1
|
Pörtner K, Wilking H, Frank C, Böhmer MM, Stark K, Tappe D. Risk factors for Borna disease virus 1 encephalitis in Germany - a case-control study. Emerg Microbes Infect 2023; 12:e2174778. [PMID: 36748319 PMCID: PMC9980402 DOI: 10.1080/22221751.2023.2174778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In 2018, Borna Disease Virus 1 (BoDV-1) was confirmed as a human zoonotic pathogen causing rare but fatal encephalitis in Germany. While diagnostic procedures and the clinical picture have been described, epidemiology remains mysterious. Though endemic areas and a natural reservoir host have been identified with the shrew Crocidura leucodon shedding virus in secretions, transmission events, routes and risk factors are unclear. We performed the first comprehensive epidemiological study, combining a large case series with the first case-control study: We interviewed family members of 20 PCR-confirmed BoDV-1 encephalitis cases deceased in 1996-2021 with a standardized questionnaire covering medical history, housing environment, profession, animal contacts, outdoor activities, travel, and nutrition. Cases' median age was 51 (range 11-79) years, 12/20 were female, and 18/20 lived in the federal state of Bavaria in Southeastern Germany. None had a known relevant pre-existing medical condition. None of the interviews yielded a transmission event such as direct shrew contact, but peridomestic shrew presence was confirmed in 13 cases supporting environmental transmission. Residency in rural areas endemic for animal BoDV-1 was the common denominator of all cases. A subsequent individually matched case-control study revealed residence close to nature in a stand-alone location or on the fringe of the settlement as a risk factor for disease in multivariable analysis with an adjusted OR of 10.8 (95% CI 1.3-89.0). Other variables including keeping cats were not associated with disease. Targeted prevention, future post-exposure-prophylaxis, and timely diagnosis remain challenging.
Collapse
Affiliation(s)
- Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany,Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany affiliated with the ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden, Kirsten Pörtner Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany; Dennis Tappe Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hendrik Wilking
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Christina Frank
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Merle M. Böhmer
- Department of Infectious Disease Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany,Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus Stark
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Kirsten Pörtner Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany; Dennis Tappe Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
3
|
Sukmak M, Okamoto M, Ando T, Hagiwara K. Genetic stability of the open reading frame 2 (ORF2) of borna disease virus 1 (BoDV-1) distributed in cattle in Hokkaido. J Vet Med Sci 2021; 83:1526-1533. [PMID: 34393150 PMCID: PMC8569879 DOI: 10.1292/jvms.21-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Borna disease virus (BoDV) is a neurotropic virus that causes several infections in
humans and neurological diseases in a wide range of animals worldwide. BoDV-1 has been
molecularly and serologically detected in many domestic and wild animals in Japan;
however, the genetic diversity of this virus and the origin of its infection are not fully
understood. In this study, we investigated BoDV-1 infection and genetic diversity in
samples collected from animals in Hokkaido between 2006 and 2020. The analysis was
performed by focusing on the P region of BoDV-1 for virus detection. The presence of
BoDV-1 RNA was observed in samples of brain tissue and various organs derived from
persistently infected cattle. Moreover, after inoculation, BoDV-positive brains were
isolated from neonatal rats. The gene sequences of the P region of BoDV obtained from the
rat brain were in the same cluster as the P region of the virus isolated from the original
bovine. Thus, genetic variation in BoDV-1 was extremely low. The phylogenetic analysis
revealed that BoDV-1 isolates obtained in this study were part of the same cluster, which
suggested that BoDV-1 of the same cluster was widespread among animals in Hokkaido.
Collapse
Affiliation(s)
- Manakorn Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetseart University.,Kamphaengsaen Veterinary Diagnostic Center (KVDC), Faculty of Veterinary Medicine, Kasetseart University
| | | | - Tastuya Ando
- School of Veterinary Medicine, Rakuno Gakuen University
| | | |
Collapse
|
4
|
Malbon AJ, Dürrwald R, Kolodziejek J, Nowotny N, Kobera R, Pöhle D, Muluneh A, Dervas E, Cebra C, Steffen F, Paternoster G, Gerspach C, Hilbe M. New World camelids are sentinels for the presence of Borna disease virus. Transbound Emerg Dis 2021; 69:451-464. [PMID: 33501762 DOI: 10.1111/tbed.14003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Borna disease (BD), a frequently fatal neurologic disorder caused by Borna disease virus 1 (BoDV-1), has been observed for decades in horses, sheep, and other mammals in certain regions of Europe. The bicoloured white-toothed shrew (Crocidura leucodon) was identified as a persistently infected species involved in virus transmission. Recently, BoDV-1 attracted attention as a cause of fatal encephalitis in humans. Here, we report investigations on BoDV-1-infected llamas from a farm in a BD endemic area of Switzerland, and alpacas from holdings in a region of Germany where BD was last seen in the 1960s but not thereafter. All New World camelids showed apathy and abnormal behaviour, necessitating euthanasia. Histologically, severe non-suppurative meningoencephalitis with neuronal Joest-Degen inclusion bodies was observed. BoDV-1 was confirmed by immunohistology, RT-qPCR, and sequencing in selected animals. Analysis of the llama herd over 20 years showed that losses due to clinically suspected BD increased within the last decade. BoDV-1 whole-genome sequences from one Swiss llama and one German alpaca and-for comparison-from one Swiss horse and one German shrew were established. They represent the first published whole-genome sequences of BoDV-1 clusters 1B and 3, respectively. Our analysis suggests that New World camelids may have a role as a sentinel species for BoDV-1 infection, even when symptomatic cases are lacking in other animal species.
Collapse
Affiliation(s)
- Alexandra J Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Dietrich Pöhle
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Aemero Muluneh
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher Cebra
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Frank Steffen
- Section of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giulia Paternoster
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian Gerspach
- Farm Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Li X, Xia Q, Meng C, Wu H, Huang H, Qian J, Li A, Zhai A, Kao W, Song W, Zhang F. Downregulation of SOCS gene expression can inhibit the formation of acute and persistent BDV infections. Scand J Immunol 2020; 93:e12974. [PMID: 32910495 DOI: 10.1111/sji.12974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/30/2020] [Indexed: 01/18/2023]
Abstract
High expression of suppressors of cytokine signalling (SOCS) has been detected during various viral infections. As a negative feedback regulator, SOCS participates in the regulation of multiple signalling pathways. In this study, to study the related mechanism between SOCS and BDV and to explore the effect of SOCS on IFN pathways in nerve cells, downregulated of SOCS1/3 in oligodendroglial (OL) cells and OL cells persistently infected with BDV (OL/BDV) were constructed with RNA interference technology. An interferon inducer (poly I:C, PIC) and an IFN-α/β R1 antibody were used as stimulation in the SOCS1/3 low-expression cell models, qRT-PCR was used to detect type I IFN and BDV nucleic acid expression, Western blot was used to detect the expression of BDV P40 protein. After BDV acute infection with OL cells which with downregulated SOCS expression, the virus accounting was not detected, and the viral protein expression was lower than that of OL/BDV cells; the OL/BDV cells with downregulated SOCS expression had lower virus nucleic acid and protein expression than OL/BDV cells. Stimulated by IFN-α/β R1 antibody, the expression of type I interferon in OL/BDV cells decreased, and the content of BDV nucleic acid and protein increased, which was higher than that of OL/BDV cells. From the results, it was concluded that downregulating SOCS1/3 can inhibit the formation of acute BDV infection and virus replication in persistent BDV infection by promoting the expression of IFN-α/β and that SOCS can be used as a new target for antiviral therapy.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China.,Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Qing Xia
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Caiyun Meng
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - He Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Qian
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Aimei Li
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Aixia Zhai
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Wenping Kao
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Komatsu Y, Kakuya Y, Tomonaga K. Production of high-titer transmission-defective RNA virus-based episomal vector using tangential flow filtration. Microbiol Immunol 2020; 64:602-609. [PMID: 32644225 DOI: 10.1111/1348-0421.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/01/2022]
Abstract
In recent years, viral vector based in vivo gene delivery strategies have achieved a significant success in the treatment of genetic diseases. RNA virus-based episomal vector lacking viral glycoprotein gene (ΔG-REVec) is a nontransmissive gene delivery system that enables long-term gene expression in a variety of cell types in vitro, yet in vivo gene delivery has not been successful due to the difficulty in producing high titer vector. The present study showed that tangential flow filtration (TFF) can be effectively employed to increase the titer of ΔG-REVec. Concentration and diafiltration of ΔG-REVec using TFF significantly increased its titer without loss of infectious activity. Importantly, intracranial administration of high titer vector enabled persistent transgene expression in rodent brain.
Collapse
Affiliation(s)
- Yumiko Komatsu
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan.,Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research, Kyoto University, Kyoto, Japan
| | - Yoji Kakuya
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
In vivo biodistribution analysis of transmission competent and defective RNA virus-based episomal vector. Sci Rep 2020; 10:5890. [PMID: 32246020 PMCID: PMC7125079 DOI: 10.1038/s41598-020-62630-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 11/14/2022] Open
Abstract
RNA virus-based episomal vector (REVec) is an emerging viral vector system that mediates long-term stable gene expression in variety of cell types in vitro. However, little is known about its tissue tropism and persistence of gene expression in vivo. Here, to evaluate the feasibility of REVec for in vivo gene delivery, we conducted biodistribution analysis of transmission competent REVec and transmission defective ΔG-REVec in Lewis rats. Following intracranial administration of REVec, transgene expression was detected in various tissues. In contrast, transgene expression was only observed in the brain after ΔG-REVec administration. Low levels of vector shedding in the feces and blood and of neutralizing antibody in the serum were detected after REVec injection. In the brain, microglia, astrocytes and neurons were susceptible to REVec-mediated transduction. However, the animals administered with REVec, but not with ΔG-REVec showed a significant decrease in body weight compared to mock treated animals. Additionally, CD8 T cell infiltration was observed in the brain of these animals. In summary, we demonstrated that REVec promotes long-term transgene expression in vivo without causing high vector shedding or neutralizing antibody production; however, suggests the need to attenuate vector associated pathogenicity in the future.
Collapse
|
8
|
Huang H, Zhang H, Li D, Chen S, Zhou C, Li Q, He P, Fang L, Zhang Y, Li X, Zhou J, Sun L, Liu S, Guo Y, Huang Y, Xie P. Different inhibitory effects on the proliferation and apoptosis of human and laboratory Borna disease virus‑infected human neuroblastoma SH‑SY5Y cells in vitro. Mol Med Rep 2017; 17:925-931. [PMID: 29115502 PMCID: PMC5780172 DOI: 10.3892/mmr.2017.8011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic and non‑cytolytic virus, which causes behavioral disorders in a wide range of warm‑blooded species. It is well established that BDV induces neurodegeneration by impairing neurogenesis and interfering with neuronal functioning in the limbic system. In the present study, the potential role of BDV infection in SH‑SY5Y cells was identified, and comparisons of two original BDV strains (the human Hu‑H1 and the laboratory Strain V) were performed to further elucidate the phenotypes of BDV pathogenesis with strain differences. Cell Counting Kit‑8 and flow cytometric analyses revealed that the two BDV strain‑infected groups exhibited marked anti‑proliferation and cell cycle arrest compared with the control group, and the Hu‑H1 strain caused more evident effects. However, the Hu‑H1 strain did not exert effects on the apoptosis of SH‑SH5Y cells, while Strain V led to a marked increase in apoptosis upon initial infection. Western blot analysis confirmed the upregulation of apoptosis regulator BAX protein and the downregulation of apoptosis regulator Bcl‑2 protein caused by the two BDV strains. The results of the present study provided evidence that infection with BDV suppressed SH‑SY5Y cellular functioning and exhibited divergent antiproliferative and apoptotic roles in cells between the two strains. The present study provided an insight for future investigation of strain differences and underlying pathomechanisms.
Collapse
Affiliation(s)
- Hua Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Dan Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shigang Chen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Qi Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng He
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yong Zhang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaomei Li
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jingjing Zhou
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Sun
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Ying Huang
- Institute of Neuroscience and The Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
9
|
Weissenböck H, Bagó Z, Kolodziejek J, Hager B, Palmetzhofer G, Dürrwald R, Nowotny N. Infections of horses and shrews with Bornaviruses in Upper Austria: a novel endemic area of Borna disease. Emerg Microbes Infect 2017. [PMID: 28634359 PMCID: PMC5520313 DOI: 10.1038/emi.2017.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Borna disease, a lethal infection with Borna disease virus-1 (BoDV-1), was diagnosed in four horses from Upper Austria in 2015 and 2016. All cases occurred in winter (two cases in February 2015 and two cases in December 2016), and the maximal distance of the affected stables was 17 km. To demonstrate whether the causative agent was also harbored by its reservoir host, the bicolored white-toothed shrew (Crocidura leucodon), 28 shrews from this geographic area were collected in 2015 and investigated for the presence of BoDV-1. The shrew species were identified according to taxonomic clues and molecular barcodes. Affected horses and all shrews were investigated using histology, immunohistochemistry (IHC) and reverse transcription PCR. The horses exhibited severe nonpurulent encephalitis. Large amounts of BoDV-1 antigen were identified in their CNS. Among the 28 shrews, nine were identified as C. leucodon and 13 as Sorex araneus (Common shrew; Eurasian shrew). Six C. leucodon (66.7%) and one S. araneus (7.7%) had BoDV-1 infections. In accordance with previous findings, the IHC of C. leucodon exhibited a high amount of viral antigen in many neural and extraneural tissues. By contrast, the single positive S. araneus had an exclusively neural staining pattern. Of all positive samples, whole-genome BoDV-1 sequences were generated. The acquired sequences of the affected shrews were not identical to each other and clustered around the sequences of the diseased horses belonging, surprisingly, to the German ‘strain V’ cluster.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control Mödling, Austrian Agency for Health and Food Safety (AGES), Mödling A-2340, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Barbara Hager
- Veterinary Practice St. Agatha, St. Agatha A-4084, Austria
| | | | - Ralf Dürrwald
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai 505055, United Arab Emirates
| |
Collapse
|
10
|
Kuhn JH, Dürrwald R, Bào Y, Briese T, Carbone K, Clawson AN, deRisi JL, Garten W, Jahrling PB, Kolodziejek J, Rubbenstroth D, Schwemmle M, Stenglein M, Tomonaga K, Weissenböck H, Nowotny N. Taxonomic reorganization of the family Bornaviridae. Arch Virol 2015; 160:621-32. [PMID: 25449305 PMCID: PMC4315759 DOI: 10.1007/s00705-014-2276-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Knowledge of bornaviruses has expanded considerably during the last decade. A possible reservoir of mammalian Borna disease virus has been identified, divergent bornaviruses have been detected in birds and reptiles, and endogenous bornavirus-like elements have been discovered in the genomes of vertebrates of several species. Previous sequence comparisons and alignments have indicated that the members of the current family Bornaviridae are phylogenetically diverse and are not adequately classified in the existing bornavirus taxonomy supported by the International Committee on Taxonomy of Viruses (ICTV). We provide an update of these analyses and describe their implications for taxonomy. We propose retaining the family name Bornaviridae and the genus Bornavirus but reorganizing species classification. PAirwise Sequence Comparison (PASC) of bornavirus genomes and Basic Local Alignment Search Tool (BLAST) comparison of genomic and protein sequences, in combination with other already published phylogenetic analyses and known biological characteristics of bornaviruses, indicate that this genus should include at least five species: Mammalian 1 bornavirus (classical Borna disease virus and divergent Borna disease virus isolate No/98), Psittaciform 1 bornavirus (avian/psittacine bornaviruses 1, 2, 3, 4, 7), Passeriform 1 bornavirus (avian/canary bornaviruses C1, C2, C3, LS), Passeriform 2 bornavirus (estrildid finch bornavirus EF), and Waterbird 1 bornavirus (avian bornavirus 062CG). This classification is also in line with biological characteristics of these viruses and their vertebrate hosts. A snake bornavirus, proposed to be named Loveridge's garter snake virus 1, should be classified as a member of an additional species (Elapid 1 bornavirus), unassigned to a genus, in the family Bornaviridae. Avian bornaviruses 5, 6, MALL, and another "reptile bornavirus" ("Gaboon viper virus") should stay unclassified until further information becomes available. Finally, we propose new virus names and abbreviations when necessary to achieve clear differentiation and unique identification.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | | | - Yīmíng Bào
- Information Engineering Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Anna N. Clawson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Joseph L. deRisi
- Departments of Medicine, Biochemistry and Biophysics, and Microbiology, University of California, San Francisco, CA, USA
| | - Wolfgang Garten
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jolanta Kolodziejek
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dennis Rubbenstroth
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Keizo Tomonaga
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
11
|
Landscape features and reservoir occurrence affecting the risk for equine infection with Borna disease virus. J Wildl Dis 2014; 49:860-8. [PMID: 24502713 DOI: 10.7589/2012-10-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Borna disease (BD) is a severe endemic and fatal disorder caused by the neurotropic Borna disease virus (BDV) which mainly occurs in horses and sheep. Borna disease virus belongs to the order Mononegavirales, which includes many reservoir-bound viruses with high zoonotic and pathogenic properties including the filoviruses and lyssaviruses. Clinically manifest BD occurs in endemic areas of Germany, Switzerland, Liechtenstein, and Austria. A seasonal accumulation of cases in spring and summer, incidences that vary from year to year, and the recent detection of BDV in bicolored shrews (Crocidura leucodon) in Swiss endemic areas argue for a natural reservoir. We established a geographic information system analysis of the distribution of 485 equine BD cases in Bavarian (Germany) endemic areas and of the occurrence of 285 records of C. leucodon captured in Bavaria. Boosted regression trees were used to identify driving factors of habitat choice and virus prevalence. The distribution model of C. leucodon and the prevalence model for BDV had very good accuracy. Mean annual precipitation <900 mm, mean annual temperatures of 8 C, elevation <350 m, low forest cover, and a high percentage of urban fabric and arable land describe the optimal habitat for C. leucodon. Occurrence probability of C. leucodon was significantly higher in Bavarian BDV-endemic areas than in random areas in Bavaria. The prevalence of BD was higher in urban areas with annual mean precipitation of 800-900 mm, annual mean temperature of 8 C, and elevation >500 m. Our results indicate that the distribution model can accurately predict BD occurrence. Based on these results, practical safety precautions could be derived. The BDV model represents a suitable system for reservoir-bound, neurotropic Mononegavirales because it allows analyzing ecologic and biologic aspects that determine virus abundance, maintenance in reservoir species, and transmission to end host species.
Collapse
|
12
|
The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus. PLoS One 2014; 9:e93659. [PMID: 24699636 PMCID: PMC3974811 DOI: 10.1371/journal.pone.0093659] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Borna disease (BD) is a sporadic neurologic disease of horses and sheep caused by mammalian Borna disease virus (BDV). Its unique epidemiological features include: limited occurrence in certain endemic regions of central Europe, yearly varying disease peaks, and a seasonal pattern with higher disease frequencies in spring and a disease nadir in autumn. It is most probably not directly transmitted between horses and sheep. All these features led to the assumption that an indigenous virus reservoir of BDV other than horses and sheep may exist. The search for such a reservoir had been unsuccessful until a few years ago five BDV-infected shrews were found in a BD-endemic area in Switzerland. So far, these data lacked further confirmation. We therefore initiated a study in shrews in endemic areas of Germany. Within five years 107 shrews of five different species were collected. BDV infections were identified in 14 individuals of the species bicolored white-toothed shrew (Crocidura leucodon, HERMANN 1780), all originating from BD-endemic territories. Immunohistological analysis showed widespread distribution of BDV antigen both in the nervous system and in epithelial and mesenchymal tissues without pathological alterations. Large amounts of virus, demonstrated by presence of viral antigen in epithelial cells of the oral cavity and in keratinocytes of the skin, may be a source of infection for natural and spill-over hosts. Genetic analyses reflected a close relationship of the BDV sequences obtained from the shrews with the regional BDV cluster. At one location a high percentage of BDV-positive shrews was identified in four consecutive years, which points towards a self-sustaining infection cycle in bicolored white-toothed shrews. Analyses of behavioral and population features of this shrew species revealed that the bicolored white-toothed shrew may indeed play an important role as an indigenous host of BDV.
Collapse
|
13
|
Zhang L, Xu MM, Zeng L, Liu S, Liu X, Wang X, Li D, Huang RZ, Zhao LB, Zhan QL, Zhu D, Zhang YY, Xu P, Xie P. Evidence for Borna disease virus infection in neuropsychiatric patients in three western China provinces. Eur J Clin Microbiol Infect Dis 2013; 33:621-7. [PMID: 24170181 DOI: 10.1007/s10096-013-1996-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect a wide variety of vertebrate species from birds and primates to humans. Several studies have been carried out to investigate whether BDV is associated with neuropsychiatric diseases. However, this association is still inconclusive. Two panels of subjects consisting of 1,679 various neuropsychiatric patients and healthy people from three western China provinces were enrolled in this study. BDV p24 or p40 RNA in peripheral blood mononuclear cells (PBMCs) were detected in the first panel of 1,481 subjects using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and cerebrospinal fluid (CSF) samples from the BDV RNA-positive individuals were subjected to BDV p24 antibodies testing by enzyme-linked immunosorbent assay (ELISA). BDV p24 or p40 RNA in PBMCs and p24 antibodies in plasma were detected in the second panel of 198 subjects by RT-qPCR and Western blot. A higher prevalence for BDV RNA was demonstrated in patients with viral encephalitis (6.70%), Guillain-Barré syndrome (6.70%), schizophrenia (9.90%) and chronic fatigue syndrome (CFS) (12.70%) compared to healthy controls in the first panel. CSF p24 antibodies were demonstrated in three viral encephalitis patients, two schizophrenia patients and two major depressive disorder (MDD) patients. The prevalences of p24 antibodies in plasma from patients with viral encephalitis (13.24%), multiple sclerosis (25.00%) and Parkinson's disease (22.73%) were significantly higher than healthy controls. This study demonstrates that BDV infection also exists in humans from three western China provinces, and suggests the involvement of the contribution of BDV in the aetiology of Chinese patients with some neuropsychiatric disorders, including viral encephalitis, schizophrenia, CFS, multiple sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- L Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, 400016, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Bornaviridae is an enveloped animal virus carrying an 8.9 kb non-segmented, negative-strand RNA genome. The genus bornavirus contains two members infecting vertebrates, Borna disease virus (BDV) and avian bornavirus (ABV), which could preferably infect the nervous systems. BDV causes classical Borna disease, a progressive meningoencephalomyelitis, in horses and sheep, and ABV is known to induce proventricular dilatation disease, a fatal disease characterized by a lymphocytic, plasmacytic inflammation of central and peripheral nervous tissues, in multiple avian species. Recent evidences have demonstrated that bornavirus is unique among RNA viruses as they not only establish a long-lasting, persistent infection in the nucleus, but also integrate their own DNA genome copy into the host chromosome. In this review, I outline the recent knowledge about the unique virological characteristics of bornaviruses, as well as the diseases caused by the infection of BDV and ABV.
Collapse
Affiliation(s)
- Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University
| |
Collapse
|
15
|
Intracerebral Borna disease virus infection of bank voles leading to peripheral spread and reverse transcription of viral RNA. PLoS One 2011; 6:e23622. [PMID: 21935357 PMCID: PMC3174072 DOI: 10.1371/journal.pone.0023622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/21/2011] [Indexed: 12/17/2022] Open
Abstract
Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV), as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus). In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional BDV-endemic areas, can serve as a viral host; we therefore explored whether this species can be infected with BDV, and if so, how the virus spreads and whether viral RNA is transcribed into DNA in vivo.We infected neonate bank voles intracerebrally with BDV and euthanized them 2 to 8 weeks post-infection. Specific Ig antibodies were detectable in 41%. Histological evaluation revealed no significant pathological alterations, but BDV RNA and antigen were detectable in all infected brains. Immunohistology demonstrated centrifugal spread throughout the nervous tissue, because viral antigen was widespread in peripheral nerves and ganglia, including the mediastinum, esophagus, and urinary bladder. This was associated with viral shedding in feces, of which 54% were BDV RNA-positive, and urine at 17%. BDV nucleocapsid gene DNA occurred in 66% of the infected voles, and, surprisingly, occasionally also phosphoprotein DNA. Thus, intracerebral BDV infection of bank vole led to systemic infection of the nervous tissue and viral excretion, as well as frequent reverse transcription of the BDV genome, enabling genomic integration. This first experimental bornavirus infection in wild mammals confirms the recent findings regarding bornavirus DNA, and suggests that bank voles are capable of bornavirus transmission.
Collapse
|
16
|
Dürrwald R, Kolodziejek J, Herzog S, Nowotny N. Meta-analysis of putative human bornavirus sequences fails to provide evidence implicating Borna disease virus in mental illness. Rev Med Virol 2007; 17:181-203. [PMID: 17342788 DOI: 10.1002/rmv.530] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All Borna disease virus (BDV) sequences derived from human specimens published till date were thoroughly analysed and compared to sequences of BDV laboratory strains and to BDV sequences from animals which succumbed to classical Borna disease (BD). Despite high sequence conservation of the BDV genome, animal-derived BDV sequences clustered according to their geographic origin. However, in marked contrast, human-derived BDV sequences did not cluster according to their geographic origin but showed high sequence identities to BDV laboratory strains and animal-derived BDVs handled in the laboratories reporting the human strains. Japanese, US, Australian and French human-derived BDV sequences proved to be identical or very similar to animal-derived BDV sequences from Germany, although the human specimens were collected hundreds to thousands of miles away from the central European BD endemic regions. These findings suggest that previous studies linking BDV to human neuropsychiatric disease may have been compromised by inadvertent sample contamination.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Impfstoffwerk Dessau-Tornau GmbH (IDT), Rodleben, Germany
| | | | | | | |
Collapse
|
17
|
Dürrwald R, Kolodziejek J, Muluneh A, Herzog S, Nowotny N. Epidemiological pattern of classical Borna disease and regional genetic clustering of Borna disease viruses point towards the existence of to-date unknown endemic reservoir host populations. Microbes Infect 2006; 8:917-29. [PMID: 16469519 DOI: 10.1016/j.micinf.2005.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Classical Borna disease (cBD), a non-purulent encephalitis of solipeds and sheep, is endemic in certain areas of central Europe. The etiologic agent is Borna disease virus (BDV), thus far the only member of the family Bornaviridae. Based on epidemiological patterns of cBD and recent phylogenetic findings this review hypothesizes the possible existence of yet unknown BDV reservoir host populations, and analyzes critically BDVs from outside endemic regions.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Impfstoffwerk Dessau-Tornau GmbH (IDT), Streetzer Weg 15a, D-06862 Rodleben, Germany
| | | | | | | | | |
Collapse
|
18
|
Volmer R, Bajramovic JJ, Schneider U, Ufano S, Pochet S, Gonzalez-Dunia D. Mechanism of the antiviral action of 1-beta-D-arabinofuranosylcytosine on Borna disease virus. J Virol 2005; 79:4514-8. [PMID: 15767452 PMCID: PMC1061581 DOI: 10.1128/jvi.79.7.4514-4518.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus that causes neurological diseases in a variety of warm-blooded animal species. Recently, we showed that the nucleoside analog 1-beta-D-arabinofuranosylcytosine (Ara-C) was a potent inhibitor of BDV. This finding was surprising for an RNA virus, since Ara-C is a DNA polymerase inhibitor. Thus, we sought to better define the mechanism of action of Ara-C on BDV. Here, we show that (i) this effect is specific for an arabinoside ring carrying a cytosine base, (ii) it requires phosphorylation of the nucleotide, and (iii) it can be reversed by an excess of cytidine. Using the recently described minigenome assay for BDV, we provide evidence suggesting that Ara-C may act as a competitive inhibitor of the BDV replication complex.
Collapse
|
19
|
Abstract
This article focuses on human Borna disease virus (BDV) infections, most notably on the development of valid diagnostic systems, which have arisen as a major research issue in the past decade. The significance of a novel modular triple enzyme-linked immunosorbent assay that is capable of specifically measuring anti-BDV antibodies as well as major structural proteins N (p40) and P (p24) in the blood, either as free antigens in the plasma or as antibody-bound circulating immune complexes (CICs), is explained. The impact of CICs and plasma antigen, which indicate periods of antigenemia in the course of BDV infection, along with other infection markers that are still in use is discussed. The review further provides new insight into possible links of BDV to human diseases, summarizing cross-sectional and longitudinal data which correlate acute depression with the presence and amount of antigen and CICs. Moreover, BDV prevalence in healthy people is reevaluated, suggesting that this was previously underestimated. Antiviral efficacy of amantadine, in vivo and in vitro, is outlined as well, with emphasis on wild-type (human and equine) versus laboratory strains. Finally, the pros and cons of the association of BDV with human disease, as detailed in the literature, are critically discussed and related to our data and concepts. This article supports existing correlative evidence for a pathogenic role of BDV infection in particular human mental disorders, in analogy to what has been proven for a variety of animal species.
Collapse
Affiliation(s)
- Liv Bode
- Project Bornavirus Infections, Robert Koch Institute, 13353 Berlin, Germany
| | | |
Collapse
|
20
|
Vahlenkamp TW, Konrath A, Weber M, Müller H. Persistence of Borna disease virus in naturally infected sheep. J Virol 2002; 76:9735-43. [PMID: 12208952 PMCID: PMC136490 DOI: 10.1128/jvi.76.19.9735-9743.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To get an insight into Borna disease virus (BDV) epidemiology, an isolated flock of approximately 25 sheep within the region of Southeast Germany to which the disease is endemic was investigated over a 3-year observation period. BDV-specific antibodies and RNA in peripheral blood mononuclear cells were detected in 12.5 (year 1), 11.5 (year 2), and 19.4% (year 3) and 1.6 (year 1), 0 (year 2), and 14.9% (year 3) of the animals, respectively. BDV persisted in asymptomatic sheep for up to 2 years. Significantly higher numbers of antibody-positive animals were detected seasonally in spring and early summer, the times when usually most of the clinical cases of Borna disease occur. In spring of the third year, numbers of antibody-positive and viral-RNA-positive animals increased significantly despite their having no obvious clinical symptoms. The removal of all antibody- and RNA-positive animals from the flock did not reduce the prevalence of BDV infections in the following year. During a 3-month observation period of three antibody-positive animals, viral RNA was repeatedly detected by reverse transcription-PCR in nasal secretions, saliva, and conjunctival fluids. Sequence analysis revealed clustered nucleotide exchanges among sheep BDV p24 genomes, which differed at five positions from the clustered nucleotide exchanges seen in horse BDV p24 genomes.
Collapse
Affiliation(s)
- Thomas W Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
21
|
Bajramovic JJ, Syan S, Brahic M, de la Torre JC, Gonzalez-Dunia D. 1-beta-D-arabinofuranosylcytosine inhibits borna disease virus replication and spread. J Virol 2002; 76:6268-76. [PMID: 12021360 PMCID: PMC136237 DOI: 10.1128/jvi.76.12.6268-6286.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that causes neurological diseases in a variety of warm-blooded animal species. There is general consensus that BDV can also infect humans, being a possible zoonosis. Although the clinical consequences of human BDV infection are still controversial, experimental BDV infection is a well-described model for human neuropsychiatric diseases. To date, there is no effective treatment against BDV. In this paper, we demonstrate that the nucleoside analog 1-beta-D-arabinofuranosylcytosine (Ara-C), a known inhibitor of DNA polymerases, inhibits BDV replication. Ara-C treatment inhibited BDV RNA and protein synthesis and prevented BDV cell-to-cell spread in vitro. Replication of other negative-strand RNA viruses such as influenza virus or measles virus was not inhibited by Ara-C, underscoring the particularity of the replication machinery of BDV. Strikingly, Ara-C treatment induced nuclear retention of viral ribonucleoparticles. These findings could not be attributed to known effects of Ara-C on the host cell, suggesting that Ara-C directly inhibits the BDV polymerase. Finally, we show that Ara-C inhibits BDV replication in vivo in the brain of infected rats, preventing persistent infection of the central nervous system as well as the development of clinical disease. These findings open the way to the development of effective antiviral therapy against BDV.
Collapse
Affiliation(s)
- Jeffrey J. Bajramovic
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France, Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037
| | - Sylvie Syan
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France, Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037
| | - Michel Brahic
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France, Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037
| | - Juan Carlos de la Torre
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France, Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037
| | - Daniel Gonzalez-Dunia
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France, Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037
- Corresponding author. Mailing address: Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris, France. Phone: 33-1-4568 8771. Fax: 33-1-4061 3167. E-mail:
| |
Collapse
|
22
|
Okamoto M, Furuoka H, Hagiwara K, Kamitani W, Kirisawa R, Ikuta K, Taniyama H. Borna disease in a heifer in Japan. Vet Rec 2002; 150:16-8. [PMID: 11817858 DOI: 10.1136/vr.150.1.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M Okamoto
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Dauphin G, Legay V, Sailleau C, Smondack S, Hammoumi S, Zientara S. Evidence of Borna disease virus genome detection in French domestic animals and in foxes (Vulpes vulpes). J Gen Virol 2001; 82:2199-2204. [PMID: 11514730 DOI: 10.1099/0022-1317-82-9-2199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is an enveloped, non-segmented negative-stranded RNA virus which belongs to the Bornaviridae family. BDV is an aetiological agent of encephalitis in horses, sheep and several other vertebrate species. In order to extend our knowledge about the presence of BDV in France, a study based on BDV RNA detection by RT-nested-PCR was done with 196 animal tissues: 171 brain samples collected from different animal species (75 horses, 59 foxes, 31 cattle, 4 dogs, 1 sheep, 1 roe deer) and 25 horse blood samples. An RNA internal standard molecule was constructed and was co-amplified with the test template. This study reports the first detection of BDV RNA in France in 10 brain samples collected from horses, foxes and cattle, and from 14 horse blood samples. Detection of the BDV genome in the brains of six red foxes is the first evidence of BDV infection in this species.
Collapse
Affiliation(s)
- G Dauphin
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| | - V Legay
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| | - C Sailleau
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| | - S Smondack
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| | - S Hammoumi
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| | - S Zientara
- AFSSA Alfort, 22 rue Pierre Curie, 94703 Maisons-Alfort cedex, France1
| |
Collapse
|
24
|
Taniyama H, Okamoto M, Hirayama K, Hagiwara K, Kirisawa R, Kamitani W, Tsunoda N, Ikuta K. Equine Borna disease in Japan. Vet Rec 2001; 148:480-2. [PMID: 11334075 DOI: 10.1136/vr.148.15.480] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- H Taniyama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Borna disease virus (BDV) is unique amongst animal RNA viruses in its molecular biology and capacity to cause persistent, noncytolytic CNS-infection in a wide variety of host species. Unlike other non-segmented negative-strand RNA animal viruses, BDV replicates in the nucleus of the host cell where splicing is employed for expression of a very compact genome. Epidemiological studies indicate a broad host range and geographical distribution, and some investigators have proposed that human infection may result in neuropsychiatric disorders. Experimental Borna disease in neonatal and adult rats provides an intriguing model for immune-mediated disturbances of brain development and function.
Collapse
Affiliation(s)
- Ingo Jordan
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| | - W. Ian Lipkin
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| |
Collapse
|
26
|
Abstract
For Central European veterinarians, Borna disease (BD) has been known for a long time as a sporadically occurring, progressive viral polioencephalomyelitis predominantly affecting horses and sheep and-as discovered in the last decade-an increasing number of domestic and zoo animals. The aetiological agent, the Borna disease virus (BDV), a negative-sense, single-stranded RNA virus classified in the new virus family Bornaviridae within the order Mononegavirales, can induce severe clinical signs typically of a viral encephalitis with striking behavioural disturbances. After an incubation period lasting a few weeks to several months, BDV-infection causes locomotor and sensory dysfunctions followed by paralysis and death. Natural infections seem to be subclinical in most cases. BD received world-wide attention when it was reported that sera and/or cerebrospinal fluids from neuro-psychiatric patients can contain BDV-specific antibodies. Since infected animals produce BDV-specific antibodies only after virus replication, it was assumed that the broad spectrum of BDV-susceptible species also includes man. However, reports describing the presence of other BDV-markers, i.e. BDV-RNA or BDV-antigen, in peripheral blood leukocytes or brain tissue of neuro-psychiatric patients are highly controversial and, therefore, the role of BDV in human neuro-psychiatric disorders is questionable. (c) 2001 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- J A Richt
- Institut für Virologie, Frankfurterstrasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
27
|
Formella S, Jehle C, Sauder C, Staeheli P, Schwemmle M. Sequence variability of Borna disease virus: resistance to superinfection may contribute to high genome stability in persistently infected cells. J Virol 2000; 74:7878-83. [PMID: 10933695 PMCID: PMC112318 DOI: 10.1128/jvi.74.17.7878-7883.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of Borna disease virus (BDV) shows extraordinary stability in persistently infected cell cultures. We performed bottleneck experiments in which virus populations from single infected cells were allowed to spread through cultures of uninfected cells and in which RNase protection assays were used to identify virus variants with mutations in a 535-nucleotide fragment of the M-G open reading frames. In one of the cell cultures, the major virus species (designated 2/1) was a variant with two point mutations in the G open reading frame. When fresh cells were infected with a low dose of a virus stock prepared from 2/1-containing cells, only a minority of the resulting persistently infected cultures contained detectable levels of the variant, whereas the others all seemed to contain wild-type virus. The BDV variant 2/1 remained stable in the various persistently infected cell cultures, indicating that the cells were resistant to superinfection by wild-type virus. Indeed, cells persistently infected with prototype BDV He/80 were also found to resist superinfection with strain V and vice versa. Our screen for mutations in the viral M and G genes of different rat-derived BDV virus stocks revealed that only one of four stocks believed to contain He/80 harbored virus with the original sequence. Two stocks mainly contained a novel virus variant with about 3% sequence divergence, whereas the fourth stock contained a mixture of both viruses. When the mixture was inoculated into the brains of newborn mice, the novel variant was preferentially amplified. These results provide evidence that the BDV genome is mutating more frequently than estimated from its invariant appearance in persistently infected cell cultures and that resistance to superinfection might strongly select against novel variants.
Collapse
Affiliation(s)
- S Formella
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Staeheli P, Sauder C, Hausmann J, Ehrensperger F, Schwemmle M. Epidemiology of Borna disease virus. J Gen Virol 2000; 81:2123-2135. [PMID: 10950968 DOI: 10.1099/0022-1317-81-9-2123] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter Staeheli
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany1
| | - Christian Sauder
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany1
| | - Jürgen Hausmann
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany1
| | - Felix Ehrensperger
- Institut für Veterinärpathologie, University of Zürich, Winterthurerstr. 266a, CH-8057 Zürich, Switzerland2
| | - Martin Schwemmle
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany1
| |
Collapse
|
29
|
Nowotny N, Kolodziejek J, Jehle CO, Suchy A, Staeheli P, Schwemmle M. Isolation and characterization of a new subtype of Borna disease virus. J Virol 2000; 74:5655-8. [PMID: 10823873 PMCID: PMC112053 DOI: 10.1128/jvi.74.12.5655-5658.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the causative agent of severe meningoencephalitis in a wide variety of animal species, has been considered to be genetically invariable and to form a single type within the genus Bornavirus of the family Bornaviridae. BDV infections are of particular interest, because for the first time a virus infection appears to be linked to human psychiatric disorders. We now describe a new subtype of BDV isolated from a horse which was euthanatized due to severe, incurable neurological disease. The nucleotide sequence of this new strain, named No/98, differs from the reference strains by more than 15%, and the subtype is difficult to detect by standard reverse transcriptase PCR protocols. The nucleotide exchanges of the novel BDV isolate have surprisingly little effect on the primary structures of most viral proteins, with the notable exception of the X protein (p10), which is only 81% identical to its counterpart in reference strains. Our data indicate that the genome of BDV is far more variable than previously assumed and that naturally occurring subtypes may escape detection by currently used diagnostic assays.
Collapse
Affiliation(s)
- N Nowotny
- Institute of Virology, University of Veterinary Sciences, Vienna, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Hagiwara K, Kamitani W, Takamura S, Taniyama H, Nakaya T, Tanaka H, Kirisawa R, Iwai H, Ikuta K. Detection of Borna disease virus in a pregnant mare and her fetus. Vet Microbiol 2000; 72:207-16. [PMID: 10727831 DOI: 10.1016/s0378-1135(99)00206-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pregnant mare showing pyrexia, reduced appetite, ataxia and paresis was euthanized and examined for the presence of Borna disease virus (BDV). Her brain, showing multiple neuronal degeneration and necrosis with hemorrhage, and the histologically normal brain of the fetus were both positive for BDV RNA. The BDV nucleotide sequences were identical in the mare and fetus in the second open reading frame (ORF). This is the first report of the possible vertical transmission of BDV in a horse.
Collapse
Affiliation(s)
- K Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- H Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
Weissenböck H, Nowotny N, Caplazi P, Kolodziejek J, Ehrensperger F. Borna disease in a dog with lethal meningoencephalitis. J Clin Microbiol 1998; 36:2127-30. [PMID: 9650982 PMCID: PMC105002 DOI: 10.1128/jcm.36.7.2127-2130.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A dog was euthanatized because of progressive neurological signs. Histologically, a nonsuppurative meningoencephalitis was found. By immunohistochemistry, in situ hybridization, and nested PCR procedures, Borna disease virus (BDV) antigen and BDV-specific RNA were demonstrated in brain tissues of the dog. The nucleotide sequence of the PCR product showed 94 to 98% homology to published BDV sequences. This is the first description of Borna disease in a dog.
Collapse
Affiliation(s)
- H Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | |
Collapse
|
33
|
Sauder C, de la Torre JC. Sensitivity and reproducibility of RT-PCR to detect Borna disease virus (BDV) RNA in blood: implications for BDV epidemiology. J Virol Methods 1998; 71:229-45. [PMID: 9626956 DOI: 10.1016/s0166-0934(98)00005-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borna disease virus (BDV) infection of domestic animals and humans appears to have a worldwide distribution. There is evidence suggesting an association of BDV with certain psychiatric disorders. However, more comprehensive epidemiological studies are required to establish rigorously a link between BDV and human mental disorders, and to evaluate the role of carrier animals as potential source of BDV for human infection. The use of RT-PCR to detect BDV RNA in peripheral blood mononuclear cells (PBMCs) of infected individuals is a powerful tool to address these questions. The comparison of discrepant results reported by different investigators using this approach is hampered by the lack of controls to assess the sensitivity and reproducibility of the assays. Procedures are now described that allow the establishment of standardized controls to evaluate the performance of the RT-PCR assays. This RT-PCR assay detected reproducibly 100 copies of BDV p40 RNA in 5 microg of RNA. The data illustrate that the number of PBMCs used for RNA preparation, rather than the amount of RNA, has a critical influence on the outcome of the RT-PCR assay. Evidence is provided that levels of BDV in blood do not necessarily reflect viral load in brain.
Collapse
Affiliation(s)
- C Sauder
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
Stoyloff R, Strecker A, Bode L, Franke P, Ludwig H, Hucho F. The glycosylated matrix protein of Borna disease virus is a tetrameric membrane-bound viral component essential for infection. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:252-7. [PMID: 9210491 DOI: 10.1111/j.1432-1033.1997.t01-2-00252.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Borna disease virus (BDV) is representative of the family of Bornaviridae in the order Mononegavirales (negative-stranded, non-segmented, enveloped RNA viruses). It is the causal agent for Borna disease, characterized as an encephalomyelitis (typical form) in a wide variety of domestic animals (from rodents to birds). Recent information shows the involvement of BDV in the pathogenesis of some human psychiatric disorders. The 8.9-kb viral antigenome codes for five major ORF. The third ORF codes for a 16-kDa protein (matrix protein) that is posttranslationally modified, yielding an N-linked glycoprotein. Our data show that the glycosylated matrix protein exists as a stable tetrameric structure detectable either by electrospray ionization or matrix-assisted laser-desorption ionization mass spectrometry. Under native conditions, the tetramer, with a relative molecular mass of 68 kDa, was isolated from a sediment-free brain suspension of a BDV-infected horse. The 68-kDa entity is stable in the presence of ionic and nonionic detergents but dissociates into subunits when heated. We found that the tetrameric matrix protein inhibits in vitro BDV infection in a dose-dependent manner. In contrast to inhibition of BDV infection with hydrophobic carbohydrate derivatives and protein-bound glycoconjugates, the glycosylated matrix protein is a very potent inhibitor of BDV infection, indicating that this protein represents an essential virus-specific membrane component for viral attachment.
Collapse
Affiliation(s)
- R Stoyloff
- Institut für Virologie, Freie Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|