1
|
Hashemi E, Movahedin M, Ghiaseddin A, Aghamir SMK. In Vitro Spermatogenesis on Human Decellularized Testicular Matrix Plates Following Exosome Treatment in a Dynamic Culture System. Stem Cell Rev Rep 2024:10.1007/s12015-024-10818-z. [PMID: 39499446 DOI: 10.1007/s12015-024-10818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Testicular tissue engineering for in vitro spermatogenesis aims to restore fertility, focusing on challenges like efficiency, ethical concerns, and the need for a deeper biological understanding. The use of decellularized scaffolds led to better cell seeding and differentiation, and exosomes led to enhanced spermatogenesis. Also, the dynamic culture systems are being explored to replicate in vivo conditions more accurately. In this study, we aimed to utilize a perfusion mini-bioreactor for the dynamic culture of mouse spermatogonial stem cells on decellularized testicular matrix plates supplemented with exosomes. Our goal was to assess the progression of the spermatogenesis process through histological, immunohistochemical, and molecular analyses over four weeks. Human testicular tissues were decellularized using 1% sodium dodecyl sulfate and were then fabricated into thin plates using a cryostat. Sertoli and spermatogonial stem cells were isolated from neonate mouse testis and seeded onto the decellularized testicular matrix plates. A mini-perfusion bioreactor was employed to create dynamic culture conditions. Also, MSCs-derived exosomes were introduced to the culture medium, alone or in combination with a spermatogenic medium containing numerous chemical factors. The histological, IHC, and molecular analyses were performed at the end of the experiment. Our decellularization procedure successfully preserved the ECM components, while eliminating native cells. The isolated cells expressed PLZF and VIMENTIN markers, confirming the presence of SSCs and Sertoli cells. The seeded scaffolds exhibited proper homing, viability, proliferation, and differentiation of the cells towards in vitro spermatogenesis. Also, exosome treatment is capable of enhancing the spermatogenic potential of SSCs. Our findings indicate that the dynamic culture system significantly promoted the proliferation and differentiation of SSCs into mature spermatozoa. The use of exosomes further enhanced these effects, as evidenced by improved cellular viability, reduced apoptosis, and advanced spermatogenesis to the elongated spermatid stage. The combined treatment of exosomes and spermatogenic medium showed a synergistic effect, yielding superior outcomes in terms of sperm cell maturity and functionality. This study underscores the potential of combining decellularized testicular matrices with exosome therapy in a dynamic culture set up to advance the field of reproductive biology and fertility restoration.
Collapse
Affiliation(s)
- Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Ghiaseddin
- Chemistry Department, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
2
|
Shrivastav AM, Ali N, Singh N, Lunenfeld E, Abdulhalim I, Huleihel M. Identification of spermatogenesis in individual seminiferous tubules and testicular tissue of adult normal and busulfan-treated mice employing Raman spectroscopy and principal component analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124232. [PMID: 38593538 DOI: 10.1016/j.saa.2024.124232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
The present study aims to identify spermatogenesis in testicular seminiferous tubules (ST) and testicular tissue of adult normal and busulfan-treated mice utilizing PCA and Raman spectroscopy. Raman measurements were conducted on single tubules and testes samples from adult and immature mice, comparing them with those from busulfan-treated adult mice, with validation through histological examination. The analysis revealed a higher signal variability (30 %-40 % at the peaks), prompting scrutiny of individual Raman spectra as a means of spermatogenesis measurement. However, principal component analysis (PCA) demonstrated significant cluster separation between the ST of mature and immature mice. Similar investigations were performed to compare ST from normal mature mice and those from busulfan-treated (BS-treated) mature mice, revealing substantial separation along PC1 and PC2 for all comparison sets. Additionally, comparing testicular samples from mature and immature mice revealed distinct separation in PCA. The study concludes that the combined approach of PCA and Raman spectroscopy proves to be a noninvasive and potentially valuable method for identifying spermatogenesis in seminiferous tubules and testicular samples.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel; Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulthar, Tamil Nadu 603203, India
| | - Nagham Ali
- The Shraga Segal Dept. of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Neetika Singh
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel
| | | | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Dept. of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
3
|
van Maaren J, Alves LF, van Wely M, van Pelt AMM, Mulder CL. Favorable culture conditions for spermatogonial propagation in human and non-human primate primary testicular cell cultures: a systematic review and meta-analysis. Front Cell Dev Biol 2024; 11:1330830. [PMID: 38259514 PMCID: PMC10800969 DOI: 10.3389/fcell.2023.1330830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Autologous transplantation of spermatogonial stem cells (SSCs) isolated from cryopreserved testicular biopsies obtained before oncological treatment could restore fertility in male childhood cancer survivors. There is a clear necessity for in vitro propagation of the limited SSCs from the testicular biopsy prior to transplantation due to limited numbers of spermatogonia in a cryopreserved testicular biopsy. Still, there is no consensus regarding their optimal culture method. Methods: We performed a systematic review and meta-analysis of studies reporting primary testicular cell cultures of human and non-human primate origin through use of Pubmed, EMBASE, and Web of Science core collection databases. Of 760 records, we included 42 articles for qualitative and quantitative analysis. To quantify in vitro spermatogonial propagation, spermatogonial colony doubling time (CDT) was calculated, which measures the increase in the number of spermatogonial colonies over time. A generalized linear mixed model analysis was used to assess the statistical effect of various culture conditions on CDT. Results: Our analysis indicates decreased CDTs, indicating faster spermatogonial propagation in cultures with a low culture temperature (32°C); with use of non-cellular matrices; use of StemPro-34 medium instead of DMEM; use of Knockout Serum Replacement; and when omitting additional growth factors in the culture medium. Discussion: The use of various methods and markers to detect the presence of spermatogonia within the reported cultures could result in detection bias, thereby potentially influencing comparability between studies. However, through use of CDT in the quantitative analysis this bias was reduced. Our results provide insight into critical culture conditions to further optimize human spermatogonial propagation in vitro, and effectively propagate and utilize these cells in a future fertility restoration therapy and restore hope of biological fatherhood for childhood cancer survivors.
Collapse
Affiliation(s)
- Jillis van Maaren
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luis F. Alves
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Madelon van Wely
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Nikmahzar A, Koruji M, Jahanshahi M, Khadivi F, Shabani M, Dehghani S, Forouzesh M, Jabari A, Feizollahi N, Salem M, Ghanami Gashti N, Abbasi Y, Abbasi M. Differentiation of human primary testicular cells in the presence of SCF using the organoid culture system. Artif Organs 2023; 47:1818-1830. [PMID: 37698035 DOI: 10.1111/aor.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.
Collapse
Affiliation(s)
- Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Center & Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Shabani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Dehghani
- Organ Procurement Unit, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Ayob Jabari
- Department of Anatomy, Zahedan Medical University of Science, Zahedan, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Abbasi
- Program in Neuroscience, Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rajachandran S, Zhang X, Cao Q, Caldeira-Brant AL, Zhang X, Song Y, Evans M, Bukulmez O, Grow EJ, Nagano M, Orwig KE, Chen H. Dissecting the spermatogonial stem cell niche using spatial transcriptomics. Cell Rep 2023; 42:112737. [PMID: 37393620 PMCID: PMC10530051 DOI: 10.1016/j.celrep.2023.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/07/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Spermatogonial stem cells (SSCs) in the testis support the lifelong production of sperm. SSCs reside within specialized microenvironments called "niches," which are essential for SSC self-renewal and differentiation. However, our understanding of the molecular and cellular interactions between SSCs and niches remains incomplete. Here, we combine spatial transcriptomics, computational analyses, and functional assays to systematically dissect the molecular, cellular, and spatial composition of SSC niches. This allows us to spatially map the ligand-receptor (LR) interaction landscape in both mouse and human testes. Our data demonstrate that pleiotrophin regulates mouse SSC functions through syndecan receptors. We also identify ephrin-A1 as a potential niche factor that influences human SSC functions. Furthermore, we show that the spatial re-distribution of inflammation-related LR interactions underlies diabetes-induced testicular injury. Together, our study demonstrates a systems approach to dissect the complex organization of the stem cell microenvironment in health and disease.
Collapse
Affiliation(s)
- Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andre L Caldeira-Brant
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangfan Zhang
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Youngmin Song
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan Bukulmez
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Nagano
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Singh A, Hermann BP. Conserved Transcriptome Features Define Prepubertal Primate Spermatogonial Stem Cells as A dark Spermatogonia and Identify Unique Regulators. Int J Mol Sci 2023; 24:4755. [PMID: 36902187 PMCID: PMC10002546 DOI: 10.3390/ijms24054755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Antineoplastic treatments for cancer and other non-malignant disorders can result in long-term or permanent male infertility by ablating spermatogonial stem cells (SSCs). SSC transplantation using testicular tissue harvested before a sterilizing treatment is a promising approach for restoring male fertility in these cases, but a lack of exclusive biomarkers to unequivocally identify prepubertal SSCs limits their therapeutic potential. To address this, we performed single-cell RNA-seq on testis cells from immature baboons and macaques and compared these cells with published data from prepubertal human testis cells and functionally-defined mouse SSCs. While we found discrete groups of human spermatogonia, baboon and rhesus spermatogonia appeared less heterogenous. A cross-species analysis revealed cell types analogous to human SSCs in baboon and rhesus germ cells, but a comparison with mouse SSCs revealed significant differences with primate SSCs. Primate-specific SSC genes were enriched for components and regulators of the actin cytoskeleton and participate in cell-adhesion, which may explain why the culture conditions for rodent SSCs are not appropriate for primate SSCs. Furthermore, correlating the molecular definitions of human SSC, progenitor and differentiating spermatogonia with the histological definitions of Adark/Apale spermatogonia indicates that both SSCs and progenitor spermatogonia are Adark, while Apale spermatogonia appear biased towards differentiation. These results resolve the molecular identity of prepubertal human SSCs, define novel pathways that could be leveraged for advancing their selection and propagation in vitro, and confirm that the human SSC pool resides entirely within Adark spermatogonia.
Collapse
Affiliation(s)
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
7
|
Aydos OS, Yukselten Y, Ozkan T, Ozkavukcu S, Tuten Erdogan M, Sunguroglu A, Aydos K. Co-Culture of Cryopreserved Healthy Sertoli Cells with Testicular Tissue of Non-Obstructive Azoospermia (NOA) Patients in Culture Media Containing Follicle-Stimulating Hormone (FSH)/Testosterone Has No Advantage in Germ Cell Maturation. J Clin Med 2023; 12:jcm12031073. [PMID: 36769720 PMCID: PMC9917953 DOI: 10.3390/jcm12031073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p < 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p < 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p < 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p > 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.
Collapse
Affiliation(s)
- O. Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Yunus Yukselten
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520, USA
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, School of Medicine, Ankara University, Ankara 06230, Turkey
- Postgraduate Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Meltem Tuten Erdogan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara 06230, Turkey
| |
Collapse
|
8
|
Effects and Mechanisms Activated by Treatment with Cationic, Anionic and Zwitterionic Liposomes on an In Vitro Model of Porcine Pre-Pubertal Sertoli Cells. Int J Mol Sci 2023; 24:ijms24021201. [PMID: 36674712 PMCID: PMC9865246 DOI: 10.3390/ijms24021201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Liposomes have been successfully used as drug-delivery vehicles, but there are no clinical studies on improved fertility and the few reported experimental studies have been performed in animal models far from humans. The aim of this paper was to study the effects of treatment with cationic, anionic and zwitterionic liposomes on our superior mammalian model of porcine prepubertal Sertoli cells (SCs) to find a carrier of in vitro test drugs for SCs. Porcine pre-pubertal SCs cultures were incubated with different liposomes. Viability, apoptosis/necrosis status (Annexin-V/Propidium iodide assay), immunolocalisation of β-actin, vimentin, the phosphorylated form of AMP-activated protein Kinase (AMPK)α and cell ultrastructure (Transmission Electron Microscopy, TEM) were analysed. Zwitterionic liposomes did not determine changes in the cell cytoplasm. The incubation with anionic and cationic liposomes modified the distribution of actin and vimentin filaments and increased the levels of the phosphorylated form of AMPKα. The Annexin/Propidium Iodide assay suggested an increase in apoptosis. TEM analysis highlighted a cytoplasmic vacuolisation. In conclusion, these preliminary data indicated that zwitterionic liposomes were the best carrier to use in an in vitro study of SCs to understand the effects of molecules or drugs that could have a clinical application in the treatment of certain forms of male infertility.
Collapse
|
9
|
Munyoki SK, Orwig KE. Perspectives: Methods for Evaluating Primate Spermatogonial Stem Cells. Methods Mol Biol 2023; 2656:341-364. [PMID: 37249880 DOI: 10.1007/978-1-0716-3139-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.
Collapse
Affiliation(s)
- Sarah K Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Liang D, Sun Q, Zhu Z, Wang C, Ye S, Li Z, Wang Y. Xenotransplantation of Human Spermatogonia Into Various Mouse Recipient Models. Front Cell Dev Biol 2022; 10:883314. [PMID: 35676935 PMCID: PMC9168328 DOI: 10.3389/fcell.2022.883314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Spermatogonial stem cells are the foundation of continuous spermatogenesis in adult mammals. Xenograft models have been established to define human SSCs, mostly using infertile and immune-deficient mice as the recipients for human germ cell transplantation. However, it is time-consuming to prepare such recipients using irradiation or chemotherapeutic agents, and this approach may also introduce confounding factors when residual endogenous germ cells recover in transplanted recipients. It remains to be determined whether immune-competent genetically infertile mice can be suitable recipients for xenotransplantation. In this study, we observed similar engraftment efficiencies when using spermatogonia from human biopsied testes across immune-deficient nude mice, immune-competent ICR mice, and genetically infertile Kit w/w-v mice, suggesting minimal immunological rejection from immune-competent mouse recipients upon xenotransplantation of human germ cells. More importantly, we derived EpCAM negative and TNAP positive spermatogonia-like cells (SLCs) from human pluripotent stem cells (PSCs), which highly expressed spermatogonial markers including PLZF, INTERGRINα6, TKTL1, CD90, and DRMT3. We found that upon transplantation, these SLCs proliferated and colonized at the basal membrane of seminiferous tubules in testes of both immune-deficient nude mice and Kit w/w-v mice, though complete spermatogenesis would likely require supporting human signaling factors and microenvironment. Taken together, our study functionally defined the cell identity of PSC-derived SLCs, and supported xenotransplantation using genetically infertile recipients as a convenient model for functionally evaluating spermatogonia derived from different species.
Collapse
Affiliation(s)
- Dongli Liang
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zijue Zhu
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanyun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shicheng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zheng Li
- Department of Andrology, The Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of Spermatogonial Stem Cells in Spermatogenesis and Fertility Restoration. Front Endocrinol (Lausanne) 2022; 13:895528. [PMID: 35634498 PMCID: PMC9135128 DOI: 10.3389/fendo.2022.895528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the regulatory network of SSCs is of great significance in understanding the fundamental molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-based therapy for assisted reproduction. This review summarizes the latest research progress on the regulation of SSCs, and the potential application of SSCs for fertility restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro spermatogenesis from SSCs sets the stage for the production of SSCs from induced pluripotent stem cells (iPSCs) and subsequent spermatogenesis.
Collapse
Affiliation(s)
- Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | | | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renee A. Reijo Pera
- McLaughlin Research Institute, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
- Research Division, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
| |
Collapse
|
12
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
13
|
Fayaz MA, Ibtisham F, Cham TC, Honaramooz A. Culture supplementation of bFGF, GDNF, and LIF alters in vitro proliferation, colony formation, and pluripotency of neonatal porcine germ cells. Cell Tissue Res 2022; 388:195-210. [PMID: 35102441 DOI: 10.1007/s00441-022-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Gonocytes in the neonatal testis have male germline stem cell properties and as such have important potential applications in fertility preservation and regenerative medicine. Such applications require further studies aimed at increasing gonocyte numbers and evaluating their pluripotency in vitro. The objective of the present study was to test the effects of basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), and leukemia inhibitory factor (LIF) on in vitro propagation, colony formation, and expression of pluripotency markers of neonatal porcine gonocytes. Testis cells from 1-week-old piglets were cultured in basic media (DMEM + 15% FBS), supplemented with various concentrations of bFGF, GDNF, and LIF, either individually or in combinations, in a stepwise experimental design. Gonocytes and/or their colonies were evaluated every 7 days and the gonocyte- (DBA) and pluripotency-specific markers (POU5F1, SSEA-1, E-cadherin, and NANOG) assessed on day 28. Greatest gonocyte numbers and largest colonies were found in media supplemented with 10 ng/mL bFGF and 10 ng/mL bFGF + 100 ng/mL GDNF + 1500 U/mL LIF, respectively. The resultant gonocytes and colonies expressed both germ cell- and pluripotency-specific markers. These results shed light on the growth hormone requirements of porcine gonocytes for in vitro proliferation and colony formation.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
14
|
Batista VF, de Sá Schiavo Matias G, Carreira ACO, Smith LC, Rodrigues R, Araujo MS, Souza Silva DR, Moraes FDJ, Garcia JM, Miglino MA. Recellularized rat testis scaffolds with embryoid bodies cells: a promising approach for tissue engineering. Syst Biol Reprod Med 2022; 68:44-54. [PMID: 35086406 DOI: 10.1080/19396368.2021.2007554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tissue engineering is gaining use to investigate the application of its techniques for infertility treatment. The use of pluripotent embryonic cells for in vitro production of viable spermatozoa in testicular scaffolds is a promising strategy that could solve male infertility. Due to cell-extracellular matrix (ECM) interactions, here we aim to investigate the differentiation of embryoid bodies (EBs) in cultured into decellularized rat testis scaffolds. Decellularized testis (P = 0.019) with a low concentration of gDNA (30.58 mg/ng tissue) was obtained by sodium dodecyl sulfate perfusion. The structural proteins (collagens type I and III) and the adhesive glycoproteins of ECM (laminin and fibronectin) were preserved according to histological and scanning electron microscopy (SEM) analyses. Then, decellularized rat testis were cultured for 7 days with EB, and EB mixed with retinoic acid (RA) in non-adherent plates. By SEM, we observe that embryonic stem cells adhered in the decellularized testis ECM. By immunofluorescence, we verified the positive expression of HSD17B3, GDNF, ACRV-1, and TRIM-36, indicating their differentiation using RA in vitro, reinforcing the possibility of EB in male germ cell differentiation. Finally, recellularized testis ECM may be a promising tool for future new approaches for testicular cell differentiation applied to assisted reproduction techniques and infertility treatment.Abbreviations: ACRV-1: Acrosomal vesicle protein 1; ATB: Penicillin-streptomycin; DAPI: 4,6-Diamidino-2-phenylindole; EB: Embryoid bodies; ECM: Extracellular matrix; ESCs: Pluripotent embryonic stem cells; GAGs: Glycosaminoglycans; gDNA: Genomic DNA; GDNF: Glial cell line-derived neurotrophic factor; H&E: Hematoxylin and eosin; HSD17B3: 17-beta-Hydroxysteroid dehydrogenase type 3; PBS: Phosphate-buffered saline; PGCLCs: Primordial germ-cell-like cells; RA: Retinoic acid; SDS: Sodium dodecyl sulfate; SEM: Scanning electron microscopy; SSCs: Spermatogonial stem cells; TRIM-36: Tripartite Motif Containing 36.
Collapse
Affiliation(s)
- Vitória Frias Batista
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Lawrence Charles Smith
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Centre de Recherche En Reproduction Et Fertilité, Université de Montréal), Saint-Hyacinthe, Canada
| | - Rafaela Rodrigues
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Dara Rubia Souza Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Felipe de Jesus Moraes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joaquim Mansano Garcia
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction (Reproduction), São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Makoolati Z, Bahrami H, Zamanzadeh Z, Mahaldashtian M, Moulazadeh A, Ebrahimi L, Naghdi M. Efficacy of Ficus carica leaf extract on morphological and molecular behavior of mice germ stem cells. Anim Reprod 2022; 19:e20220036. [PMID: 36060818 PMCID: PMC9417092 DOI: 10.1590/1984-3143-ar2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Infertility is one of the most prevalent health disorders in reproductive-age males and females. Ficus carica (Fc), an herbal plant, has been used traditionally for the treatment of different diseases such as infertility especially in Iranian folk medicine. This study examined the effects of Fc leaf extract on the proliferation of mice spermatogonial stem cells (SSCs). Phenolic, flavonoid content, major polyphenolic compounds and antioxidant activity of the extract was evaluated respectively by Folin-Ciocateu, aluminum chloride, HPLC and the FRAP and DPPH methods. Testicular cells of neonate mice were extracted and their identity was confirmed using cytokeratin for Sertoli and Oct-4, CDHI and PLZF for SSCs. Effects of Fc (0.0875, 0.175, 0.35, 0.71 and 1.42 mg/ml) was evaluated at third, 7th, 9th and 14th days of culture by colony assay. The expression of the Mvh, GFRα1 and Oct-4 genes and the viability and proliferation of cultured cells was assessed at the end of the culture period. The extract has a rich phenolic and flavonoid content such as Rutin, Psoralen, Bergapten and Caffeoylmalic acid using HPLC analysis. It also had a potent reducing and radical scavenging activity. Morphology of colonies was similar in all groups. Higher viability, proliferation, colony number and diameter of SSCs was seen in the presence of Fc leaf extract in a dose-dependent manner so that higher number and diameter of colonies were observed in two higher doses of 0.71 and 1.42 mg/ml, separately for each time point relative to other groups. The Mvh, Oct-4 and GFRα1 genes expression had no significant differences between groups. It seems that Fc leaf extract not only had no any cytotoxic effects on the viability and proliferation of SSCs but also support their stemness state. So, this culture system can be employed for enrichment of germ stem cells for use in clinical applications.
Collapse
|
16
|
Wu JX, Xia T, She LP, Lin S, Luo XM. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 2022; 31:9636897221083252. [PMID: 35348026 PMCID: PMC8969497 DOI: 10.1177/09636897221083252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical and mental health and hormonal imbalance are associated with the problems related to infertility and reproductive disorders. The rate of infertility has increased globally over the years, due to various reasons. Given the psychosocial implications of infertility and its effects on the life of the affected people, there has been an increased focus on its treatment over the last several years. Assisted reproductive technology can only solve about 50% of the cases. Moreover, it contains significant risks and does not solve the fundamental problem of infertility. As pluripotent stem cells have the potential to differentiate into almost any type of cell, they have been widely regarded as a promising option in the development of stem cell-based fertility treatments, which could even correct genetic diseases in offspring. These advancements in reproductive biotechnology present both challenges and possibilities for solving infertility problems caused by various unexplainable factors. This review briefly presents the different types of infertility disorders and the potential applications of stem cells in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tian Xia
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li-Ping She
- New England Fertility Institute, Stamford, CT, USA
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xiang-Min Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
17
|
Sokouti Nasimi F, Zahri S, Ahmadian S, Bagherzadeh A, Nazdikbin Yamchi N, Haghighi L, Bedate AM, Khalilzadeh B, Rahbarghazi R, Mahdipour M. Estradiol modulated differentiation and dynamic growth of CD90 + spermatogonial stem cells toward Sertoli-like cells. Life Sci 2021; 286:120041. [PMID: 34637796 DOI: 10.1016/j.lfs.2021.120041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Mouse CD90+ SSCs were enriched using the MACS technique and incubated with different doses of estradiol, ranging from 0.01 ng/mL to 500 μg/mL, for 7 days. The viability of SSCs was determined using an MTT assay. The combined effects of estradiol plus Sertoli cell differentiation medium on the orientation of SSCs toward Sertoli-like cells were also assessed. Using immunofluorescence imaging, we monitored protein levels of Oct3/4 after being exposed to estradiol. In addition, protein levels of testosterone, TF, and ABP were measured using ELISA. The expression of Sertoli cell-specific genes such as SOX9, GATA4, FSHR, TF, and ESR-1 and -2 was monitored using real-time PCR assay, and the effects of 14-day injection of estradiol on sperm parameters and Oct3/4 positive progenitor cells in a model of mouse were determined. Data showed that estradiol increased the viability of mouse SSCs in a dose-dependent manner compared to the control (p < 0.05). Along with these changes, cells displayed morphological changes and reduced Oct3/4 transcription factor levels compared to the control SSCs. 7-day incubation of SSCs with estradiol led to the up-regulation of SOX9, GATA4, FSHR, TF, and ESR-1 and -2, and levels of testosterone, TF, and ABP were increased compared to the control group (p < 0.05). The in-vivo examination noted that estradiol reduced sperm parameters coincided with morphological abnormalities (p < 0.05). Histological examination revealed pathological changes in seminiferous tubules and reduction of testicular Oct3/4+ progenitor cells. In conclusion, estradiol treatment probably can induce Sertoli cell differentiation of SSCs while exogenous administration leads to testicular progenitor cell depletion and infertility in long term.
Collapse
Affiliation(s)
- Fatemeh Sokouti Nasimi
- Department of Biology, Faculty of Basic Sciences, Mohaghegh Ardabili University, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Basic Sciences, Mohaghegh Ardabili University, Ardabil, Iran
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Bagherzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leila Haghighi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alberto Miranda Bedate
- Department of Immune Mechanisms (IMM), Center for Immunology of Infectious Diseases and Vaccines (IIV), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
19
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Naeemi S, Eidi A, Khanbabaee R, Sadri-Ardekani H, Kajbafzadeh AM. Differentiation and proliferation of spermatogonial stem cells using a three-dimensional decellularized testicular scaffold: a new method to study the testicular microenvironment in vitro. Int Urol Nephrol 2021; 53:1543-1550. [PMID: 33974223 DOI: 10.1007/s11255-021-02877-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Successful in vitro transplantation of spermatogonial stem cells (SSCs) demands effective culture systems for SSCs proliferation and differentiation. Natural extracellular matrix (ECM) creates a microenvironment suitable for culture of stem cells. In the present study, we intended to assess the capability of the porous scaffold consisting of hyaluronic acid (HA), chitosan, and decellularized testicular matrix (DTM) as a proper niche for SSCs seeding. METHODS The testes of four NMRI mice were extracted for further detergent-based decellularization process. We isolated, cultured, and clarified neonate mouse SSC, and a three-dimensional scaffold was prepared for SSCs culture. The loaded SSCs and hydrogel-based scaffold were investigated by several studies including scanning electron microscopy (SEM), 4',6-diamidino-2-phenylindole (DAPI), 3-[4, 5-dimethyl (thiazol-2yl)-3,5diphenyl] tetrazolium bromide (MTT), Acridine orange, and Immunohistochemistry (IHC) staining. RESULTS The efficiency of decellularization process was confirmed by DAPI, hematoxylin and eosin (H&E), and Masson's Trichrome staining. Acridine orange also depicted SSCs proliferation and viability. SEM approved the preservation of ECM components and also showed complex, coiled, and tubular seminiferous tubules, with intact and condensed collagenous form of the tunica albuginea. MTT test also revealed the scaffold's non-toxicity. Expression of PLZF, TP1, and TEKT1 markers also verified the capacity of SSCs proliferation on a cogel scaffold. CONCLUSION In conclusion, cogel scaffold consisting of DTM, HA, and chitosan may provide the supporting layer for in vitro SSC differentiation and proliferation.
Collapse
Affiliation(s)
- Sahar Naeemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Ramezan Khanbabaee
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Homan Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, 1419433151, Tehran, Iran.
| |
Collapse
|
21
|
Gharenaz NM, Movahedin M, Mazaheri Z. Comparison of two methods for prolong storage of decellularized mouse whole testis for tissue engineering application: An experimental study. Int J Reprod Biomed 2021; 19:321-332. [PMID: 33997591 PMCID: PMC8106816 DOI: 10.18502/ijrm.v19i4.9058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/04/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biological scaffolds are derived by the decellularization of tissues or organs. Various biological scaffolds, such as scaffolds for the liver, lung, esophagus, dermis, and human testicles, have been produced. Their application in tissue engineering has created the need for cryopreservation processes to store these scaffolds. Objective The aim was to compare the two methods for prolong storage testicular scaffolds. Materials and Methods In this experimental study, 20 male NMRI mice (8 wk) were sacrificed and their testes were removed and treated with 0.5% sodium dodecyl sulfate followed by Triton X-100 0.5%. The efficiency of decellularization was determined by histology and DNA quantification. Testicular scaffolds were stored in phosphate-buffered saline solution at 4°C or cryopreserved by programmed slow freezing followed by storage in liquid nitrogen. Masson's trichrome staining, Alcian blue staining and immunohistochemistry, collagen assay, and glycosaminoglycan assay were done prior to and after six months of storage under each condition. Results Hematoxylin-eosin staining showed no remnant cells after the completion of decellularization. DNA content analysis indicated that approximately 98% of the DNA was removed from the tissue (p = 0.02). Histological evaluation confirmed the preservation of extracellular matrix components in the fresh and frozen-thawed scaffolds. Extracellular matrix components were decreased by 4°C-stored scaffolds. Cytotoxicity tests with mouse embryonic fibroblast showed that the scaffolds were biocompatible and did not have a harmful effect on the proliferation of mouse embryonic fibroblast cells. Conclusion Our results demonstrated the superiority of the slow freezing method for prolong storage of testicular scaffolds.
Collapse
Affiliation(s)
- Nasrin Majidi Gharenaz
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
22
|
Yang G, He Y, Yang H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 2021; 476:1813-1823. [PMID: 33459979 DOI: 10.1007/s11010-020-04028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
Collapse
Affiliation(s)
- Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China. .,School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China. .,Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
23
|
Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, Moghaddaszadeh A, Koruji M. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021; 9:3465-3484. [DOI: 10.1039/d0bm02209h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A summary of the study design showing the extraction of extracellular matrix of testicular tissue and the printing of hydrogel scaffolds and the interaction of testicular cells on three-dimensional scaffolds.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | - Iraj Amiri
- Research Center for Molecular Medicine
- Hamadan University of Medical Sciences
- Hamadan
- Iran
- Endometrium and Research Center
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Tissue Engineering & Regenerative Medicine
| | - Reza Falak
- Immunology Research Center (IRC)
- Institute of Immunology and Infectious Diseases
- Iran University of Medical Sciences
- Tehran
- Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | | | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| |
Collapse
|
24
|
Neto FTL, Flannigan R, Goldstein M. Regulation of Human Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:255-286. [PMID: 34453741 DOI: 10.1007/978-3-030-77779-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human spermatogenesis (HS) is an intricate network of sequential processes responsible for the production of the male gamete, the spermatozoon. These processes take place in the seminiferous tubules (ST) of the testis, which are small tubular structures considered the functional units of the testes. Each human testicle contains approximately 600-1200 STs [1], and are capable of producing up to 275 million spermatozoa per day [2].
Collapse
Affiliation(s)
| | - Ryan Flannigan
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.,University of British Columbia, Vancouver, BC, Canada
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
26
|
Struijk RB, Mulder CL, van Daalen SKM, de Winter-Korver CM, Jongejan A, Repping S, van Pelt AMM. ITGA6+ Human Testicular Cell Populations Acquire a Mesenchymal Rather than Germ Cell Transcriptional Signature during Long-Term Culture. Int J Mol Sci 2020; 21:ijms21218269. [PMID: 33158248 PMCID: PMC7672582 DOI: 10.3390/ijms21218269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.
Collapse
Affiliation(s)
- Robert B. Struijk
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Saskia K. M. van Daalen
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Cindy M. de Winter-Korver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
| | - Aldo Jongejan
- Department of Epidemiology & Data Science, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Sjoerd Repping
- Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.B.S.); (C.L.M.); (S.K.M.v.D.); (C.M.d.W.-K.)
- Correspondence: ; Tel.: +31-20-56-67837
| |
Collapse
|
27
|
Rasouli-Gharehsaghal K, Shakeri M, Zhandi M, Amini HR, Yousefi AR, Asadirad M. Improvement of in vitro proliferation of cockerel spermatogonial stem cells using different combinations of growth factors. Br Poult Sci 2020; 61:660-668. [PMID: 32902330 DOI: 10.1080/00071668.2020.1808187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1. This study examined whether in vitro proliferation and maintenance of cockerel spermatogonial stem cells (SSCs) could be improved by adding different combinations of growth factors (GFs), including glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF) or leukaemia inhibitory factor (LIF) into the culture medium. 2. The SSCs were isolated from the testes of immature cockerels. For short-term cultures, a medium supplemented with different combinations of GFs for 7 d in 5 replicates was used. The groups were classified as follows: without GF (control group); with GDNF (G group); with GDNF and bFGF (GF group); and with GDNF, bFGF and LIF (GFL group). The number of colonies and cells per colony, as well as the transcript abundance of STRA8 and OCT4 genes, was determined 7 d after the initial culturing. Immunofluorescence staining of SSEA-1, SSEA-3 and VASA protein markers, besides periodic acid-Schiff (PAS) staining, was carried out. 3. The number of colonies and cells per colony increased in the G, GF and GFL groups, compared to the control group (P < 0.01); however, the highest proliferation and colony formation were observed in the GFL group. The positive immunofluorescence staining of SSEA-1, SSEA-3 and VASA protein markers, as well as PAS staining, confirmed the self-renewal and colonisation of cockerel SSCs. The proliferation results were supported by the increased STRA8 and OCT4 transcript abundance in the treated groups (G, GF and GLF), compared to the control group. The SSC proliferation was associated with the higher transcript abundance of STAR8 and OCT4 genes in the GFL group, compared to the G and GF groups (P < 0.01). 4. The results showed that proliferation and colony-forming capacity of cockerel SSCs were positively improved by GDNF, bFGF and LIF. However, the most significant effect was observed when the medium was supplemented with LIF in combination with GDNF and bFGF.
Collapse
Affiliation(s)
- K Rasouli-Gharehsaghal
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - H R Amini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran.,Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan, Iran
| | - A R Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organisation (AREEO) , Karaj, Iran
| | - M Asadirad
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran , Pakdasht, Tehran, Iran
| |
Collapse
|
28
|
Jabari A, Sadighi Gilani MA, Koruji M, Gholami K, Mohsenzadeh M, Rastegar T, Khadivi F, Ghanami Gashti N, Nikmahzar A, Mojaverrostami S, Talebi A, Ashouri Movassagh S, Rezaie MJ, Abbasi M. Three-dimensional co-culture of human spermatogonial stem cells with Sertoli cells in soft agar culture system supplemented by growth factors and Laminin. Acta Histochem 2020; 122:151572. [PMID: 32622422 DOI: 10.1016/j.acthis.2020.151572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Application of a three-dimensional (3D) culture system for in vitro proliferation and differentiation of human spermatogonial stem cells (SSCs) is a useful tool for the investigation of the spermatogenesis process and the management of male infertility particularly in prepubertal cancer patients. The main purpose of this study was to investigate the proliferation of human SSCs co-cultured with Sertoli cells in soft agar culture system (SACS) supplemented by Laminin and growth factors. Testicular cells were isolated from testes of brain-dead patients and cultured in two-dimensional (2D) culture system for 3 weeks. After 3 weeks, functional SSCs were evaluated by xenotransplantation and also identification of cells was assessed by immunocytochemistry, flow cytometry, and RT-PCR. Then, SSCs and Sertoli cells were transferred to the upper layer of SACS for 3 weeks. After 3 weeks, the number of colonies and the expression of specific SSCs and Sertoli cell markers, as well as apoptotic genes were evaluated. Our results showed that transplanted SSCs, migrated into the basement membrane of seminiferous tubules of recipient mice. The expression of PLZF, α6-Integrin, and Vimentin proteins in SSCs and Sertoli cells were observed in 2D and 3D culture systems. The expression rate of PLZF, α6-Integrin, Bcl2, and colony number in SACS supplemented by Laminin and growth factors group were significantly higher than non-supplemented groups (P ≤ 0.01), but the expression rate of c-kit and Bax in supplemented group were significantly lower than non-supplemented groups (P ≤ 0.05). This 3D co-culture system decreased apoptosis and increased propagation of human SSCs. Therefore, this designed system can be utilized to increase the proliferation of human SSCs in prepubertal male cancer and azoospermic men to obtain an adequate SSCs number to outotransplant success and in vitro spermatogenesis.
Collapse
Affiliation(s)
- Ayob Jabari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Mohsenzadeh
- Iranian Tissue Bank and Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Ghanami Gashti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepideh Ashouri Movassagh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mohammad Jafar Rezaie
- Department of Embryology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. The mouse testis tissue culture could resume spermatogenesis as same as in vivo condition after human spermatogonial stem cells transplantation. Rev Int Androl 2020; 19:112-122. [PMID: 32513561 DOI: 10.1016/j.androl.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The introduction of alternative systems in vivo is very important for cancer patients who are treated with gonadotoxic treatment. In this study, we examine the progression of the spermatogenesis process after human spermatogonial stem cell (SSCs) transplantation in vivo and in tissue culture conditions. MATERIALS AND METHODS Human SSCs were obtained from a Testicular Sperm Extractions (TESE) sample, and characterization of these cells was confirmed by detecting the promyelocytic leukemia zinc finger (PLZF) protein. These cells, after being labeled with Di-alkyl Indocarbocyanine (DiI), were transplanted to adult azoospermia mouse testes treated with Busulfan 40mg/kg. The host testicular tissue culture was then considered a test group and in vivo transplant a control group. After 8 weeks, immunohistochemical, morphometric and molecular studies were performed. RESULTS The results of morphometric studies indicated that the mean number of spermatogonia, spermatocytes, and spermatids in the test groups was significantly lower than in the control group (P<0.05) and most of the cells responded positively to DiI tracing. Immunohistochemical study in both groups revealed expression of PLZF, Synaptonemal complex protein 3 (SCP3) and Acrosin Binding Protein (ACRBP) proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively. Also, PLZF, Transition Protein 1 (TP1) and Tektin-1 (Tekt1) human-specific genes had a significant difference in the between test groups and control groups (P<0.05) in molecular studies. CONCLUSION These results suggest that the conditions of testicular tissue culture after transplantation of SSCs can support spermatogenesis resumption, as well as in an in vivo condition.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Paraclinic Department, Medicine Faculty, Kateb University, Kabul, Afghanistan; Stem Cell Department, Medical Research Center, Kateb University, Kabul, Afghanistan.
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Abstract
Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.
Collapse
Affiliation(s)
- Sherin David
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Function of leukaemia inhibitory factor in spermatogenesis of a teleost fish, the medaka Oryzias latipes. ZYGOTE 2019; 27:423-431. [PMID: 31617472 DOI: 10.1017/s0967199419000558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In response to gonadotropins and androgens, testicular cells produce various molecules that control proper proliferation and differentiation of spermatogenic cells through their paracrine and autocrine actions. However, molecules functioning downstream of the hormonal stimulation are poorly understood. Leukaemia inhibitory factor (Lif) is known to maintain the pluripotency of stem cells including embryonic stem cells and primordial germ cells at least in vitro, but its actual roles in vivo remain to be elucidated. To clarify the function of Lif in teleost (medaka) testes, we examined the effects of Lif on spermatogenesis in a newly established cell culture system using a cell line (named Mtp1) derived from medaka testicular somatic cells as feeder cells. We found that addition of baculovirus-produced recombinant medaka Lif to the culture medium or co-culture with Lif-overexpressing Mtp1 cells increased the number of spermatogonia. In situ hybridization and immunohistochemical analyses of the medaka testes showed that mRNAs and proteins of Lif are expressed in spermatogonia and the surrounding Sertoli cells, with higher expression levels in type A (undifferentiated) spermatogonia than in type B (differentiated) spermatogonia. Our findings suggest that Lif regulates spermatogonial cell proliferation in the medaka.
Collapse
|
33
|
Vermeulen M, Giudice MG, Del Vento F, Wyns C. Role of stem cells in fertility preservation: current insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:27-48. [PMID: 31496751 PMCID: PMC6689135 DOI: 10.2147/sccaa.s178490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
While improvements made in the field of cancer therapy allow high survival rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female pre- and postpubertal patients. Clinical options to preserve fertility before starting gonadotoxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal ovarian tissue containing primordial follicles, though still considered experimental, has already led to the birth of healthy babies after autotransplantation and is performed in an increasing number of centers. For prepubertal boys who do not produce gametes ready for fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells may be proposed as an experimental strategy with the aim of restoring fertility. Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell suspensions appears promising to restore fertility of young cancer survivors. So far, whether in two- or three-dimensional culture systems, in vitro maturation of immature male and female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for ART. Recently, primordial germ cells have been generated from embryonic and induced pluripotent stem cells, but further investigations regarding efficiency and safety are needed. Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue grafts, increase the colonization of transplanted cells, and restore the damaged somatic compartment could overcome the current limitations encountered with transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Maria-Grazia Giudice
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Federico Del Vento
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, 1200, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| |
Collapse
|
34
|
Majidi Gharenaz N, Movahedin M, Mazaheri Z. Three-Dimensional Culture of Mouse Spermatogonial Stem Cells Using A Decellularised Testicular Scaffold. CELL JOURNAL 2019; 21:410-418. [PMID: 31376322 PMCID: PMC6722448 DOI: 10.22074/cellj.2020.6304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/17/2018] [Indexed: 12/25/2022]
Abstract
Objective Applications of biological scaffolds for regenerative medicine are increasing. Such scaffolds improve cell
attachment, migration, proliferation and differentiation. In the current study decellularised mouse whole testis was used
as a natural 3 dimensional (3D) scaffold for culturing spermatogonial stem cells.
Materials and Methods In this experimental study, adult mouse whole testes were decellularised using sodium
dodecyl sulfate (SDS) and Triton X-100. The efficiency of decellularisation was determined by histology and DNA
quantification. Masson’s trichrome staining, alcian blue staining, and immunohistochemistry (IHC) were done for
validation of extracellular matrix (ECM) proteins. These scaffolds were recellularised through injection of mouse
spermatogonial stem cells in to rete testis. Then, they were cultured for eight weeks. Recellularised scaffolds were
assessed by histology, real-time polymerase chain reaction (PCR) and IHC.
Results Haematoxylin-eosin (H&E) staining showed that the cells were successfully removed by SDS and Triton
X-100. DNA content analysis indicated that 98% of the DNA was removed from the testis. This confirmed that our
decellularisation protocol was efficient. Masson’s trichrome and alcian blue staining respectively showed that
glycosaminoglycans (GAGs) and collagen are preserved in the scaffolds. IHC analysis confirmed the preservation of
fibronectin, collagen IV, and laminin. MTT assay indicated that the scaffolds were cell-compatible. Histological evaluation
of recellularised scaffolds showed that injected cells were settled on the basement membrane of the seminiferous
tubule. Analyses of gene expression using real-time PCR indicated that expression of the Plzf gene was unchanged
over the time while expression of Sycp3 gene was increased significantly (P=0.003) after eight weeks in culture,
suggesting that the spermatogonial stem cells started meiosis. IHC confirmed that PLZF-positive cells (spermatogonial
stem cells) and SYCP3-positive cells (spermatocytes) were present in seminiferous tubules.
Conclusion Spermatogonial stem cells could proliferate and differentiated in to spermatocytes after being injected in the
decellularised testicular scaffolds.
Collapse
Affiliation(s)
- Nasrin Majidi Gharenaz
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.Electronic Address:
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
35
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res 2019; 52:16. [PMID: 30917866 PMCID: PMC6438003 DOI: 10.1186/s40659-019-0223-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
Background Sperm production is one of the most complex biological processes in the body. In vitro production of sperm is one of the most important goals of researches in the field of male infertility treatment, which is very important in male cancer patients treated with gonadotoxic methods and drugs. In this study, we examine the progression of spermatogenesis after transplantation of spermatogonial stem cells under conditions of testicular tissue culture. Results Testicular tissue samples from azoospermic patients were obtained and then these were freeze–thawed. Spermatogonial stem cells were isolated by two enzymatic digestion steps and the identification of these cells was confirmed by detecting the PLZF protein. These cells, after being labeled with DiI, were transplanted in azoospermia adult mice model. The host testes were placed on agarose gel as tissue culture system. After 8 weeks, histomorphometric, immunohistochemical and molecular studies were performed. The results of histomorphometric studies showed that the mean number of spermatogonial cells, spermatocytes and spermatids in the experimental group was significantly more than the control group (without transplantation) (P < 0.05) and most of the cells responded positively to the detection of DiI. Immunohistochemical studies in host testes fragments in the experimental group express the PLZF, SCP3 and ACRBP proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively, which confirmed the human nature of these cells. Also, in molecular studies of PLZF, Tekt1 and TP1, the results indicated that the genes were positive in the test group, while not in the control group. Conclusion These results suggest that the slow freezing of SSCs can support the induction of spermatogenesis to produce haploid cells under the 3-dimensional testicular tissue culture.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.,Stem Cell Department, Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Abofoul-Azab M, Lunenfeld E, Levitas E, Zeadna A, Younis JS, Bar-Ami S, Huleihel M. Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. Int J Mol Sci 2019; 20:E470. [PMID: 30678285 PMCID: PMC6387177 DOI: 10.3390/ijms20030470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sertoli cell-only syndrome (SCOS) affects about 26.3⁻57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3⁻7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Eliahu Levitas
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Atif Zeadna
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Johnny S Younis
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Shalom Bar-Ami
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
37
|
Ribeiro MA, Estill MS, Fernandez GJ, Moraes LN, Krawetz SA, Scarano WR. Integrative transcriptome and microRNome analysis identifies dysregulated pathways in human Sertoli cells exposed to TCDD. Toxicology 2018; 409:112-118. [DOI: 10.1016/j.tox.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 01/24/2023]
|
38
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. Successful Human Spermatogonial Stem Cells Homing in Recipient Mouse Testis after In Vitro Transplantation and Organ Culture. CELL JOURNAL 2018; 20:513-520. [PMID: 30123997 PMCID: PMC6099147 DOI: 10.22074/cellj.2019.5675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
Abstract
Objective In vitro transplantation (IVT) of spermatogonial stem cells (SSCs) is one of the most recent methods in
transplantation in recent decades. In this study, IVT and SSCs homing on seminiferous tubules of host testis in organ culture
have been studied.
Materials and Methods In this experimental study, human SSCs were isolated and their identities were confirmed by tracking
their promyelocytic leukemia zinc finger (PLZF) protein. These cells were transplanted to adult azoospermia mouse testes
using two methods, namely, IVT and in vivo transplantation as transplantation groups, and testes without transplantation of
cells were assigned in the control group. Then histomorphometric, immunohistochemical and molecular studies were done
after 2 weeks.
Results After two weeks, histomorphometric studies revealed that the number of subsided spermatogonial cells (SCs)
and the percentage of tubules with subsided SCs in IVT and in vivo groups were significantly more than those in the
control group (P<0.05). Immunohistochemical studies in the transplantation groups confirmed that the PLZF protein
was expressed in the cells subsided on the seminiferous tubule. Quantitative reverse-transcription polymerase chain
reaction (qRT-PCR) demonstrated that the PLZF gene expression was only positive in the transplantation groups, but
it was not significantly different between the IVT group and the in vivo group (P>0.05).
Conclusion Testicular tissue culture conditions after SSC transplantation can help these cells subside on the seminiferous
tubule basement membrane.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Nazm Bojnordi M. The applications and recovery outcome of spermatogonia stem cells in regenerative medicine. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
40
|
Ghaem Maghami R, Mirzapour T, Bayrami A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia 2017; 50. [DOI: 10.1111/and.12887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- R. Ghaem Maghami
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| | - T. Mirzapour
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| | - A. Bayrami
- Department of Biology; Faculty of Science; Mohaghegh Ardabil University; Ardabil Iran
| |
Collapse
|
41
|
Navid S, Rastegar T, Baazm M, Alizadeh R, Talebi A, Gholami K, Khosravi-Farsani S, Koruji M, Abbasi M. In vitroeffects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst Biol Reprod Med 2017; 63:370-381. [DOI: 10.1080/19396368.2017.1358774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Talebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Lakpour MR, Koruji M, Shahverdi A, Aghajanpour S, Rajabian Naghandar M, Sadighi Gilani MA, Sabbaghian M, Aflatoonian R. The Expression of TLR2 and TLR3 in Sertoli Cells of Azoospermic Patients. CELL JOURNAL 2017; 19:375-385. [PMID: 28836400 PMCID: PMC5570403 DOI: 10.22074/cellj.2017.4300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/06/2016] [Indexed: 12/29/2022]
Abstract
Objective Toll-like receptors (TLRs) on Sertoli cells are thought to have essential roles
in sperm protection. This study was conducted to investigate the expression of TLR2 and
TLR3 in Sertoli cells of men with azoospermia.
Materials and Methods In this experimental study, testicular biopsies were taken
from ten azoospermic men. Following enzymatic dissociation, the samples were
moved to lectin coated petri dishes. After a few passages, all cells were cultivated
and Seroli cells were sorted by flow cytometry. To confirm Sertoli cell purification, alkaline phosphatase activity (ALP) and immunohistochemistry assays were employed.
The expression of TLR2 and TLR3 at the transcript and protein levels was examined
with real-time quantitative reverse transcription-polymerase chain reaction (RT-QPCR)
and western blot, respectively.
Results Isolation, purification and cultivation of human Sertoli cells were performed
successfully. Efficacy of purification of Sertoli cells by fluorescence-activated cell sorting (FACS) sorter was ~97%. The type of cultured cells was confirmed by vimentin and
follicle-stimulating hormone (FSH) receptor markers. Furthermore, the existence of anti-
Müllerian hormone in culture was confirmed. RT-PCR showed that both genes were expressed in Sertoli cells. Consistently, proteins of both were also expressed in Sertoli cells.
Moreover, QPCR showed that the relative expression of TLR3 transcripts was significantly
higher than TLR2 in Sertoli cells. Although both genes are expressed in fibroblast cells,
their level of expression was significantly lower than in Sertoli cells.
Conclusion This study confirmed expression of TLR2 and TLR3 in human Sertoli cells.
This may be an indicator of their roles in developing immunity against pathogens as well
as allo- and auto-antigens or viral antigens in seminiferous tubules.
Collapse
Affiliation(s)
- Mohammad Reza Lakpour
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Biology, Payam Noor University, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Aghajanpour
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Marjan.
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. R.aflatoonian@ gmail.com
| |
Collapse
|
43
|
Salehnia M, Fayazi M, Ehsani S. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.4.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Zhang P, Chen X, Zheng Y, Zhu J, Qin Y, Lv Y, Zeng W. Long-Term Propagation of Porcine Undifferentiated Spermatogonia. Stem Cells Dev 2017; 26:1121-1131. [PMID: 28474535 DOI: 10.1089/scd.2017.0018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis and fertility throughout the adult life of a male. Genetic manipulations of SSCs combined with germ cell transplantation present a novel approach for gene therapy and production of genetically modified animals. However, the rarity of SSCs within mammalian testes remains an impediment to related applications, making in vitro expansion of SSCs a prerequisite. Nevertheless, long-term culture systems of SSCs from large animals have not been established yet. In this study, we developed an optimized in vitro culture condition for porcine undifferentiated spermatogonia. The germ cells were isolated and enriched from 7-day-old porcine testes by an optimized differential planting. We tested different feeder layers and found that neonatal autologous Sertoli cells acted better than the SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cell line and adult Sertoli cells. The effects of several growth factors were also investigated. Using neonatal Sertoli cells as feeder and Dulbecco's modified eagle medium: nutrient mixture F-12 (DMEM/F12) culture medium supplemented with 10% KSR and four cytokines, the undifferentiated spermatogonia can proliferate in vitro for at least 2 months without loss of stemness. The expression of SSC markers indicated that the cultured cells maintained SSC expression profiles. Moreover, xenotransplantation and in vitro induction showed that the long-term cultured cells preserved the capacity to colonize in vivo and differentiate in vitro, respectively, demonstrating the presence of SSCs in the cultured cells. In conclusion, the conditions described in this study can support the normal proliferation of porcine undifferentiated spermatogonia with stemness and normal karyotype for at least 2 months. This culture system will serve as a basic refinement in the future studies and facilitate studies on SSC biology and genetic manipulation of male germ cells.
Collapse
Affiliation(s)
- Pengfei Zhang
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Xiaoxu Chen
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yi Zheng
- 2 Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam , Amsterdam, the Netherlands
| | - Jinshen Zhu
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yuwei Qin
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Yinghua Lv
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| | - Wenxian Zeng
- 1 College of Animal Science and Technology, Northwest A&F University , Shaanxi, China
| |
Collapse
|
45
|
Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res 2017; 21:171-177. [DOI: 10.1016/j.scr.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
|
46
|
Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: The search for an in vitro screen for spermatogenic toxicity. ACTA ACUST UNITED AC 2016; 107:225-242. [DOI: 10.1002/bdrb.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Robert E. Chapin
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Timothy Winton
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - William Nowland
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Nichole Danis
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Histopathology Laboratory; WRD; Groton CT USA
| | - Steven Kumpf
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Kjell Johnson
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Arbor Analytics; Ann Arbor MI USA
| | - Aleasha Coburn
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
47
|
Mirzapour T, Tengku Ibrahim TAB, Movahedin M, Nowroozi MR. Morphological and ultrastructural studies of human spermatogonial stem cells from patients with maturation arrest. Andrologia 2016; 49. [DOI: 10.1111/and.12700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 11/27/2022] Open
Affiliation(s)
- T. Mirzapour
- Department of Biology; University of Mohaghegh Ardabili; Ardabil Iran
| | | | - M. Movahedin
- Department of Anatomical Sciences; School of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - M. R. Nowroozi
- Uro-Oncology Research Center; Tehran University of Medical Science; Tehran Iran
| |
Collapse
|
48
|
Pirnia A, Parivar K, Hemadi M, Yaghmaei P, Gholami M. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation. Andrologia 2016; 49. [DOI: 10.1111/and.12650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/15/2023] Open
Affiliation(s)
- A. Pirnia
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - K. Parivar
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Hemadi
- Fertility and Infertility Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - P. Yaghmaei
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Gholami
- Razi Herbal Medicine Research center and department of Anatomical sciences; Lorestan University of Medical Sciences; Khorramabad Iran
| |
Collapse
|
49
|
Mahaldashtian M, Naghdi M, Ghorbanian MT, Makoolati Z, Movahedin M, Mohamadi SM. In vitro effects of date palm (Phoenix dactylifera L.) pollen on colonization of neonate mouse spermatogonial stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:362-368. [PMID: 27084457 DOI: 10.1016/j.jep.2016.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Date palm (Phoenix dactylifera L.) pollen (DPP) is widely used as a folk remedy for male infertility treatment, and has well known medicinal effects. AIM OF THE STUDY This study aimed to determine the in vitro effects of DPP on the efficiency of neonate mouse spermatogonial stem cells (SSCs) proliferation. MATERIAL AND METHODS Sertoli and SSCs were isolated from 6 to 10-days-old mouse testes, and their identity was confirmed using immunocytochemistry against cytokeratin for sertoli cells and PLZF, Oct-4 and CDH-1 for SSCs. Isolated testicular cells were cultured in the absence or presence of 0.06, 0.25 and 0.62mg/ml concentrations of DPP aqueous extract for 2 weeks. The number and diameter of SSC colonies were assessed during third, 7th, 9th and 14th day of culture, and the expression of the Mvh, GFRα-1 and Oct-4 was evaluated using quantitative PCR at the end of the culture period. The significance of the data was analyzed using ANOVA and paired samples t-test and Tukey and Bonferroni test as post hoc tests at the level of p≤0.05. RESULTS Pattern assay of colony formation showed that SSCs numbers increased in the present of 0.62mg/ml concentration of DPP extract with higher slop relative to other groups (P <0.05). Colony diameters had no significant difference between groups in 3th, 7th, 9th and 14th days after culture. The Mvh and Oct-4 genes expression had no significant difference between groups, while GFRα1 expression was increased significantly in cells treated with 0.06mg/ml concentration relative to other groups (P<0.05). CONCLUSION It seems that co-culture of SSCs with sertoli sells in the presence of low doses of DPP can increase SSCs proliferation and keep their stemness state, while higher concentrations can differentiate the treated cells.
Collapse
Affiliation(s)
- Maryam Mahaldashtian
- Department of Molecular & Cellular Biology, Faculty of Biology, Damghan University, Semnan, Iran.
| | - Majid Naghdi
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohamad Taghi Ghorbanian
- Department of Molecular & Cellular Biology, Faculty of Biology, Damghan University, Semnan, Iran.
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Momeneh Mohamadi
- Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|