | | |
Collapse
|
25
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
26
|
Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1483-99. [PMID: 22394204 DOI: 10.1111/j.1365-3040.2012.02505.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, thus questioning the mechanisms of how this compound impairs NO synthesis in plants. We further demonstrated that NO modulates RBOHD-mediated reactive oxygen species (ROS) production and participates in the regulation of OG-responsive genes such as anionic peroxidase (PER4) and a β-1,3-glucanase. Mutant plants impaired in PER4 and β-1,3-glucanase, as well as Col-0 plants treated with the NO scavenger cPTIO, were more susceptible to B. cinerea. Taken together, our investigation deciphers part of the mechanisms linking NO production, NO-induced effects and basal resistance to B. cinerea.
Collapse
Affiliation(s)
- S Rasul
- AgroSup, UMR 1347 Agroécologie, BP 86510, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E. Methods of nitric oxide detection in plants: a commentary. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:509-19. [PMID: 21893246 DOI: 10.1016/j.plantsci.2011.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/20/2023]
Abstract
Over the last decade nitric oxide (NO) has been shown to influence a range of processes in plants. However, when, where and even if NO production occurs is controversial in several physiological scenarios in plants. This arises from a series of causes: (a) doubts have arisen over the specificity of widely used 4,5-diaminofluorescein diacetate (DAF-2DA)/4-amino-5-methylamino-2,7-difluorofluorescein (DAF-FM) dyes for NO, (b) no plant nitric oxide synthase (NOS) has been cloned, so that the validity of using mammalian NOS inhibitors to demonstrate that NO is being measured is debatable, (c) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO) needs to be used with caution, and (d) some discrepancies between assays for in planta measurements and another based on sampling NO from the gas phase have been reported. This review will outline some commonly used methods to determine NO, attempt to reconcile differing results obtained by different laboratories and suggest appropriate approaches to unequivocally demonstrate the production of NO.
Collapse
Affiliation(s)
- Luis A J Mur
- University of Wales, Aberystwyth, Institute of Biological Sciences, Aberystwyth, Wales, UK.
| | | | | | | | | |
Collapse
|
28
|
Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB. Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1803-13. [PMID: 21172815 PMCID: PMC3060671 DOI: 10.1093/jxb/erq358] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/04/2010] [Accepted: 10/20/2010] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO(2)-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO(2)-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO(2)-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.
Collapse
Affiliation(s)
- Mounira Chaki
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Raquel Valderrama
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Ana M. Fernández-Ocaña
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Alfonso Carreras
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Maria. V. Gómez-Rodríguez
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - José R. Pedrajas
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Juan C. Begara-Morales
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | | | - Francisco Luque
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Marina Leterrier
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan B. Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| |
Collapse
|
29
|
Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A. Exploring the impact of wounding and jasmonates on ascorbate metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:337-50. [PMID: 20346686 PMCID: PMC2880922 DOI: 10.1016/j.plaphy.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 05/20/2023]
Abstract
Vitamin C (ascorbate, AsA) is the most abundant water-soluble antioxidant in plants. Ascorbate provides the first line of defense against damaging reactive oxygen species (ROS), and helps protect plant cells from many factors that induce oxidative stress, including wounding, ozone, high salinity, and pathogen attack. Plant defenses against these stresses are also dependent upon jasmonates (JAs), a class of plant hormones that promote ROS accumulation. Here, we review evidence showing that wounding and JAs influence AsA accumulation in various plant species, and we report new data from Arabidopsis and tomato testing the influence of JAs on AsA levels in wounded and unwounded plants. In both species, certain mutations that impair JA metabolism and signaling influence foliar AsA levels, suggesting that endogenous JAs may regulate steady-state AsA. However, the impact of wounding on AsA accumulation was similar in JA mutants and wild type controls, indicating that this wound response does not require JAs. Our findings also indicate that the effects of wounding and JAs on AsA accumulation differ between species; these factors both enhanced AsA accumulation in Arabidopsis, but depressed AsA levels in tomato. These results underscore the importance of obtaining data from more than one model species, and demonstrate the complexity of AsA regulation.
Collapse
Affiliation(s)
- Walter P. Suza
- Arkansas Biosciences Institute at Arkansas State University
| | - Carlos A. Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Kelly Carruthers
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Shashank Kulkarni
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
| | - Fiona L. Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR
- Authors to whom correspondence should be addressed (Fax 479 575 2452; ; Fax 870 972 2026; )
| | - Argelia Lorence
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
- Authors to whom correspondence should be addressed (Fax 479 575 2452; ; Fax 870 972 2026; )
| |
Collapse
|
30
|
You MK, Shin HY, Kim YJ, Ok SH, Cho SK, Jeung JU, Yoo SD, Kim JK, Shin JS. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1015-29. [PMID: 20018603 PMCID: PMC2815893 DOI: 10.1104/pp.109.147645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/08/2009] [Indexed: 05/23/2023]
Abstract
Screening of the expressed sequence tag library of the wild rice species Oryza minuta revealed an unknown gene that was rapidly and strongly induced in response to attack by a rice fungal pathogen (Magnaporthe oryzae) and an insect (Nilaparvata lugens) and by wounding, abscisic acid (ABA), and methyl jasmonate treatments. Its recombinant protein was identified as a bifunctional nuclease with both RNase and DNase activities in vitro. This gene was designated OmBBD (for O. minuta bifunctional nuclease in basal defense response). Overexpression of OmBBD in an Arabidopsis (Arabidopsis thaliana) model system caused the constitutive expression of the PDF1.2, ABA1, and AtSAC1 genes, which are involved in priming ABA-mediated callose deposition. This activation of defense responses led to an increased resistance against Botrytis cinerea. atbbd1, the knockout mutant of the Arabidopsis ortholog AtBBD1, was susceptible to attack by B. cinerea and had deficient callose deposition. Overexpression of either OmBBD or AtBBD1 in atbbd1 plants complemented the susceptible phenotype of atbbd1 against B. cinerea as well as the deficiency of callose deposition. We suggest that OmBBD and AtBBD1 have a novel regulatory role in ABA-mediated callose deposition.
Collapse
|