1
|
Dell’Anno M, Frazzini S, Reggi S, Ferri I, Scaglia E, Schiasselloni L, Inglesi A, Riva F, Verdile N, Pasquariello R, Rossi L. Evaluation of dietary supplementation of Ascophyllum nodosum and Lithothamnium calcareum as functional algae in F4+ Escherichia coli challenged piglets. Front Vet Sci 2024; 11:1430347. [PMID: 39309030 PMCID: PMC11412951 DOI: 10.3389/fvets.2024.1430347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Despite progress in reducing antimicrobial use in the veterinary field, it is crucial to find alternatives to preserve effectiveness and limit antimicrobial resistance. In pig farming, pathogenic strains of E. coli are the main cause of gastrointestinal disorders and antibiotic use. In this field, algae represent an innovation in animal nutrition that aligns with livestock sustainability principles and provide a high content of functional molecules. Aim The aim of this study was to evaluate the impact of an innovative dietary combination of Ascophyllum nodosum and Lithothamnium calcareum, on growth, duodenum gene expression, jejunum intestinal morphology, and serum oxidative status in F4+ Escherichia coli challenged piglets. Materials and methods Forty-eight weaned pigs, aged 28 ± 2 days, were divided into two groups (n = 24 pigs/group): the control group was fed a commercial diet (CTRL), while the seaweeds group was fed a commercial diet supplemented with 1.5% A. nodosum and 0.5% L. calcareum for 27 days (ALGAE). After 13 days, 50% of animals in each group were challenged with a single dose of 108 CFU/dose of E. coli F4+, resulting in two infected groups (CTRL+ and ALGAE+, n = 12 pigs/group). Growth performance was assessed by measuring the individual body weight. At day 27, from six animals/group duodenum and jejunum sections were sampled for gene expression analysis via qRT-PCR and histological evaluation. Results and discussion The results indicated a significantly higher body weight in the ALGAE+ group compared to CTRL+ after 7 days post-challenge (p < 0.0001). Jejunum morphology revealed lower villus height, villus width and villus height/crypt depth ratio in CTRL+ compared to ALGAE+ (p < 0.05) suggesting a protective effect of seaweeds on gut health. Conclusion In conclusion, algae mixture exerted a protective effect against intestinal damage from E. coli F4+ infection proposing A. nodosum and L. calcareum supplementation as interesting strategy to support animal growth, enhance health and reduce antibiotic treatments in weaned piglets.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Irene Ferri
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Elena Scaglia
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
- Department Civil, Environmental, Architectural Engineering and Mathematics—DICATAM, University of Brescia, Brescia, Italy
| | - Linda Schiasselloni
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Alessia Inglesi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Nicole Verdile
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy–DISAA, University of Milan, Milan, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Homer B, Barekatain R, Petrovski KR, Plush KJ, Dwan C, D’Souza DN, Verma PJ, Kirkwood RN, Tucker BS. Preweaning Purified Fucoidan Drench: Effects on Growth, Immune Response, and Intestinal Morphology in Weaned Piglets. Animals (Basel) 2024; 14:1472. [PMID: 38791689 PMCID: PMC11117201 DOI: 10.3390/ani14101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Weaning stress imposes considerable physiological challenges on piglets, often manifesting in intestinal disturbances, such as inflammation and compromised barrier function, ultimately affecting growth and health outcomes. While conventional interventions, including antimicrobials, have effectively mitigated these sequelae, concerns surrounding antimicrobial resistance necessitate the exploration of alternatives. Fucoidan, derived from brown seaweed, offers promise due to its antioxidant and anti-inflammatory effects. Previous research has been limited to the in-feed supplementation of partially purified fucoidan extracted from brown seaweed. The focus of the present study is assessing the effect of a preweaning drench with highly purified (85%) fucoidan on piglet growth, immune response, and intestinal morphology post-weaning. Forty-eight male piglets at 17 ± 3 days of age (5.67 ± 0.16 kg) were assigned to a saline (control), fucoidan, or antimicrobial group, receiving treatment as a single 18 mL oral drench three days before weaning. Monitoring for seven days post-weaning included body weight measurements, blood sample collection for the inflammatory protein assay, and small intestine morphological analysis. The findings revealed that the preweaning fucoidan drench did not elicit adverse effects on piglets. However, neither fucoidan nor antimicrobial drenches significantly enhanced growth parameters, immune markers, or intestinal morphology compared to that of the control-treated piglets (p > 0.05). The lack of response may be attributed to the high health status of the experimental cohort and the limitation of a single dosage. Future research should consider a more challenging production setting to evaluate the viability and optimal application of fucoidan as an antimicrobial alternative in the pig industry.
Collapse
Affiliation(s)
- Bonnie Homer
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Kiro R. Petrovski
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | | | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia
| | | | - Paul J. Verma
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Bryony S. Tucker
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
- College of Engineering and Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Scaglia E, Reggi S, Canala B, Frazzini S, Dell’Anno M, Hejna M, Rossi L. The Effects of Milk Replacer Supplemented with Ascophyllum nodosum as a Novel Ingredient to Prevent Neonatal Diarrhea in Dairy Calves and Improve Their Health Status. Vet Sci 2023; 10:618. [PMID: 37888570 PMCID: PMC10610816 DOI: 10.3390/vetsci10100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Nutrition and health during pre-weaning affect the calves' future fertility, calving age, production, and carrier length. Calves are highly susceptible to neonatal calf diarrhea (NCD), which can be fatal. NCD is due to hypovolemia and acidosis, which may involve anorexia and ataxia. The One Health principle calls for a drastic reduction in antimicrobial use. One approach is to improve animal health and reduce the use of antibiotics and functional ingredients that have beneficial effects due to bioactive compounds. Several functional ingredients and additives can be considered, and, in particular for this study, Ascophyllum nodosum was considered. The present study aimed to evaluate the role of A. nodosum as a functional ingredient implemented into the milk replacer in neonatal calves. Twelve pre-weaned Holstein Frisian calves, housed in twelve individual pens in the same environmental conditions, were divided into two groups of six animals: a control group (CTRL, n = 6) fed with a milk replacer, and a treatment group receiving milk enriched with 10 g of A. nodosum in their diet (TRT, n = 6) for 42 days. The fecal score was evaluated daily (3-0 scale) to monitor the incidence of diarrhea in the two groups. The body weight was evaluated weekly, and every two weeks feces were collected for microbiological evaluation using a selective medium for plate counting of total, lactic acid, and coliform bacteria. To verify the presence of Lactobacillus, Bifidobacterium, and Escherichia coli, real-time qPCR was used. At the beginning and at the end of the trial, blood samples were obtained for serum metabolite analysis. The growth performance did not differ in either of the two groups, but significant differences were observed in the incidence of moderate diarrhea (p-value < 0.0113), where the TRT group showed a lower incidence of cases during the 42-day period. Serum analysis highlighted higher contents of albumin, calcium, phosphorus, and total cholesterol in the TRT group compared to CTRL (p-value < 0.05). In conclusion, implementation of A. nodosum in the diet of calves can lead to better animal welfare and may reduce the use of antibiotics.
Collapse
Affiliation(s)
- Elena Scaglia
- Department Civil, Environmental, Architectural Engineering and Mathematics—DICATAM, University of Brescia, 25123 Brescia, Italy;
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Benedetta Canala
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| |
Collapse
|
4
|
Nguyen TX, Agazzi A, McGill S, Weidt S, Han QH, Gelemanović A, McLaughlin M, Savoini G, Eckersall PD, Burchmore R. Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed Part II: Ileum proteomes. J Proteomics 2023; 270:104739. [PMID: 36174954 DOI: 10.1016/j.jprot.2022.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
This study evaluates how long-term dietary low ω6:ω3 ratio in sows and offspring's seaweed (SW) intake affects piglet intestinal function and growth through modifying ileum proteome. Sows were assigned to either control diet (CR, ω6:ω3 ratio = 13:1) or treatment diet (LR, ω6:ω3 = 4:1) during gestation and lactation (n = 8 each). The male weaned offspring were received a basal diet with or without SW powder supplementation (4 g/kg) for 21 days, denoted as SW and CT groups, respectively. In total, four groups of weaned piglets were formed following maternal and offspring's diets combination, represented by CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet ileum tissue was collected on day 22 post-weaning and analysed using TMT-based quantitative proteomics. The differentially abundant proteins (n = 300) showed the influence of maternal LR diet on protein synthesis, cell proliferation, and cell cycle regulation. In contrast, the SW diet lowered the inflammation severity and promoted ileal tissue development in CRSW piglets but reduced the fat absorption capacity in LRSW piglets. These results uncovered the mechanism behind the anti-inflammation and intestinal-boosting effects of maternal LR diet in piglets supplemented with SW.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy; University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Alessandro Agazzi
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Suzanne McGill
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Stefan Weidt
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Quang Hanh Han
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000 Split, Croatia
| | | | - Giovanni Savoini
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | | | | |
Collapse
|
5
|
Michalak I, Tiwari R, Dhawan M, Alagawany M, Farag MR, Sharun K, Emran TB, Dhama K. Antioxidant effects of seaweeds and their active compounds on animal health and production - a review. Vet Q 2022; 42:48-67. [PMID: 35363108 PMCID: PMC9004519 DOI: 10.1080/01652176.2022.2061744] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Natural antioxidants applied as feed additives can improve not only animals' health and overall performance but also increase their resistance to environmental stress such as heat stress, bad housing conditions, diseases, etc. Marine organisms, for example seaweeds - red, brown, and green macroalgae contain a plethora of biologically active substances, including phenolic compounds, polysaccharides, pigments, vitamins, micro- and macroelements, and proteins known for their antioxidant activity, which can help in the maintenance of appropriate redox status in animals and show pleiotropic effects for enhancing good health, and productivity. The dysregulated production of free radicals is a marked characteristic of several clinical conditions, and antioxidant machinery plays a pivotal role in scavenging the excessive free radicals, thereby preventing and treating infections in animals. Supplementation of seaweeds to animal diet can boost antioxidant activity, immunity, and the gut environment. Dietary supplementation of seaweeds can also enhance meat quality due to the deposition of marine-derived antioxidant components in muscles. The use of natural antioxidants in the meat industry is a practical approach to minimize or prevent lipid oxidation. However, overconsumption of seaweeds, especially brown macroalgae, should be avoided because of their high iodine content. An important point to consider when including seaweeds in animal feed is their variable composition which depends on the species, habitat, location, harvest time, growing conditions such as nutrient concentration in water, light intensity, temperature, etc. This review highlights the beneficial applications of seaweeds and their extracted compounds, which have antioxidant properties as feed additives and impact animal health and production.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu R, Li S, Tu Y, Hao X, Qiu F. Recovery of value-added products by mining microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114512. [PMID: 35066198 DOI: 10.1016/j.jenvman.2022.114512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Microalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution. Besides, some microalgae are rich in nutrients, such as proteins and astaxanthin, which make themselves suitable for feed additives. As wastewater is rich in nutrients necessary for microalgae, thus, value-added product recovery via microalgae could be an approach to valorizing wastewater. However, a one-size-fits-all approach deploying various wastewater for the above products cannot be summarized. On the contrary, specific technical protocols should be tailored regarding each product in microalgae biomass with various wastewater. Thus, this review is to summarize the research effort by far on wastewater-cultivated microalgae for value-added products. Wastewater type, regulation methods, and targeted product yields are compiled and discussed and are expected to guide future extrapolation into a commercial scale.
Collapse
Affiliation(s)
- Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Siqi Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Yingfan Tu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China.
| | - Fuguo Qiu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China.
| |
Collapse
|
8
|
Vodouhè M, Marois J, Guay V, Leblanc N, Weisnagel SJ, Bilodeau JF, Jacques H. Marginal Impact of Brown Seaweed Ascophyllum nodosum and Fucus vesiculosus Extract on Metabolic and Inflammatory Response in Overweight and Obese Prediabetic Subjects. Mar Drugs 2022; 20:174. [PMID: 35323474 PMCID: PMC8951415 DOI: 10.3390/md20030174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of the present study was to test whether a brown seaweed extract rich in polyphenols combined with a low-calorie diet would induce additional weight loss and improve blood glucose homeostasis in association with a metabolic and inflammatory response in overweight/obese prediabetic subjects. Fifty-six overweight/obese, dysglycemic, and insulin-resistant men and women completed a randomized, placebo-controlled, double-blind, and parallel clinical trial. Subjects were administrated 500 mg/d of either brown seaweed extract or placebo combined with individualized nutritional advice for moderate weight loss over a period of 12 weeks. Glycemic, anthropometric, blood pressure, heart rate, body composition, lipid profile, gut integrity, and oxidative and inflammatory markers were measured before and at the end of the trial. No effect was observed on blood glucose. We observed significant but small decreases in plasma C-peptide at 120 min during 2 h-OGTT (3218 ± 181 at pre-intervention vs. 2865 ± 186 pmol/L at post-intervention in the brown seaweed group; 3004 ± 199 at pre-intervention vs. 2954 ± 179 pmol/L at post-intervention in the placebo group; changes between the two groups, p = 0.002), heart rate (72 ± 10 at pre-intervention vs. 69 ± 9 (n/min) at post-intervention in the brown seaweed group; 68 ± 9 at pre-intervention vs. 68 ± 8 (n/min) at post-intervention in the placebo group; changes between the two groups, p = 0.01), and an inhibition in the increase of pro-inflammatory interleukin-6 (IL-6) (1.3 ± 0.7 at pre-intervention vs. 1.5 ± 0.7 pg/L at post-intervention in the brown seaweed group; 1.4 ± 1.1 at pre-intervention vs. 2.2 ± 1.6 pg/L at post-intervention in the placebo group; changes between the two groups, p = 0.02) following brown seaweed consumption compared with placebo in the context of moderate weight loss. Although consumption of brown seaweed extract had no effect on body weight or blood glucose, an early attenuation of the inflammatory response was observed in association with marginal changes in metabolic parameters related to the prevention of diabetes type 2.
Collapse
Affiliation(s)
- Marlène Vodouhè
- School of Nutrition, Faculty of Agricultural and Food Sciences, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Julie Marois
- Institute of Nutrition and Functional Foods, Université Laval, Québec City, QC G1V 0A6, Canada; (J.M.); (V.G.); (N.L.)
| | - Valérie Guay
- Institute of Nutrition and Functional Foods, Université Laval, Québec City, QC G1V 0A6, Canada; (J.M.); (V.G.); (N.L.)
| | - Nadine Leblanc
- Institute of Nutrition and Functional Foods, Université Laval, Québec City, QC G1V 0A6, Canada; (J.M.); (V.G.); (N.L.)
| | - Stanley John Weisnagel
- Department of Medicine, Faculty of Medicine, Université Laval, CHU de Québec-Université Laval Research Centre, Québec City, QC G1V 4G2, Canada; (S.J.W.); (J.-F.B.)
| | - Jean-François Bilodeau
- Department of Medicine, Faculty of Medicine, Université Laval, CHU de Québec-Université Laval Research Centre, Québec City, QC G1V 4G2, Canada; (S.J.W.); (J.-F.B.)
| | - Hélène Jacques
- School of Nutrition, Faculty of Agricultural and Food Sciences, Université Laval, Québec City, QC G1V 0A6, Canada;
| |
Collapse
|
9
|
Samarasinghe MB, Sehested J, Weisbjerg MR, van der Heide ME, Nørgaard JV, Vestergaard M, Hernández-Castellano LE. Feeding milk supplemented with Ulva sp., Ascophyllum nodosum, or Saccharina latissima to preweaning dairy calves: Effects on growth, gut microbiota, gut histomorphology, and short-chain fatty acids in digesta. J Dairy Sci 2021; 104:12117-12126. [PMID: 34454759 DOI: 10.3168/jds.2021-20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging knowledge shows the importance of preweaning nutrition on programming the gastrointestinal microbiome and development of the gut barrier function. The aim of this study was to assess the effects of supplementing cow milk with either intact dried Ulva sp., Ascophyllum nodosum, or Saccharina latissima on growth performance and several gut health parameters of preweaning dairy calves. Forty male Holstein calves were selected based on birth weight (41 ± 4 kg) and plasma Brix percentage (≥8.7%) at d 2 of life. From d 2 to d 42 of life, the control calves (n = 10) were fed with cow milk (8 L/d) without seaweed supplementation, and the experimental calves were fed with cow milk (8 L/d) supplemented with either Ulva sp. (n = 10), A. nodosum (n = 10), or S. latissima (n = 10) at a concentration of 50 g/8 L of cow milk per day (i.e., 5% on a dry matter basis). Calves were weighed every week, and body weight gain and calf starter intake were monitored weekly. At d 42 ± 3 of life, calves were slaughtered. The organ weights and digesta pH from the reticulorumen, mid- and end small intestine, and mid-colon were recorded. A tissue sample (5 cm) collected from the mid-small intestine was analyzed for histomorphology. Digesta from the mid-small intestine and mid-colon were analyzed for lactobacilli, Escherichia coli, and Enterobacteriaceae, and short-chain fatty acid profile. Weight gain of the calves was not affected by seaweed supplementation. Proportional organ weights were not affected by seaweed supplementation except for reticulorumen weight, which was higher in calves fed Ulva sp. Both the mid-small intestinal and mid-colonic digesta populations of lactobacilli, Enterobacteriaceae, and E. coli, as well as the mid-small intestinal histomorphology in seaweed-supplemented calves were not different from control calves. However, acetic acid proportion in mid-colonic digesta was increased in calves fed Ulva sp. and A. nodosum, whereas butyric acid proportion was decreased compared with the control calves. Digesta pH in mid- and end small intestine and mid-colon were not affected, whereas ruminal pH was increased in calves fed Ulva sp. compared with the control calves. In conclusion, intact dried seaweed supplementation did not improve the growth or selected gut health parameters (i.e., histomorphology, digesta pH, bacteria, and short-chain fatty acids) in preweaning Holstein calves.
Collapse
Affiliation(s)
- M B Samarasinghe
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark.
| | - J Sehested
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M E van der Heide
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - J V Nørgaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M Vestergaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - L E Hernández-Castellano
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain.
| |
Collapse
|
10
|
O’Doherty JV, Venardou B, Rattigan R, Sweeney T. Feeding Marine Polysaccharides to Alleviate the Negative Effects Associated with Weaning in Pigs. Animals (Basel) 2021; 11:2644. [PMID: 34573610 PMCID: PMC8465377 DOI: 10.3390/ani11092644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In young pigs, the challenge of weaning frequently leads to dysbiosis. This predisposes pigs to intestinal infection such as post-weaning diarrhoea (PWD). Dietary interventions to reduce PWD have centred on dietary inclusion of antibiotic growth promoters (AGP) and antimicrobials in pig diets, or high concentrations of zinc oxide. These interventions are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment. There are significant efforts being made to identify natural alternatives. Marine polysaccharides, such as laminarin and fucoidan from macroalgae and chitosan and chito-oligosaccharides from chitin, are an interesting group of marine dietary supplements, due to their prebiotic, antibacterial, anti-oxidant, and immunomodulatory activities. However, natural variability exists in the quantity, structure, and bioactivity of these polysaccharides between different macroalgae species and harvest seasons, while the wide range of available extraction methodologies and conditions results in further variation. This review will discuss the development of the gastrointestinal tract in the pig during the post-weaning period and how feeding marine polysaccharides in both the maternal and the post-weaned pig diet, can be used to alleviate the negative effects associated with weaning.
Collapse
Affiliation(s)
- John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| | - Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| |
Collapse
|
11
|
Samarasinghe M, van der Heide M, Weisbjerg M, Sehested J, Sloth J, Bruhn A, Vestergaard M, Nørgaard J, Hernández-Castellano L. A descriptive chemical analysis of seaweeds, Ulva sp., Saccharina latissima and Ascophyllum nodosum harvested from Danish and Icelandic waters. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Seaweed Supplementation Failed to Affect Fecal Microbiota and Metabolome as Well as Fecal IgA and Apparent Nutrient Digestibility in Adult Dogs. Animals (Basel) 2021; 11:ani11082234. [PMID: 34438692 PMCID: PMC8388444 DOI: 10.3390/ani11082234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
The present study investigated in dogs the dietary effects of intact seaweeds on some fecal bacterial populations and metabolites, fecal IgA and apparent total tract digestibility (ATTD). Ten healthy adult dogs were enrolled in a 5 × 5 replicated Latin square design to evaluate five dietary treatments: control diet (CD); CD + Ascophyllum nodosum; CD + Undaria pinnatifida; CD + Saccharina japonica; CD + Palmaria palmata (n replicates per treatment = 10). Seaweeds were added to food at a daily dose of 15 g/kg. The CD contained silica as a digestion marker. Each feeding period lasted 28 d, with a 7 d wash-out in between. Feces were collected at days 21 and 28 of each period for chemical and microbiological analyses. Fecal samples were collected during the last five days of each period for ATTD assessment. Dogs showed good health conditions throughout the study. The fecal chemical parameters, fecal IgA and nutrient ATTD were not influenced by algal supplementation. Similarly, microbiological analyses did not reveal any effect by seaweed ingestion. In conclusion, algal supplementation at a dose of 15 g/kg of diet failed to exert noticeable effects on the canine fecal parameters evaluated in the present study.
Collapse
|
13
|
Salami R, Kordi M, Bolouri P, Delangiz N, Asgari Lajayer B. Algae-Based Biorefinery as a Sustainable Renewable Resource. CIRCULAR ECONOMY AND SUSTAINABILITY 2021; 1:1349-1365. [PMID: 34888572 PMCID: PMC8290136 DOI: 10.1007/s43615-021-00088-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 11/03/2022]
Abstract
Algae are a large and diverse group of autotrophic organisms that are multicellular and single-celled and found in a variety of environments. Biofuel production and value-added chemicals produced through a sustainable process are represented by the biorefinery of algae. Algae are important because of the production of polysaccharides, lipids, pigments, proteins, and other compounds for pharmaceutical and nutritional applications. They can also be used as raw materials for biofuel production. Moreover, they are useful for wastewater treatment. All these factors have absorbed the attentions of researchers around the world. This review focuses specifically on the potentials, properties, and applications of algae as a sustainable renewable resource, which can be a good alternative to other sources due to their high biomass production, less land required for cultivation, and the production of valuable metabolites.
Collapse
Affiliation(s)
- Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parisa Bolouri
- Department of Genetic and Bioengineering, Biotechnology, Yeditepe University, Istanbul, Turkey
| | - Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
14
|
Corino C, Di Giancamillo A, Modina SC, Rossi R. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals (Basel) 2021; 11:1573. [PMID: 34072221 PMCID: PMC8229765 DOI: 10.3390/ani11061573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure environmental sustainability, according to the European Green Deal and to boost the One Health concept, it is essential to improve animals' health and adopt sustainable and natural feed ingredients. Over the past decade, prebiotics have been used as an alternative approach in order to reduce the use of antimicrobials, by positively affecting the gut microbiota and decreasing the onset of several enteric diseases in pig. However, dietary supplementation with seaweed polysaccharides as prebiotics has gained attention in recent years. Seaweeds or marine macroalgae contain several polysaccharides: laminarin, fucoidan, and alginates are found in brown seaweeds, carrageenan in red seaweeds, and ulvan in green seaweeds. The present review focuses on studies evaluating dietary seaweed polysaccharide supplementation in pig used as prebiotics to positively modulate gut health and microbiota composition.
Collapse
Affiliation(s)
| | | | | | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.); (S.C.M.)
| |
Collapse
|
15
|
Samarasinghe MB, Sehested J, Weisbjerg MR, Vestergaard M, Hernández-Castellano LE. Milk supplemented with dried seaweed affects the systemic innate immune response in preweaning dairy calves. J Dairy Sci 2021; 104:3575-3584. [PMID: 33455754 DOI: 10.3168/jds.2020-19528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
Intact seaweed or seaweed extracts are used as feed supplements to improve the gut microbiome in young animals. Seaweeds provide functional polysaccharides, and they are a good source of vitamins, minerals, and phenolic compounds, all of which are relevant for immune system development. However, literature on the effects of dried seaweed supplementation on immune system development is limited, especially in calves. This experiment aimed to study the effect of feeding milk supplemented with Ulva lactuca, Ascophyllum nodosum, or Saccharina latissima on the systemic immune status of preweaning dairy calves. Forty male Holstein calves with birth body weight 41 ± 4 kg and plasma Brix percentage ≥8.7% at d 2 after birth were used in this study. Calves were fed 4 L of cow milk twice a day (total 8 L/d). From d 2 to d 28, calves in the control group (n = 10) received milk without seaweed supplementation. Over the same period, experimental calves received milk supplemented with Ulva lactuca (SW1; n = 10), Ascophyllum nodosum (SW2; n = 10), or Saccharina latissima (SW3, n = 10). Dried and ground seaweeds were offered at a daily allowance of 50 g/8 L of milk (i.e., approximately 5% inclusion rate on a dry matter basis). Blood samples were collected from a jugular vein on d 2, 4, 7, 14, 21, and 28 after birth. Plasma concentrations of total protein, albumin, immunoglobulins, and acute-phase proteins (i.e., serum amyloid A, fibrinogen, and haptoglobin) were measured. We detected no differences in average daily gain, plasma immunoglobulins, albumin, or total protein. However, the contrast analysis revealed that plasma concentrations of fibrinogen (SW1 and SW2) and serum amyloid A (SW2 and SW3) were significantly higher in the seaweed groups compared with the control group. We also found a tendency for high plasma haptoglobin in the seaweed groups (SW1 and SW2) compared with the control group. Differences in acute-phase protein concentrations could be partially explained by the large differences in micromineral intake between control and seaweed-supplemented calves. Feeding milk supplemented with dried seaweed increased plasma concentrations of variables related to the innate immune response in preweaning dairy calves.
Collapse
Affiliation(s)
- M B Samarasinghe
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark.
| | - J Sehested
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M Vestergaard
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | | |
Collapse
|
16
|
Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Ford L, Curry C, Campbell M, Theodoridou K, Sheldrake G, Dick J, Stella L, Walsh PJ. Effect of Phlorotannins from Brown Seaweeds on the In Vitro Digestibility of Pig Feed. Animals (Basel) 2020; 10:ani10112193. [PMID: 33238648 PMCID: PMC7700568 DOI: 10.3390/ani10112193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Phlorotannins have been reported to have positive effects on pig health, including improved gut health and digestibility. In this study, we investigate the effect of phenolics found in two brown seaweeds, Ascophyllum nodosum and Fucus serratus, on in vitro dry matter digestibility of seaweeds and commercial pig feed. Phlorotannin extracts and whole seaweeds were supplemented into pig feed to test their effect on digestibility. Solid-phase extraction was used to purify the phenolics to phlorotannins. The results showed a slight decrease in the digestibility of pig feed that was found to be significant when phlorotannin extracts were added from either seaweed. However, when whole A. nodosum was added to the pig feed, the effect on digestibility was less pronounced. Specifically, no significant difference in digestibility was observed at inclusion rates up to 5%, and thereafter results varied. A difference in digestibility was also observed in the same species at the same inclusion rate, collected from different seasons. This suggests that other compounds, e.g., polysaccharides, are having an effect on digestibility when whole seaweeds are supplemented to animal feed. This research has also highlighted the need to base supplementation on phenolic concentration as opposed to a standardised percentage inclusion of seaweeds to ensure that digestibility is not adversely affected.
Collapse
Affiliation(s)
- Lauren Ford
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Chloe Curry
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Mairead Campbell
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
| | - Katerina Theodoridou
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
| | - Gary Sheldrake
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
| | - Jaimie Dick
- Institute of Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK; (M.C.); (K.T.); (J.D.)
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Northern Ireland, Belfast BT9 5DL, UK
- Queen’s Marine Laboratory (QML) Queen’s University Belfast, 12-13 The Strand, Northern Ireland, Portaferry BT22 1PF, UK
| | - Lorenzo Stella
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
- Atomistic Simulation Centre (ASC), School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| | - Pamela J. Walsh
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland BT9 5AG, UK; (L.F.); (C.C.); (G.S.); (L.S.)
- Queen’s Marine Laboratory (QML) Queen’s University Belfast, 12-13 The Strand, Northern Ireland, Portaferry BT22 1PF, UK
- School of Mechanical Engineering, Queen’s University Belfast, The Asbhy Building, Stranmillis Road, Northern Ireland, Belfast BT9 5AJ, UK
- Correspondence: ; Tel.: +44-28-9097-4677
| |
Collapse
|
18
|
Nguyen TX, Agazzi A, Comi M, Bontempo V, Guido I, Panseri S, Sauerwein H, Eckersall PD, Burchmore R, Savoini G. Effects of Low ω6:ω3 Ratio in Sow Diet and Seaweed Supplement in Piglet Diet on Performance, Colostrum and Milk Fatty Acid Profiles, and Oxidative Status. Animals (Basel) 2020; 10:ani10112049. [PMID: 33167599 PMCID: PMC7694489 DOI: 10.3390/ani10112049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Feeding maternal animals divergent ratios of omega-6 (ω6) and omega-3 (ω3) fatty acids can change not only their health, physiological condition, and performance but also do the same for their offspring. In swine production, various ω6:ω3 ratios have been tested, but the search for an optimal proportion in the sow diet is still in progress. For piglets, weaning oxidative stress has been alleviated by supplementing with abundant sources of bioactive compounds. In this case, brown seaweed, a rich source of natural antimicrobials and antioxidants, can be a good candidate, but its supplementation in piglet diet is limited. This study explores the hypothesis that feeding a low ω6:ω3 ratio diet to sows during gestation and lactation, together with the supplementation of Ascophyllum nodosum for piglets during the post-weaning period, could benefit piglets’ performance and oxidative status more than the respective single treatment provided to the mother or the piglet. Results showed that the low dietary ω6:ω3 ratio (4:1) and seaweed supplement did not affect the post-weaning piglets’ growth rate and oxidative status. However, a low ω6:ω3 ratio diet alone improved weaning survival rate, suckling piglets’ weight gain, and total ω3 fatty acids in colostrum and milk. Abstract The ratio of omega-6 (ω6) to omega-3 (ω3) polyunsaturated fatty acids (PUFAs) in the diet contributes to animal health and performance modulations because they have mostly opposite physiological functions. Increasing ω3 PUFAs content in the maternal diet can stimulate antioxidative capacity in sow and piglets; however, the optimal ratio of ω6 and ω3 PUFAs in the sow diet is still under discussion. Rich sources of bioactive constituents such as brown seaweed are an excellent supplementation to promote animal health and antioxidant status. However, the knowledge of the effects of this compound, specifically in post-weaning piglets, is still limited. Moreover, the combined effect of a low ω6:ω3 PUFAs ratio in sow diet and seaweed supplementation in post-weaning piglets’ diet has never been studied. This research aims to assess the combined effect of a low ω6:ω3 ratio in sow diets and seaweed supplementation in piglet diets on their growth and oxidative status. We also assessed the impact of a low ω6:ω3 ratio in the maternal diet on reproduction, milk fatty acid (FA) profile, and plasma leptin concentration. Two sow diets (n = 8 each) contained either a control ratio (CR, 13:1 during gestation, starting from day 28 (G28) and 10:1 during lactation) or a low ratio (LR, 4:1 from G28 until the end of lactation (L-End)) of ω6:ω3 FA by adding soybean oil or linseed oil, respectively. Reproductive performance was evaluated. Colostrum and milk at lactation day 7 (L7) and L-End were collected to analyze FA profile. Plasma was collected at G28, G79, G108, L7, L14, and L-End for determination of leptin and oxidative status. At weaning, 20 male piglets were selected per sow group to form 4 diet treatments (n = 10 each), which were supplemented with or without 4 g/kg seaweed. Recording of growth performance and collection of blood were performed at days 0, 7, 15, and 21 of post-weaning for oxidative status. LR diet increased (p < 0.05) the survival rate of piglets at weaning, and individual and litter weight gains. Colostrum and milk at L7 and L-End had lower (p < 0.05) ω6:ω3 ratio in LR sows. Interaction between dietary treatments on sows and piglets was revealed for all examined growth parameters at most time points (p < 0.05). LR diet did not affect plasma leptin levels and oxidative status. These findings suggest that the seaweed supplement during post-weaning could not improve growth rate and oxidative status of piglets born from mothers receiving a low dietary ω6:ω3 ratio (4:1) during gestation and lactation. However, this low ratio was beneficial for weaning survival rate, sucking piglets’ weight gain, and ω3 enrichment in colostrum and milk.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
- Correspondence:
| | - Alessandro Agazzi
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Valentino Bontempo
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Invernizzi Guido
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany;
| | - Peter David Eckersall
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK; (P.D.E.); (R.B.)
| | - Giovanni Savoini
- Department of Health, Animal Science and Food Safety ‘Carlo Cantoni’ (VESPA), Università degli Studi di Milano, Via dell’ Università 6, 26900 Lodi, Italy; (A.A.); (V.B.); (I.G.); (S.P.); (G.S.)
| |
Collapse
|
19
|
Affiliation(s)
- E. Coudert
- INRAE, Université de Tours, UMR BOA, Nouzilly, France
| | - E. Baéza
- INRAE, Université de Tours, UMR BOA, Nouzilly, France
| | - C. Berri
- INRAE, Université de Tours, UMR BOA, Nouzilly, France
| |
Collapse
|
20
|
Farid AH, Smith NJ, White MB. Effects of dietary kelp (Ascophylum nodosum) supplementation on survival rate and reproductive performance of mink challenged with Aleutian mink disease virus. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection with Aleutian mink disease virus (AMDV) has negative effects on reproductive performance and survival rate of American mink (Neovison vison). The objectives of this study were to assess the effects of kelp (Ascophylum nodosum) supplementation on survival, growth rate, and reproductive performance of mink challenged with AMDV. AMDV-free female black mink (n = 75) were intranasally inoculated with a local AMDV strain. Mink were fed a commercial pellet supplemented with 1.5% or 0.75% kelp or were kept as controls (received no kelp) for 451 d. Body weight and rectal temperature were recorded on days 0, 31, 56, 99, 155, 366, and 451 post inoculation (PI). Annual mortality rates were 13.6%, 20.0%, and 31.8% for mink fed 1.5%, 0.75%, or 0.0% kelp, respectively (P = 0.29). Mink which were fed 1.5% kelp had a significantly (P < 0.01) greater daily weight loss during breeding and post-breeding periods (days 155–366 PI), and outperformed (P < 0.01) the other groups in regard to litter sizes at birth and weaning. Differences among treatments were not significant for the number of females mated, or whelped of those exposed to males, kit survival from birth to weaning, or rectal temperature. It was concluded that 1.5% kelp supplementation had beneficial effects on survival rate of adult mink and litter size.
Collapse
Affiliation(s)
- A. Hossain Farid
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Nancy J. Smith
- Perennia Food and Agriculture, Bible Hill, NS B4N 1J5, Canada
| | - Margot B. White
- Perennia Food and Agriculture, Bible Hill, NS B4N 1J5, Canada
| |
Collapse
|
21
|
Seaweed Potential in the Animal Feed: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8080559] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seaweed (known as marine algae) has a tradition of being part of the animal feed in the coastal areas, from ancient times. Seaweeds, are mixed with animal feed, because when consumed alone can have negative impact on animals. Thus, seaweeds are very rich in useful metabolites (pigments, carotenoids, phlorotannins, polyunsaturated fatty acids, agar, alginate and carrageenan) and minerals (iodine, zinc, sodium, calcium, manganese, iron, selenium), being considered as a natural source of additives that can substitute the antibiotic usage in various animals. In this review, we describe the nutritional values of seaweeds and the seaweed effects in the seaweed-based animal feed/supplements.
Collapse
|
22
|
Satessa GD, Tamez-Hidalgo P, Kjærulff S, Vargas-Bello-Pérez E, Dhakal R, Nielsen MO. Effects of Increasing Doses of Lactobacillus Pre-Fermented Rapeseed Product with or without Inclusion of Macroalgae Product on Weaner Piglet Performance and Intestinal Development. Animals (Basel) 2020; 10:E559. [PMID: 32230825 PMCID: PMC7222423 DOI: 10.3390/ani10040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of increasing doses of pre-fermented rapeseed meal (FRM) without or with inclusion of the brown macroalgae Ascophyllum nodosum (AN) on weaner piglets' performance and gut development. Ten days pre-weaning, standardized litters were randomly assigned to one of nine isoenergetic and isoproteic diets comprising (on DM basis): no supplement (negative control, NC), 2500 ppm ZnO (positive control, PC), 8, 10, 12, 15 or 25% FRM, and 10% FRM plus 0.6 or 1.0% AN. Fifty piglets receiving the same pre-weaning diets were weaned at 28 days of age and transferred to one pen, where they continued on the pre-weaning diet until day 92. At 41 days, six piglets per treatment were sacrificed for blood and intestinal samplings. The average daily gain was at least sustained at any dose of FRM (increased at 8% FRM, 28-41 days) from 18-41 days similar to PC but unaffected by inclusion of AN. The percentage of piglets that completed the experiment was increased by FRM compared to NC, despite detection of diarrhea symptoms. FRM showed quadratic dose-response effects on colon and mid-jejunum crypts depth, and enterocyte and mid-jejunum villus heights with optimum development at 8% or 10% FRM, respectively, but this was abolished when AN was also added. In conclusion, FRM sustained piglet growth performance and intestinal development similar to ZnO with an optimum inclusion level of 8-10% of dietary DM.
Collapse
Affiliation(s)
- Gizaw Dabessa Satessa
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | | | - Søren Kjærulff
- Fermentationexperts A/S, Vorbassevej 12, DK-6622 Copenhagen, Denmark (S.K.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark; (E.V.-B.-P.); (R.D.)
| | - Mette Olaf Nielsen
- Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
23
|
Satessa GD, Kjeldsen NJ, Mansouryar M, Hansen HH, Bache JK, Nielsen MO. Effects of alternative feed additives to medicinal zinc oxide on productivity, diarrhoea incidence and gut development in weaned piglets. Animal 2020; 14:1638-1646. [PMID: 32100669 DOI: 10.1017/s1751731120000154] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The use of medicinal zinc oxide (ZnO) must be phased out by 2022, thus prompting an urgent need for alternative strategies to prevent diarrhoea in weaner piglets. The objectives of this study were to assess the impact on weaner piglet performance, diarrhoea incidence and gut development, when (1) dietary ZnO supplementation was substituted by alternative commercial products based on macroalgae, specific probiotics or synbiotics, or (2) dietary ZnO inclusion was reduced from 2500 to 1500 ppm. A total of 4680 DLY piglets (DanBred, Herlev, Denmark), weaned around 35 days of age, were randomly assigned according to sex and BW to six different dietary treatment groups. A basal diet was supplemented with no ZnO (NC = negative control), 2500 ppm ZnO (PC = positive control), 1500 ppm ZnO (RDZ = reduced dose of ZnO) or commercial macroalgae (OceanFeed™ Swine = OFS), probiotic Miya-Gold or synbiotic GærPlus products. The piglets entered and exited the weaner unit at ~7.0 and 30 kg BW, respectively. In-feed ZnO was provided the first 10 days post-weaning, while the alternative supplements were fed throughout the weaner period. As expected, the average daily feed intake, average daily weight gain (ADG), feed conversion ratio (FCR) and diarrhoea incidence were improved in the PC compared to NC group (P < 0.05) during phase 1 consistent with improved indices of villi development observed in subgroups of piglets sacrificed 11 days post-weaning. Reduction of ZnO to 1500 ppm lowered ADG (P < 0.05) and slightly increased incidence of diarrhoea during the first 10 days after weaning (but not later) without affecting FCR. None of the three alternative dietary additives, including a 10-fold increased dose of GærPlus than recommended, improved piglet performance, gut health and gut development above that of NC piglets. The OFS piglets sacrificed 11 days after weaning had significantly lower weights of hindgut tissue and contents compared to the PC group, consistent with antimicrobial activity of the product, which was detected from anaerobic in vitro fermentation. In conclusion, dietary ZnO supplementation during the first 10 days post-weaning may be reduced from 2500 to 1500 ppm without major negative implications for weaner piglet performance and health in herds under a high management level. However, none of the alternative dietary supplements were able to improve piglet performance or gut health, when ZnO was omitted from the diet.
Collapse
Affiliation(s)
- G D Satessa
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, FrederiksbergC 1870, Denmark
| | - N J Kjeldsen
- Livestock Innovation, SEGES, Axeltorv 3, CopenhagenV 1609, Denmark
| | - M Mansouryar
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, FrederiksbergC 1870, Denmark
| | - H H Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, FrederiksbergC 1870, Denmark
| | - J K Bache
- Livestock Innovation, SEGES, Axeltorv 3, CopenhagenV 1609, Denmark
| | - M O Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, FrederiksbergC 1870, Denmark
- Department of Animal Science, Faculty of Technology, Aarhus University, Blichers Allé 20, Tjele8830, Denmark
| |
Collapse
|
24
|
Brugger D, Bolduan C, Becker C, Buffler M, Zhao J, Windisch WM. Effects of whole plant brown algae ( Laminaria japonica) on zootechnical performance, apparent total tract digestibility, faecal characteristics and blood plasma urea in weaned piglets. Arch Anim Nutr 2020; 74:19-38. [PMID: 31661317 DOI: 10.1080/1745039x.2019.1672479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/21/2019] [Indexed: 01/10/2023]
Abstract
Two trials were conducted with 48 newly weaned piglets (28 d old) each 8.6 ± 0.05 kg to study how Laminaria japonica plants (LJ) affect zootechnical performance, feed conversion and the apparent total tract digestibility (ATTD) of crude nutrients. All basal diets consisted of cereals, soybean meal, skim milk powder and premixes according to recommendations (no growth promoters or enzymes). For Trial 1, piglets from 16 litters (50% male-castrated, 50% female) were assigned to three treatment groups (n = 16) in a completely randomised block design. Groups received either 2.5% supplementation with sun dried (SD) or drum dried (DD) LJ powder or 2.5% of diatomaceous earth (control). For Trial 2, piglets from 12 litters received either 5% of diatomaceous earth (control) or one of three mixtures of diatomaceous earth + DD LJ powder (3.3%+1.7%, 1.7%+3.3% or 0.0%+5%; n = 12). Data collection included zootechnical performance, faecal consistency, blood plasma urea (Trial 1 and 2) and ATTD (Trial 2). Metabolisable energy (ME) of DD LJ and diets in Trial 2 was estimated using digestible nutrients. Statistical analysis included two-way ANOVA (treatment, block) and mixed linear regression. During both trials, LJ at dosages ≥2.5% significantly reduced feed:gain ratio compared to control (p ≤ 0.0001, = 0.01 for Trial 1, Trial 2) irrespective of the drying method. ATTD from Trial 2 significantly increased digestibilities of dry matter (DM) and crude ash (CA) (p ≤ 0.01) and significantly decreased digestibilities of organic matter and crude fibre in animals fed ≥3.33% DD LJ (p = 0.01). Fractional digestibility of the DD LJ resulted in limited ME of ~9.3 ± 2.5 MJ/kg DM. Dietary conversion ratios of ME and digestible DM of DD LJ diets from Trial 2 decreased linearly with increasing algal supplementation (R2 = 0.93, 0.94 and pslope = 0.002, 0.002 for MCR, DCR). In conclusion, dried LJ powder was included up to 5% into diets without impairing zootechnical performance. The improved feed conversion in the presence of LJ was partly due to slightly higher ME within the algae diets compared to control. However, piglets receiving LJ during Trial 2 needed significantly lower dietary ME and digestible DM to maintain growth performance. Thus, LJ exerted a performance enhancing effect on weaned piglets. The precise mode-of-action is yet unclear.
Collapse
Affiliation(s)
- Daniel Brugger
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carmen Bolduan
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christiane Becker
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Marzell Buffler
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jie Zhao
- Haizhibao Deutschland GmbH, Freising, Germany
| | - Wilhelm M Windisch
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
25
|
Satessa GD, Tamez-Hidalgo P, Hui Y, Cieplak T, Krych L, Kjærulff S, Brunsgaard G, Nielsen DS, Nielsen MO. Impact of Dietary Supplementation of Lactic Acid Bacteria Fermented Rapeseed with or without Macroalgae on Performance and Health of Piglets Following Omission of Medicinal Zinc from Weaner Diets. Animals (Basel) 2020; 10:E137. [PMID: 31952154 PMCID: PMC7023219 DOI: 10.3390/ani10010137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
The feeding of medicinal zinc oxide (ZnO) to weaner piglets will be phased out after 2022 in Europe, leaving pig producers without options to manage post-weaning disorders. This study assessed whether rapeseed meal, fermented alone (FRM) or co-fermented with a single (Ascophylum nodosum; FRMA), or two (A. nodossum and Saccharina latissima; FRMAS) brown macroalagae species, could improve weaner piglet performance and stimulate intestinal development as well as maturation of gut microbiota in the absence of in-feed zinc. Weaned piglets (n = 1240) were fed, during 28-85 days of age, a basal diet with no additives (negative control; NC), 2500 ppm in-feed ZnO (positive control; PC), FRM, FRMA or FRMAS. Piglets fed FRM and FRMA had a similar or numerically improved, respectively, production performance compared to PC piglets. Jejunal villus development was stimulated over NC in PC, FRM and FRMAS (gender-specific). FRM enhanced colon mucosal development and reduced signs of intestinal inflammation. All fermented feeds and PC induced similar changes in the composition and diversity of colon microbiota compared to NC. In conclusion, piglet performance, intestinal development and health indicators were sustained or numerically improved when in-feed zinc was replaced by FRM.
Collapse
Affiliation(s)
- Gizaw D. Satessa
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark;
| | - Paulina Tamez-Hidalgo
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Yan Hui
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Tomasz Cieplak
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Søren Kjærulff
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Grete Brunsgaard
- Fermentationexperts A/S, Vorbassevej 12, 6622 Copenhagen, Denmark; (P.T.-H.); (S.K.); (G.B.)
| | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; (Y.H.); (T.C.); (L.K.); (D.S.N.)
| | - Mette O. Nielsen
- Department of Animal Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
26
|
Corino C, Modina SC, Di Giancamillo A, Chiapparini S, Rossi R. Seaweeds in Pig Nutrition. Animals (Basel) 2019; 9:E1126. [PMID: 31842324 PMCID: PMC6940929 DOI: 10.3390/ani9121126] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/23/2023] Open
Abstract
Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown algae, red algae and green algae, which all have a different chemical composition and bioactive molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans. These bioactive compounds may have several positive effects on health in livestock. In order to reduce the antimicrobials used in livestock, research has recently focused on finding natural and sustainable molecules that boost animal performance and health. The present study thus summarizes research on the dietary integration of seaweeds in swine. In particular the influence on growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities were considered. The review highlights that brown seaweeds seem to be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit further investigation.
Collapse
Affiliation(s)
- Carlo Corino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Silvia Clotilde Modina
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Alessia Di Giancamillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Sara Chiapparini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| |
Collapse
|
27
|
Øverland M, Mydland LT, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:13-24. [PMID: 29797494 PMCID: PMC6585948 DOI: 10.1002/jsfa.9143] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 05/05/2023]
Abstract
Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Margareth Øverland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Liv T Mydland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Anders Skrede
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| |
Collapse
|
28
|
Niu J, Xie JJ, Guo TY, Fang HH, Zhang YM, Liao SY, Xie SW, Liu YJ, Tian LX. Comparison and Evaluation of Four Species of Macro-Algaes as Dietary Ingredients in Litopenaeus vannamei Under Normal Rearing and WSSV Challenge Conditions: Effect on Growth, Immune Response, and Intestinal Microbiota. Front Physiol 2019; 9:1880. [PMID: 30687110 PMCID: PMC6333665 DOI: 10.3389/fphys.2018.01880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
The study was conducted to compare and evaluate effects of four different macro-algaes on growth, immune response, and intestinal microbiota of Litopenaeus vannamei. In the rearing trial 1, shrimp were fed five diets containing four sources of macro-algaes for 8 weeks, named D1 (without macro-algae), D2 (Porphyra haitanensis), D3 (Undaria pinnatifida), D4 (Saccharina japonica), and D5 (Gracilaria lemaneiformis), respectively. Growth performance of shrimp in D5 diet was significantly higher than that of shrimp fed the control and D4 diet (P < 0.05); however, there is no significant difference among D2, D3, and D5 diets (P > 0.05). Apparent digestibility coefficients of dry matter from the D2, D3, and D5 diets were significantly higher than that from the control and D4 diets (P < 0.05). Supplementary macro-algaes enhanced hepatopancreas immunity through positively increasing total antioxidant status (TAS) and prophenoloxidase activity (ProPO), as well as up-regulating the hepatopancreas RNA expression of ProPO and IκBα and down-regulating the expression of transforming growth factor β. Furthermore, dietary macro-algaes modified intestinal microbiota of L. vannamei, boosting the relative abundance of beneficial bacterial such as Bacteroidetes, Firmicutes, and Bacillaceae, and decreasing those detrimental bacterial such as Gammaproteobacteria and Vibrionaceae. In the white spot syndrome virus (WSSV) challenge trial, shrimps were injected for 6-day after the rearing trial. On the fourth day, shrimp death started to occur, and the mortality in D2, D3, and D5 diets was significantly lower than that in control and SJ diets during 4-6 challenged days (P < 0.05). Dietary macro-algaes ameliorated hepatopancreas damage in L. vannamei by increasing TAS and ProPO activities and decreasing SOD activity, inhibiting the lipid peroxidation (malondialdehyde), as well as regulating the immune-related genes expression. Taken together, dietary macro-algaes availably relieved enterohepatic oxidative damage by improving antioxidant ability and immunity and regulated intestinal microbiota in L. vannamei. These results indicated that G. lemaneiformis is the most suitable macro-algae and then followed by U. pinnatifida and P. haitanensis as the feed ingredient for L. vannamei.
Collapse
Affiliation(s)
- Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Yu Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Mei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Wei Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Dong X, Xu Q, Wang C, Zou X, Lu J. Supplemental-coated zinc oxide relieves diarrhoea by decreasing intestinal permeability in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1645673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xinyang Dong
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qianqian Xu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Chao Wang
- College of Animal Sciences & Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiaoting Zou
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Jianjun Lu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
30
|
Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. BIORESOURCE TECHNOLOGY 2018; 267:732-742. [PMID: 30076074 DOI: 10.1016/j.biortech.2018.07.100] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Managing organic waste streams is a major challenge for the agricultural industry. Anaerobic digestion (AD) of organicwastes is a preferred option in the waste management hierarchy, as this processcangenerate renewableenergy, reduce emissions from wastestorage, andproduce fertiliser material.However, Nitrate Vulnerable Zone legislation and seasonal restrictions can limit the use of digestate on agricultural land. In this paper we demonstrate the potential of cultivating microalgae on digestate as a feedstock, either directlyafter dilution, or indirectlyfromeffluent remaining after biofertiliser extraction. Resultant microalgal biomass can then be used to produce livestock feed, biofuel or for higher value bio-products. The approach could mitigate for possible regional excesses, and substitute conventional high-impactproducts with bio-resources, enhancing sustainability withinacircular economy. Recycling nutrients from digestate with algal technology is at an early stage. We present and discuss challenges and opportunities associated with developing this new technology.
Collapse
Affiliation(s)
- William A V Stiles
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK.
| | - David Styles
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK
| | - Stephen P Chapman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK
| | - Sandra Esteves
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Angela Bywater
- University of Southampton, University Road, Southampton, UK
| | - Lynsey Melville
- Centre for Low Carbon Research, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, City Centre Campus, Millennium Point, Birmingham, UK
| | - Alla Silkina
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Ingrid Lupatsch
- AB Agri Ltd, 64 Innovation Way, Peterborough Business Park, Lynchwood, Peterborough, UK
| | | | - Robert Lovitt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | | | - Andy Bull
- Severn Wye Energy Agency, Unit 15, Highnam Business Centre, Highnam, Gloucester, UK
| | - Chris Morris
- Fre-energy Ltd, Lodge Farm, Commonwood, Holt, Wrexham, UK
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
31
|
Wang W, Van Noten N, Degroote J, Romeo A, Vermeir P, Michiels J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2018; 103:231-241. [PMID: 30298533 DOI: 10.1111/jpn.12999] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Zinc oxide (ZnO) supplied at pharmacological dosage in diets of weaned piglets improves growth performance. However, it causes environmental contamination and induces bacterial antibiotic resistance, yet this practice is debated. The effects on gut microbiota and integrity in weaned piglets of conventional ZnO at nutritional and pharmacological dosage (110 and 2,400 mg/kg Zn, respectively) were compared to an alternative ZnO source at 110 and 220 mg/kg Zn. Each of the four treatments was applied to four pens (two piglets/pen; weaning age, 20 days) for 15 days, and piglets were sampled on day 15 to determine indices of gut integrity. Feeding conventional ZnO at 2,400 mg/kg Zn reduced coliforms and Escherichia coli in distal small intestine as compared to conventional ZnO at 110 mg/kg (-1.7 and -1.4 log10 cfu/g, respectively), whereas the alternative ZnO reduced only coliforms, irrespective of dosage (-1.6 to -1.7 log10 cfu/g). Transepithelial electrical resistance of distal small intestinal mucosa was higher for pigs fed the alternative ZnO source as compared with groups fed 110 mg/kg Zn of conventional ZnO, in line with a trend for higher gene expression of claudin-1 and zona occludens-1. Interestingly, the alternative ZnO source at 110 and 220 mg/kg Zn increased intestinal alkaline phosphatase gene transcript as compared to conventional ZnO at 110 mg/kg Zn, whereas the alternative ZnO source at 110 mg/kg Zn exhibited higher Zn concentrations in mucosa (2,520 μg/g) as compared to conventional ZnO at 110 mg/kg Zn (1,211 μg/g). However, assessing alkaline phosphatase activity, no significant effects were found. In conclusion, the alternative ZnO reduced digesta Enterobacteriaceae numbers and improved gut integrity, albeit similar or better, depending on the dosage, to the effects of pharmacological dosage of conventional ZnO.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Pieter Vermeir
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
32
|
Niu J, Xie SW, Fang HH, Xie JJ, Guo TY, Zhang YM, Liu ZL, Liao SY, He JY, Tian LX, Liu YJ. Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response and intestinal microbiota. FISH & SHELLFISH IMMUNOLOGY 2018; 81:135-149. [PMID: 30017927 DOI: 10.1016/j.fsi.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Two trials were conducted to determine the effects of dietary macroalgae Porphyra haitanensis on growth, immunity and intestinal microbiota of Litopenaeus vannamei. In trial 1, shrimp (mean initial wet weight about 0.64 g) were fed with seven diets (P0, P1, P2, P3, P4, P5 and P6) containing 0% (basal diet), 1%, 2%, 3%, 4%, 5% and 6% P. haitanensis in triplicate for 60 days. Growth performance (weight gain, WG; specific growth rate, SGR) of shrimp fed the P4 diet were significantly higher than that of shrimp fed P0, P5 and P6 diets (P < 0.05) but without significant differences with shrimp fed P1-P3 diets (P > 0.05). Hepatopancreas phenoloxidase (PO) activity of shrimp fed the P. haitanensis containing diets was significantly higher than that of shrimp fed the basal diet (P0) (P < 0.05). Total haemocyte count (THC) of shrimp fed basal diet (P0) was significantly lower than that of shrimp fed diets containing P. haitanensis. Our results declared that dietary P. haitanensis supplementation increases the abundance of beneficial bacterials such as Nitrosopumilus, Marinobacter or Bifidobacterium and reduces the abundance of harmful bacterias such as Vibrio, and especially pronounced in P4 diet treatment. In trial 2, a WSSV injection challenge test was conducted for 7-day after the rearing trial and shrimp survival was also compared among treatments. A sudden shrimp death was found from the 4th day, and values of survival of shrimp fed the P3-P4 diets were higher than that of shrimp fed other diets during 4-7 days challenge test. The immune response in trial 2 were characterized by higher superoxide dismutase activity (SOD) and PO activities, lower THC and higher HCT compared to levels found in trial 1. In conclusion, suitable dietary P. haitanensis could enhance the growth performance, antioxidant capacity and alter total bacterial numbers or microbial diversity of L. vannamei and furthermore reduce oxidative stress and immune depression challenged by WSSV injection stress, and the level of P. haitanensis supplemented in the diet should be between 2.51% and 3.14%.
Collapse
Affiliation(s)
- Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shi-Wei Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Tian-Yu Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yan-Mei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhen-Lu Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shi-Yu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ju-Yun He
- Health & Nutrition, Evonik Degussa (China) Co., Ltd., Chaoyang, Beijing, China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
33
|
Englmaierová M, Skřivan M, Skřivanová E, Čermák L. Limestone particle size and Aspergillus niger phytase in the diet of older hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1309258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Michaela Englmaierová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague-Uhrineves, Czech Republic
| | - Miloš Skřivan
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague-Uhrineves, Czech Republic
| | - Eva Skřivanová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague-Uhrineves, Czech Republic
| | - Ladislav Čermák
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague-Uhrineves, Czech Republic
| |
Collapse
|
34
|
Choi Y, Hosseindoust A, Goel A, Lee S, Jha PK, Kwon IK, Chae BJ. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:64-70. [PMID: 27165019 PMCID: PMC5205593 DOI: 10.5713/ajas.16.0102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/29/2016] [Accepted: 04/14/2016] [Indexed: 12/26/2022]
Abstract
Objective In the present study, role of increasing levels of Ecklonia cava (seaweed) supplementation in diets was investigated on growth performance, coefficient of total tract apparent digestibility (CTTAD) of nutrients, serum immunoglobulins, cecal microflora and intestinal morphology of weanling pigs. Methods A total of 200 weaned pigs (Landrace×Yorkshire×Duroc; initial body weight 7.08±0.15 kg) were randomly allotted to 4 treatments on the basis of body weight. There were 5 replicate pens in each treatment including 10 pigs of each. Treatments were divided by dietary Ecklonia cava supplementation levels (0%, 0.05%, 0.1%, or 0.15%) in growing-finishing diets. There were 2 diet formulation phases throughout the experiment. The pigs were offered the diets ad libitum for the entire period of experiment in meal form. Results The pigs fed with increasing dietary concentrations of Ecklonia cava had linear increase (p<0.05) in the overall average daily gain, however, there were no significant differences in gain to feed ratio, CTTAD of dry matter and crude protein at both phase I and phase II. Digestibility of gross energy was linearly improved (p<0.05) in phase II. At day 28, pigs fed Ecklonia cava had greater (linear, p<0.05) Lactobacillus spp., fewer Escherichia coli (E. coli) spp. (linear, p<0.05) and a tendency to have fewer cecal Clostridium spp. (p = 0.077). The total anaerobic bacteria were not affected with supplementation of Ecklonia cava in diets. Polynomial contrasts analysis revealed that villus height of the ileum exhibited a linear increase (p<0.05) in response with the increase in the level of dietary Ecklonia cava. However, villus height of duodenum and jejunum, crypt depth, villus height to crypt depth ratio of different segments of the intestine were not affected. Conclusion The results suggest that Ecklonia cava had beneficial effects on the growth performance, cecal microflora, and intestinal morphology of weanling pigs.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Abdolreza Hosseindoust
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Akshat Goel
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Suhyup Lee
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Pawan Kumar Jha
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ill Kyong Kwon
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Byung-Jo Chae
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
35
|
Makkar HP, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P. Seaweeds for livestock diets: A review. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.09.018] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Fan P, Tan Y, Jin K, Lin C, Xia S, Han B, Zhang F, Wu L, Ma X. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J Anim Physiol Anim Nutr (Berl) 2015; 101:136-146. [PMID: 26717901 DOI: 10.1111/jpn.12427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022]
Abstract
Lipoic acid (LA) is a naturally existing substance which widely distributed in the cellular membranes and cytosol of animal cells. Its intracellular functions include quenching of free radicals and repairing oxidized proteins. The purpose of this study was to evaluate the effects of LA on post-weaning diarrhoea using a rat model. Sixty weaned rats were fed either a basal diet or a LA-supplemented diet, or a zinc oxide (ZnO)-supplemented diet as a positive control. Rats in the LA and ZnO groups had better performance and reduced incidence of diarrhoea (p < 0.05). Both LA and ZnO treatments enhanced intestinal homeostatic and architecture, significantly decreased urinary lactulose to mannitol ratios (p < 0.05) and increased the expression of the intestinal mucosal tight junction proteins occludin (OCLN) and zonula occludens protein-1 (ZO-1) (p < 0.05). LA significantly increased the activities of antioxidant enzymes, and reduced glutathione while decreasing the levels of oxidative glutathione and malondialdehyde in the intestinal mucosa (p < 0.05). Furthermore, an in vitro study indicated that supplementation with LA in IEC-6 intestinal epithelial cells significantly enhanced the expression of OCLN and ZO-1 under hydrogen peroxide-induced oxidative stress. Collectively, these results suggest that LA relieves post-weaning diarrhoea by reducing intestinal permeability and improving antioxidant indices.
Collapse
Affiliation(s)
- P Fan
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - Y Tan
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - K Jin
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - C Lin
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - S Xia
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - B Han
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - F Zhang
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - L Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - X Ma
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China.,Department of Internal Medicine, Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Moroney NC, O'Grady MN, Robertson RC, Stanton C, O'Doherty JV, Kerry JP. Influence of level and duration of feeding polysaccharide (laminarin and fucoidan) extracts from brown seaweed (Laminaria digitata) on quality indices of fresh pork. Meat Sci 2015; 99:132-41. [PMID: 25443973 DOI: 10.1016/j.meatsci.2014.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 11/20/2022]
Abstract
The effect of level (450 or 900 mg laminarin (L) and fucoidan (F) /kg feed) and duration (3 or 6 wks) of feeding a seaweed (Laminaria digitata) extract containing L/F on the quality of pork (longissimus thoracis et lumborum (LTL)) stored in modified atmosphere packs and on organ lipid stability was examined. Mechanisms of L/F antioxidant activity in LTL were evaluated. Plasma total antioxidant status, LTL pH, colour, microbiology and 'eating quality' sensory analysis were unaffected by dietary L/F. 'Visual' sensory descriptors (purchasing appeal and overall visual acceptability) were enhanced (p<0.05) in L/F450-3 LTL. Lipid oxidation was lower (p<0.05) in L/F450-3 and L/F900-3 LTL and reduced in L/F900-6 kidney homogenates. In cooked minced pork, lipid oxidation was not reduced by dietary L/F. Saturated fatty acids were lower (p<0.05) in L/F900-6 LTL. Results indicated L/F in pig diets for 3 weeks enhanced pork quality.
Collapse
Affiliation(s)
- N C Moroney
- Food Packaging Group, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - M N O'Grady
- Food Packaging Group, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - R C Robertson
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Microbiology, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Alimentary Pharmabiotic Centre, Cork, Ireland
| | - J V O'Doherty
- School of Agriculture, Food Science, and Veterinary Medicine, College of Life Sciences, Lyons Research Farm, University College Dublin, Newcastle, Co. Dublin, Ireland
| | - J P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland.
| |
Collapse
|
38
|
Maghin F. Biological Functions and Health Promoting Effects of Brown Seaweeds in Swine Nutrition. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/jdvar.2014.01.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Akbarian A, Michiels J, Golian A, Buyse J, Wang Y, De Smet S. Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils. Poult Sci 2014; 93:1930-41. [PMID: 24931966 DOI: 10.3382/ps.2014-03896] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heat stress in poultry is a serious problem in many countries and has been associated with oxidative stress. Hence, nutritional interventions with antioxidants might be beneficial. Therefore, the effects of dietary Curcuma xanthorrhiza (CX) and Origanum compactum (OC) essential oils on mRNA levels of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of heat-challenged broilers were studied. Starting on d 25 of age, a control diet and 4 diets containing 200 or 400 mg/kg feed of CX or OC (CX200, CX400, OC200, OC400 diets) were fed to 3 pen replicates of 20 Ross 308 chickens each. From d 28 of age on, the temperature was increased from 22 to 34°C with 50% RH for 5 h daily during 2 wk. Dietary CX or OC did not affect zootechnical performance. Feeding CX400 and both levels of OC increased the a* value in stored breast meat (P < 0.05), and OC diets tended to decrease the thiobarbituric acid reactive substances values in fresh breast meat (P = 0.061). Compared with control, at d 31, feeding CX400 and OC400 reduced mRNA levels of heat shock protein 70 and increased mRNA levels of catalase in kidney and liver (P < 0.05). The mRNA levels of superoxide dismutase were increased at d 31 on the OC400 diet in kidney and on the CX400 diet in heart (P < 0.05). In heart, at d 31, both dietary levels of CX and OC200 resulted in higher glutathione peroxidase activity (P < 0.05). Feeding CX400 increased superoxide dismutase activity in liver, kidney, and heart at d 31 (P < 0.05). Catalase activity was increased in the CX200 and OC400 groups at d 42 (P < 0.05). Feeding CX at both levels and OC200 decreased plasma malondialdehyde concentrations at d 42 (P < 0.05). In conclusion, dietary essential oils rich in simple phenolic compounds offer potential for improving the antioxidant defense against heat stress-induced changes.
Collapse
Affiliation(s)
- A Akbarian
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Ghent University, 9090 Melle, Belgium Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran
| | - J Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Ghent University, 9090 Melle, Belgium Department of Applied Biosciences, Ghent University, 9000 Ghent, Belgium
| | - A Golian
- Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, Catholic University Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Y Wang
- Laboratory of Livestock Physiology, Department of Biosystems, Catholic University Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Ghent University, 9090 Melle, Belgium
| |
Collapse
|
40
|
Samara EM, Okab AB, Abdoun KA, El-Waziry AM, Al-Haidary AA. Subsequent influences of feeding intact green seaweed Ulva lactuca to growing lambs on the seminal and testicular characteristics in rams. J Anim Sci 2013; 91:5654-67. [PMID: 24146153 DOI: 10.2527/jas.2013-6719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present experiment was designed to investigate the subsequent influences of supplementing different levels of intact green seaweed Ulva lactuca (0%, 3%, and 5% DM) to growing sexually immature lambs during the growth period (74 d) on the seminal and testicular characteristics of sexually mature rams. Ulva lactuca was manually collected, adequately prepared, and then incorporated into lambs' diets. Eighteen male 3-mo-old lambs of the Awassi breed with a mean BW of 22.57 kg (SD = 1.08) were randomly assigned into treatments. The obtained results indicate that offering Ulva lactuca at the level of 3% or 5% DM to lambs during the growth period had no subsequent impacts (P > 0.05) on liver and kidney functions as well as blood water balance in rams, thereby suggesting that Ulva lactuca can be safely supplemented to lambs during growing. However, our findings point out that feeding a lamb diet supplemented with intact Ulva lactuca failed to demonstrate any subsequent benefit (P > 0.05) on the growth performance, thermoregulatory responses, and plasma oxidative status in rams. Above all, it was clearly evident that supplementing intact Ulva lactuca to lambs had demonstrated subsequent negative influences (P < 0.05) on seminal and testicular characteristics of rams, more noticeably observed at the 5% DM inclusion rate than at 3%. These results were manifested by the inferior (P < 0.05) seminal quality, reduced (P < 0.05) testicular morphometry, changes (P < 0.05) in testicular histopathology, defective (P < 0.05) endocrine signaling, and increased (P < 0.05) seminal oxidative stress in rams fed diets supplemented with Ulva lactuca during the growth period compared to control rams. The deleterious impacts of feeding intact Ulva lactuca on spermatogenesis and germ cell loss were proven to be attributed to the dysfunction of Sertoli cells. Collectively, these results provide novel insights on the subsequent influences of dietary supplementation of intact Ulva lactuca to lambs. The consistent evidence of profound negative impacts on seminal and testicular characteristics as well as the resulting data of no improvement of subsequent growth, thermoregulation, and plasma oxidative status in rams prompts us to tentatively recommend the avoidance of feeding intact Ulva lactuca to lambs.
Collapse
Affiliation(s)
- E M Samara
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|