1
|
Nagwani AK, Melosik I, Kaczmarek Ł, Kmita H. Recovery from anhydrobiosis in the tardigrade Paramacrobiotus experimentalis: Better to be young than old and in a group than alone. Heliyon 2024; 10:e26807. [PMID: 38434295 PMCID: PMC10907786 DOI: 10.1016/j.heliyon.2024.e26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Desiccation-tolerant organisms can survive dehydration in a state of anhydrobiosis. Tardigrades can recover from anhydrobiosis at any life stage and are considered among the toughest animals on Earth. However, the factors that influence recovery from anhydrobiosis are not well understood. The study aimed to evaluate the effect of sex, age, the presence of other individuals and the combination of the number and duration of anhydrobiosis episodes on the recovery of Paramacrobiotus experimentalis. The activity of 1200 individuals for up to 48 h after rehydration was evaluated using analysis of variance (ANOVA). Age was the main factor influencing return to activity, followed by the combination of number and duration of anhydrobiosis episodes, influence of the presence of other individuals, and sex. More individuals returned to activity after repeated short than repeated long anhydrobiosis episodes and older individuals were less likely to recover than younger individuals. In addition, when compared to single animals, the presence of other individuals resulted in higher number of active animals after dehydration and rehydration. The effect of sex was significant, but there was no general tendency for one sex to recover from anhydrobiosis better than the other one. The results contribute to a better understanding of the anhydrobiosis ability of Paramacrobiotus experimentalis and provide background for full explanation of molecular, cellular and environmental mechanisms of anhydrobiosis.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Iwona Melosik
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
2
|
Kayastha P, Szydło W, Mioduchowska M, Kaczmarek Ł. Morphological and genetic variability in cosmopolitan tardigrade species-Paramacrobiotus fairbanksi Schill, Förster, Dandekar & Wolf, 2010. Sci Rep 2023; 13:17672. [PMID: 37848470 PMCID: PMC10582252 DOI: 10.1038/s41598-023-42653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Paramacrobiotus fairbanksi was described from Alaska (USA) based on integrative taxonomy and later reported from various geographical localities making it a true cosmopolitan species. The 'Everything is Everywhere' (EiE) hypothesis assumes that the geographic distribution of microscopic organisms is not limited by dispersal but by local environmental conditions, making them potentially cosmopolitan. In the present work we report four new populations of P. fairbanksi from the Northern Hemisphere which suggests that the 'EiE' hypothesis is true, at least for some tardigrade species. We also compared all known populations of P. fairbanksi at the genetic and morphological levels. The p-distances between COI haplotypes of all sequenced P. fairbanksi populations from Albania, Antarctica, Canada, Italy, Madeira, Mongolia, Spain, USA and Poland ranged from 0.002 to 0.005%. In total, twelve haplotypes (H1-H12) of COI gene fragments were identified. We also report statistically significant morphometrical differences of species even though they were cultured and bred in the same laboratory conditions. Furthermore, we also discuss differences in the potential distribution of two Paramacrobiotus species.
Collapse
Affiliation(s)
- Pushpalata Kayastha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Wiktoria Szydło
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Kayastha P, Stec D, Sługocki Ł, Gawlak M, Mioduchowska M, Kaczmarek Ł. Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae). Sci Rep 2023; 13:2196. [PMID: 36750641 PMCID: PMC9905614 DOI: 10.1038/s41598-023-28714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
In a moss sample collected in Ribeiro Frio, Madeira, Paramacrobiotus gadabouti sp. nov. was found and described using the integrative taxonomy approach. The new species is described based on morphological and morphometric data from both phase-contrast light microscopy (PCM), as well as scanning electron microscopy (SEM). Moreover, four DNA markers, three nuclear (18S rRNA, 28S rRNA, ITS-2) and one mitochondrial (COI) markers, were used to elucidate the phylogenetic position of the new species within the family Macrobiotidae. The new species has a microplacoid that placed it within Parmacrobiotus richtersi group and exhibit richtersi-type eggs having processes terminated with cap-like structures. Paramacrobiotus gadabouti sp. nov. is most similar to Pam. alekseevi, Pam. filipi and Pam. garynahi, but differs from them mainly in details of egg morphology and morphometrics. Unlike other species from this group, which were confirmed as bisexual and showed limited distribution, Paramacrobiotus gadabouti sp. nov. is yet another parthenogenetic species with a wide distribution, demonstrating that at least some tardigrades confirm to the hypothesis of 'everything is everywhere'.
Collapse
Affiliation(s)
- Pushpalata Kayastha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Daniel Stec
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Szczecin, Poland
| | - Magdalena Gawlak
- The Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318, Poznań, Poland
| | - Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Bertolani R, Cesari M, Giovannini I, Rebecchi L, Guidetti R, Kaczmarek Ł, Pilato G. The Macrobiotus persimilis-polonicus complex (Eutardigrada, Macrobiotidae), another example of problematic species identification, with the description of four new species. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Guidetti R, Cesari M, Giovannini I, Ebel C, Förschler MI, Rebecchi L, Schill RO. Morphology and taxonomy of the genus Ramazzottius (Eutardigrada; Ramazzottiidae) with the integrative description of Ramazzottius kretschmanni sp. nov. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2043468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- R. Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M. Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - I. Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C. Ebel
- Department Visitor Information, Black Forest National Park, Seebach, Germany
| | - M. I. Förschler
- Department of Ecosystem Monitoring, Research and Conservation. Black Forest National Park, Freudenstadt, Germany
| | - L. Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R. O. Schill
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Camarda D, Pilato G, Lisi O. Considerations on the claws of the Apochela and a novel detail of the bucco-pharyngeal apparatus of the genus Milnesium (Tardigrada: Apochela: Milnesiidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2033332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- D. Camarda
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - G. Pilato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - O. Lisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Stec D, Vončina K, Møbjerg Kristensen R, Michalczyk Ł. The Macrobiotus ariekammensis species complex provides evidence for parallel evolution of claw elongation in macrobiotid tardigrades. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The recent integrative revision of the family Macrobiotidae demonstrated monophyly of the genus Macrobiotus and its complex, mosaic morphological evolution. Here, we analyse three Macrobiotus populations that exhibit extraordinary claw morphology characterized by elongated primary branches. Two of these populations, from the Arctic, were initially classified as Macrobiotus ariekammensis, but detailed integrative analyses resulted in splitting them into two subspecies: Macrobiotus ariekammensis ariekammensis and Macrobiotus ariekammensis groenlandicus subsp. nov.. The third population was Macrobiotus kirghizicus from Kyrgyzstan. Given the unusual phenotype of the above-mentioned taxa, we tested whether they constitute a distinct lineage in the family Macrobiotidae and could be delineated as a new genus. Although the phylogenetic investigation showed that the three taxa form a monophyletic group, the clade is nested in the genus Macrobiotus. Therefore, despite their morphological distinctiveness, a new genus cannot be established and we group these taxa in the Macrobiotus ariekammensis species complex instead. The complex includes the three above-mentioned taxa and Macrobiotus ramoli, which is included based on morphological characters. Moreover, our results provide evidence for rapid parallel evolution of long claws in macrobiotid tardigrades inhabiting cold and icy environments. Finally, we discuss the validity of the recent suppression of the genus Xerobiotus, which gathers macrobiotids with reduced claws.
Collapse
Affiliation(s)
- Daniel Stec
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Katarzyna Vončina
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | - Łukasz Michalczyk
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
9
|
An ancient, Antarctic-specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus. Mol Phylogenet Evol 2022; 170:107429. [DOI: 10.1016/j.ympev.2022.107429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/21/2022]
|
10
|
Guil N, Guidetti R, Cesari M, Marchioro T, Rebecchi L, Machordom A. Molecular Phylogenetics, Speciation, and Long Distance Dispersal in Tardigrade Evolution: A case study of the genusMilnesium. Mol Phylogenet Evol 2022; 169:107401. [PMID: 35031462 DOI: 10.1016/j.ympev.2022.107401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Microorganisms (sensu lato, i.e., including micrometazoans) are thought to have cosmopolitan geographic distributions due to their theoretically unlimited dispersal capabilities, a consequence of their tiny size, population dynamics, and resistant forms. However, several molecular studies of microorganisms have identified biogeographic patterns indicating cryptic speciation and/or weak species definitions. Using a multi-locus approach with the genus Milnesium (Tardigrada), we aimed to determine the genetic structure of populations worldwide and the effects of long distance dispersal (LDD) on genetic connectivity and relationships across the six continents. Our results on this micrometazoan's genetic structure and LDD at global and micro-local scales indicate contrasting patterns not easily explained by a unique or simple phenomenon. Overall, we report three key findings: (i) confirmation of long distance dispersal for tardigrades, (ii) populations with globally-shared or endemic micro-local haplotypes, and (iii) a supported genetic structure instead of the homogeneous genetic distribution hypothesized for microorganisms with LDD capabilities. Moreover, incongruences between our morphological and molecular results suggest that species delimitation within the genus Milnesium could be problematic due to homoplasy. Duality found for Milnesium populations at the global scale, namely, a molecular phylogenetic structure mixed with widely distributed haplotypes (but without any apparent biogeographic structure), is similar to patterns observed for some unicellular, prokaryotic and eukaryotic, microorganisms. Factors influencing these patterns are discussed within an evolutionary framework.
Collapse
Affiliation(s)
- N Guil
- Department of Biodiversity and Evolutionary Biology. Museo Nacional de Ciencias Naturales (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| | - R Guidetti
- Department of Life Sciences. University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - M Cesari
- Department of Life Sciences. University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - T Marchioro
- Department of Life Sciences. University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - L Rebecchi
- Department of Life Sciences. University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - A Machordom
- Department of Biodiversity and Evolutionary Biology. Museo Nacional de Ciencias Naturales (MNCN-CSIC). José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
11
|
Sugiura K, Matsumoto M. Reproduction of Mesobiotus: Comparison of Morphology and Behavior in the Family Macrobiotidae (Tardigrada: Eutardigrada). Zoolog Sci 2021; 38:444-450. [PMID: 34664919 DOI: 10.2108/zs210045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
The genus Mesobiotus was separated from the genus Macrobiotus in 2016 and the name referred to its phylogenetic position among the family Macrobiotidae; however, knowledge of the reproductive behavior of this genus is limited compared to those of Paramacrobiotus and Macrobiotus. This study comprehensively provides the reproductive traits, including the gamete morphologies and behavioral observations, of Mesobiotus. The morphology of its spermatozoon showed a length that was intermediary among those of Paramacrobiotus and Macrobiotus species. The sequence of mating behavior was generally conserved in the three species of Macrobiotidae. They showed the described five steps observed in Paramacrobiotus and Macrobiotus; however, the males of Mesobiotus repeated ejaculations in a mating session, which is the first observation of premature ejaculation in tardigrades. Our results indicated that Mesobiotus has the potential to be a model to show the linkage between genera with respect to the morphology and behavior in the family Macrobiotidae.
Collapse
Affiliation(s)
- Kenta Sugiura
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Midori Matsumoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku, Yokohama, Kanagawa 223-8522, Japan,
| |
Collapse
|
12
|
Stec D, Vecchi M, Dudziak M, Bartels PJ, Calhim S, Michalczyk Ł. Integrative taxonomy resolves species identities within the Macrobiotus pallarii complex (Eutardigrada: Macrobiotidae). ZOOLOGICAL LETTERS 2021; 7:9. [PMID: 34044886 PMCID: PMC8162020 DOI: 10.1186/s40851-021-00176-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The taxonomy of many groups of meiofauna is challenging due to their low number of diagnostic morphological characters and their small body size. Therefore, with the advent of molecular techniques that provide a new source of traits, many cryptic species have started to be discovered. Tardigrades are not an exception, and many once thought to be cosmopolitan taxa are being found to be complexes of phenotypically similar species. Macrobiotus pallarii Maucci, 1954 was originally described in South Italy and has been subsequently recorded in Europe, America, and Asia. This allegedly wide geographic range suggests that multiple species may be hidden under this name. Moreover, recently, genetic evidence to support this was put forward, and the Macrobiotus pallarii complex has been proposed to accommodate putative species related to M. pallarii. Here, we describe three new pseudocryptic species based on populations that would have been all classified as Macrobiotus pallarii if molecular methods were not employed. Using an integrative taxonomy approach, we analyzed animals and eggs from the topotypic population of Macrobiotus pallarii, together with four other populations of the complex. We recovered four distinct phylogenetic lineages that, despite the overlap of morphometric traits, can be separated phenotypically by subtle but discrete morphological characters. One lineage corresponds to Macrobiotus pallarii, whereas the other three are newly described as Macrobiotus margoae Stec, Vecchi & Bartels, sp. nov. from the USA, Macrobiotus ripperi Stec, Vecchi & Michalczyk, sp. nov. from Poland and Finland, and Macrobiotus pseudopallarii Stec, Vecchi & Michalczyk, sp. nov. from Montenegro. To facilitate species identification, we provide a dichotomous key for species of the M. pallarii complex. Delimitation of these pseudocryptic taxa highlights the need for an integrative approach to uncover the phylum's diversity in full.
Collapse
Affiliation(s)
- Daniel Stec
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Matteo Vecchi
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland.
| | - Magdalena Dudziak
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Paul J Bartels
- Department of Biology, Warren Wilson College, Asheville, NC, 28815, USA
| | - Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Łukasz Michalczyk
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
13
|
Fleming JF, Arakawa K. Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019). ZOOL SCR 2021. [DOI: 10.1111/zsc.12476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James F. Fleming
- Keio University Institute for Advanced Tsuruoka Japan
- University of Oslo Natural History Museum Oslo Norway
| | | |
Collapse
|
14
|
Guidetti R, Schill RO, Giovannini I, Massa E, Goldoni SE, Ebel C, Förschler MI, Rebecchi L, Cesari M. When DNA sequence data and morphological results fit together: Phylogenetic position of
Crenubiotus
within Macrobiotoidea (Eutardigrada) with description of
Crenubiotus ruhesteini
sp. nov. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Roberto Guidetti
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Ralph O. Schill
- Institute of Biomaterials and Biomolecular Systems University of Stuttgart Stuttgart Germany
| | - Ilaria Giovannini
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Edoardo Massa
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Sara Elena Goldoni
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Charly Ebel
- Department of Ecosystem Monitoring, Research and Conservation Black Forest National Park Freudenstadt Germany
| | - Marc I. Förschler
- Department of Ecosystem Monitoring, Research and Conservation Black Forest National Park Freudenstadt Germany
| | - Lorena Rebecchi
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| | - Michele Cesari
- Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
| |
Collapse
|
15
|
Mioduchowska M, Kačarević U, Miamin V, Giginiak Y, Parnikoza I, Roszkowska M, Kaczmarek Ł. Redescription of Antarctic eutardigrade Dastychius improvisus (Dastych, 1984) and some remarks on phylogenetic relationships within Isohypsibioidea. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1854877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- M. Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
- Department of Marine Plankton Research, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - U. Kačarević
- Department of Morphology, Systematics and Phylogeny of Animals, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - V. Miamin
- Sector for Monitoring and Cadastre of Animal World, Scientific and Practical Center of the National Academy of Sciences of Belarus for Biological Resources, Minsk, Belarus
| | - Y. Giginiak
- Sector for Monitoring and Cadastre of Animal World, Scientific and Practical Center of the National Academy of Sciences of Belarus for Biological Resources, Minsk, Belarus
| | - I. Parnikoza
- Department of Biology and Ecology, National Antarctic Scientific Center of Ukraine, Kyiv, Ukraine
- Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
16
|
Guidetti EB, Campos A, Batistão AR, Silva ATD, Bilatto CG, Salgado KA, Araújo TQ, Garraffoni ARS. Gastrotrichs and tardigrades in a remnant of Atlantic Forest (Serra do Japi, SP, Brazil). BIOTA NEOTROPICA 2021. [DOI: 10.1590/1676-0611-bn-2020-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: Serra do Japi, located in the southeast of São Paulo State, is considered a priority area for conservation, as it houses original Atlantic Forest cover remains. Despite the significant number of studies about vertebrates and invertebrates that were carried out in this region, the meiofauna biodiversity is completely unknown. Thus, the present study aimed to investigate for the first time freshwater Gastrotricha and limnoterrestrial Tardigrada in Serra do Japi Biological Reserve. Samples of sediments, periphyton and floating vegetation in reservoirs and natural lagoons, and mosses growing on native and non-native tree trunks were collected in May 2019. At least five gastrotrichs morphotypes were identified and three of them were formally described: Chaetonotus acanthocephalus, C. dadayi (first record in Brazil), and Heterolepidoderma mariae (first record outside the type locality). In regards to tardigrades, twelve morphotypes were identified and four of them were formally described: Pseudechiniscus juanitae, Minibiotus cf. acontistus, Echiniscus dreyfusi and Itaquascon umbellinae (last two species reported for the first time outside the type locality). This study reinforces that meiofaunal diversity and distribution have been underestimated, even in one of the five largest hotspots in the world.
Collapse
|
17
|
New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group. Mol Phylogenet Evol 2020; 160:106987. [PMID: 33059070 DOI: 10.1016/j.ympev.2020.106987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
The family Macrobiotidae is one of the most speciose and diverse groups among tardigrades. Although there have been attempts to reconstruct the phylogeny of this family, the evolutionary relationships within Macrobiotidae are only superficially determined as available genetic data cover only a small fraction of this vast group. Here, we present the first extensive molecular phylogeny of the family based on four molecular markers (18S rRNA, 28Sr RNA, ITS-2 and COI) associated with detailed morphological data for the majority of taxa. The phylogenetic analysis includes nearly two hundred sequences representing more than sixty species, including sixteen taxa that have never been sequenced and/or analysed phylogenetically before. Our results recovered a new monophyletic group, comprising Macrobiotus spectabilis Thulin, 1928 and Macrobiotus grandis Richters, 1911, for which we erect a new genus, Sisubiotusgen. nov., to accommodate its evolutionary distinctiveness. The largest, so far, dataset for the family Macrobiotidae showed that the genus Xerobiotus is nested within the clade representing the genus Macrobiotus deeper than it was earlier assumed, therefore we propose to suppress Xerobiotus and transfer its species to Macrobiotus. Moreover, mapping key morphological traits onto macrobiotid phylogeny exposed complex evolution of phenotypes within the Macrobiotus hufelandi group, i.e. Macrobiotus s.s. Finally, our findings enabled a detailed revision and discussion on species compositions of the most ubiquitous tardigrade genera, species groups and species complexes, which resulted in changes of taxonomic statuses of a number of macrobiotid species. All this contributes to the reconstruction of the morphological evolution within Macrobiotidae.
Collapse
|
18
|
Kaczmarek Ł, Bartylak T, Stec D, Kulpa A, Kepel M, Kepel A, Roszkowska M. Revisiting the genus Mesobiotus Vecchi et al., 2016 (Eutardigrada, Macrobiotidae) – remarks, updated dichotomous key and an integrative description of new species from Madagascar. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Stec D, Krzywański Ł, Arakawa K, Michalczyk Ł. A new redescription of Richtersius coronifer, supported by transcriptome, provides resources for describing concealed species diversity within the monotypic genus Richtersius (Eutardigrada). ZOOLOGICAL LETTERS 2020; 6:2. [PMID: 32047649 PMCID: PMC7003491 DOI: 10.1186/s40851-020-0154-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/06/2020] [Indexed: 05/08/2023]
Abstract
Richtersius coronifer, the nominal species for the family Richtersiidae and a popular laboratory model, exemplifies a common problem in modern tardigrade taxonomy. Despite undeniable progress in the field, many old and incomplete descriptions of taxa hinder both species delimitation and the estimation of species diversity and distribution. Although for over a century this species has been recorded throughout the world, recent research indicates that records to date are likely to represent a species complex rather than a single cosmopolitan species. However, in order to recognise and name species diversity within the complex, an integrative redescription of the nominal species is first needed. Here, we describe an R. coronifer population collected from Spitsbergen, i.e., one of the two localities mentioned in the original description, with detailed morphological and morphometric data associated with standard DNA sequences of four standard genetic markers (18S rRNA, 28S rRNA, ITS-2, and COI) and supported by transcriptome sequencing. We propose replacement of the neotype designated in 1981 by Maucci and Ramazzotti, as it is impossible to verify whether the existing neotype is conspecific with specimens studied by Richters in 1903 and 1904. Finally, using newly obtained cytochrome c oxidase subunit I (COI) sequences of populations from Spitsbergen, Italy, Poland, and Greece together with sequences deposited in GenBank (China, Greenland, Italy, Mongolia), we performed genetic species delimitation, which indicated seven distinct potential species within the genus Richtersius, in addition to the nominal taxon. This study marks a starting point for further research on the taxonomy of and species diversity within the genus. Moreover, this work has the potential to be the first tardigrade redescription to provide both genetic barcodes and a transcriptome of the species in question.
Collapse
Affiliation(s)
- Daniel Stec
- Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Łukasz Krzywański
- Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Łukasz Michalczyk
- Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
21
|
Stec D, Krzywański Ł, Zawierucha K, Michalczyk Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Incomplete descriptions of nominal taxa are one of the most significant obstacles in modern taxonomy, including the taxonomy of Tardigrada. Another major problem in tardigrade systematics is the lack of tests for the reliability of genetic markers in species delineation. Here, we employ an integrative taxonomy approach to redescribe the nominal taxon for the P. areolatus complex, Paramacrobiotus areolatus. Moreover, we obtained multilocus DNA sequences for another 16 populations representing 9–12 Paramacrobiotus species collected from Europe, North America, Africa and Australia, enabling us to reconstruct the most extensive phylogeny of the genus to date. The identification of a pair of potentially cryptic dioecious P. areolatus complex species with divergent genetic distances in ITS2 (1.4%) and COI (13.8%) provided an opportunity to test the biological species concept for the first time in the history of tardigrade taxonomy. Intra- and interpopulation crosses did not differ in reproductive success in terms of F1 offspring. However, because of the low F1 family sizes, we were unfortunately unable to test F1 hybrid fertility. Although our results are only partially conclusive, they offer a baseline not only for further taxonomic and phylogenetic research on the areolatus complex, but also for studies on species delineation in tardigrades in general.
Collapse
Affiliation(s)
- Daniel Stec
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Łukasz Krzywański
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
22
|
Kaczmarek Ł, Roszkowska M, Poprawa I, Janelt K, Kmita H, Gawlak M, Fiałkowska E, Mioduchowska M. Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol Phylogenet Evol 2020; 145:106730. [PMID: 31904510 DOI: 10.1016/j.ympev.2019.106730] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
In a moss samples collected on Madagascar two populations of Paramacrobiotus experimentalis sp. nov. were found. Paramacrobiotus experimentalis sp. nov. with the presence of a microplacoid and areolatus type of eggs is similar to Pam. danielae, Pam. garynahi, Pam. hapukuensis, Pam. peteri, Pam. rioplatensis and Pam. savai, but it differs from them by some morphological and morphometric characters of the eggs. The p-distance between two COI haplotypes of Pam. experimentalis sp. nov. was 0.17%. In turn, the ranges of uncorrected genetic p-distances of all Paramacrobiotus species available in GenBank was from 18.27% (for Pam. lachowskae) to 25.26% (for Pam. arduus) with an average distance of 20.67%. We also found that Pam. experimentalis sp. nov. is bisexual. This observation was congruent on three levels: (i) morphological - specimen size dimorphism; (ii) structural (primary sexual characteristics) - females have an unpaired ovary while males have an unpaired testis and (iii) molecular - heterozygous and homozygous strains of the ITS-2 marker. Although symbiotic associations of hosts with bacteria (including endosymbiotic bacteria) are common in nature and these interactions exert various effects on the evolution, biology and reproductive ecology of hosts, there is still very little information on the bacterial community associated with tardigrades. To fill this gap and characterise the bacterial community of Pam. experimentalis sp. nov. populations and microbiome of its microhabitat, high throughput sequencing of the V3-V4 hypervariable regions in the bacterial 16S rRNA gene fragment was performed. The obtained 16S rRNA gene sequences ranged from 92,665 to 131,163. In total, 135 operational taxonomic units (OTUs) were identified across the rarefied dataset. Overall, both Pam. experimentalis sp. nov. populations were dominated by OTUs ascribed to the phylum Proteobacteria (89-92%) and Firmicutes (6-7%). In the case of samples from tardigrades' laboratory habitat, the most abundant bacterial phylum was Proteobacteria (51-90%) and Bacteroides (9-48%). In all compared microbiome profiles, only 16 of 137 OTUs were shared. We found also significant differences in beta diversity between the partly species-specific microbiome of Pam. experimentalis sp. nov. and its culturing environment. Two OTUs belonging to a putative bacterial endosymbiont were identified - Rickettsiales and Polynucleobacter. We also demonstrated that each bacterial community was rich in genes involved in membrane transport, amino acid metabolism, and carbohydrate metabolism.
Collapse
Affiliation(s)
- Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Kamil Janelt
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Magdalena Gawlak
- The Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland.
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
23
|
Persson DK, Halberg KA, Neves RC, Jørgensen A, Kristensen RM, Møbjerg N. Comparative myoanatomy of Tardigrada: new insights from the heterotardigrades Actinarctus doryphorus (Tanarctidae) and Echiniscoides sigismundi (Echiniscoididae). BMC Evol Biol 2019; 19:206. [PMID: 31694520 PMCID: PMC6836549 DOI: 10.1186/s12862-019-1527-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tardigrada is a group of microscopic invertebrates distributed worldwide in permanent and temporal aquatic habitats. Famous for their extreme stress tolerance, tardigrades are also of interest due to their close relationship with Arthropoda and Cycloneuralia. Despite recent efforts in analyzing the musculature of a number of tardigrade species, data on the class Heterotardigrada remain scarce. Aiming to expand the current morphological framework, and to promote the use of muscular body plans in elucidating tardigrade phylogeny, the myoanatomy of two heterotardigrades, Actinarctus doryphorus and Echiniscoides sigismundi, was analyzed by cytochemistry, scanning electron and confocal laser scanning microscopy and 3D imaging. We discuss our findings with reference to other tardigrades and internal phylogenetic relationships of the phylum. RESULTS We focus our analyses on the somatic musculature, which in tardigrades includes muscle groups spanning dorsal, ventral, and lateral body regions, with the legs being musculated by fibers belonging to all three groups. A pronounced reduction of the trunk musculature is seen in the dorsoventrally compressed A. doryphorus, a species that generally has fewer cuticle attachment sites as compared to E. sigismundi and members of the class Eutardigrada. Interestingly, F-actin positive signals were found in the head appendages of A. doryphorus. Our analyses further indicate that cross-striation is a feature common to the somatic muscles of heterotardigrades and that E. sigismundi-as previously proposed for other echiniscoidean heterotardigrades-has relatively thick somatic muscle fibers. CONCLUSIONS We provide new insights into the myoanatomical differences that characterize distinct evolutionary lineages within Tardigrada, highlighting characters that potentially can be informative in future phylogenetic analyses. We focus our current analyses on the ventral trunk musculature. Our observations suggest that seven paired ventromedian attachment sites anchoring a large number of muscles can be regarded as part of the ground pattern of Tardigrada and that fusion and reduction of cuticular attachment sites is a derived condition. Specifically, the pattern of these sites differs in particular details between tardigrade taxa. In the future, a deeper understanding of the tardigrade myoanatomical ground pattern will require more investigations in order to include all major tardigrade lineages.
Collapse
Affiliation(s)
- Dennis Krog Persson
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Present Address: Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 405 30, Gothenburg, Sweden
| | - Kenneth Agerlin Halberg
- Section for Cell- & Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Ricardo Cardoso Neves
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Aslak Jørgensen
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Reinhardt Møbjerg Kristensen
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
24
|
Cesari M, Montanari M, Kristensen RM, Bertolani R, Guidetti R, Rebecchi L. An integrated study of the biodiversity within the Pseudechiniscus suillus–facettalis group (Heterotardigrada: Echiniscidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Pseudechiniscus is the second most species-rich genus in Heterotardigrada and in the family Echiniscidae. However, previous studies have pointed out polyphyly and heterogeneity in this taxon. The recent erection of the genus Acanthechiniscus was another step in making Pseudechiniscus monophyletic, but species identification is still problematic. The present investigation aims at clarifying biodiversity and taxonomy of Pseudechiniscus taxa, with a special focus on species pertaining to the so-called ‘suillus–facettalis group’, by using an integrated approach of morphological and molecular investigations. The analysis of sequences from specimens sampled in Europe and Asia confirms the monophyly of the genus Pseudechiniscus. Inside the genus, two main evolutionary lineages are recognizable: the P. novaezeelandiae lineage and the P. suillus–facettalis group lineage. Inside the P. suillus–facettalis group, COI molecular data points out a very high variability between sampled localities, but in some cases also among specimens sampled in the same locality (up to 33.3% p-distance). The integrated approach to the study of Pseudechiniscus allows confirmation of its monophyly and highlights the relationships in the taxon, pointing to its global distribution.
Collapse
Affiliation(s)
- Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Martina Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Roberto Bertolani
- Department of Education and Humanities, University of Modena and Reggio Emilia, Italy
- Civic Museum of Natural History, Verona, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
25
|
Gąsiorek P, Morek W, Stec D, Michalczyk Ł. Untangling the
Echiniscus
Gordian knot: paraphyly of the “
arctomys
group” (Heterotardigrada: Echiniscidae). Cladistics 2019; 35:633-653. [DOI: 10.1111/cla.12377] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Piotr Gąsiorek
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Gronostajowa 9 30‐387 Kraków Poland
| | - Witold Morek
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Gronostajowa 9 30‐387 Kraków Poland
| | - Daniel Stec
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Gronostajowa 9 30‐387 Kraków Poland
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research Faculty of Biology Jagiellonian University Gronostajowa 9 30‐387 Kraków Poland
| |
Collapse
|
26
|
Guidetti R, Cesari M, Bertolani R, Altiero T, Rebecchi L. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). ZOOLOGICAL LETTERS 2019; 5:1. [PMID: 30619620 PMCID: PMC6317227 DOI: 10.1186/s40851-018-0113-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
For many years, Paramacrobiotus richtersi was reported to consist of populations with different chromosome numbers and reproductive modes. To clarify the relationships among different populations, the type locality of the species (Clare Island, Ireland) and several Italian localities were sampled. Populations were investigated with an integrated approach, using morphological (LM, CLSM, SEM), morphometric, karyological, and molecular (18S rRNA, cox1 genes) data. Paramacrobiotus richtersi was redescribed and a neotype designed from the Irish bisexual population. Animals of all populations had very similar qualitative and quantitative characters, apart from the absence of males and the presence of triploidy in some of them, whereas some differences were recorded in the egg shell. All populations examined had the same 18S haplotype, while 21 haplotypes were found in the cox1 gene. In four cases, those qualitative characters were correlated with clear molecular (cox1) differences (genetic distance 14.6-21.8%). The integrative approach, which considered the morphological differences in the eggs, the reproductive biology and the wide genetic distances among putative species, led to the description of four new species (Paramacrobiotus arduus sp. n., Paramacrobiotus celsus sp. n., Paramacrobiotus depressus sp. n., Paramacrobiotus spatialis sp. n.) and two Unconfirmed Candidate Species (UCS) within the P. richtersi complex. Paramacrobiotus fairbanksi, the only ascertained parthenogenetic, triploid species, was redescribed and showed a wide distribution (Italy, Spain, Poland, Alaska), while the amphimictic species showed limited distributions. The difference in distribution between apomictic and amphimictic populations can be explained by the difference in the dispersal potentials associated with these two types of reproduction.
Collapse
Affiliation(s)
- Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Roberto Bertolani
- Department of Education and Humanities, University of Modena and Reggio Emilia, Via Allegri 9, 42121 Reggio Emilia, Italy
- Museo Civico di Storia Naturale of Verona, Lungadige Porta Vittoria 9, 37129 Verona, Italy
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, Via Allegri 9, 42121 Reggio Emilia, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
27
|
Guil N, Jørgensen A, Kristensen R. An upgraded comprehensive multilocus phylogeny of the Tardigrada tree of life. ZOOL SCR 2018. [DOI: 10.1111/zsc.12321] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Noemi Guil
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Aslak Jørgensen
- Department of Biology University of Copenhagen Copenhagen Denmark
| | - Reinhardt Kristensen
- Zoological Museum, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| |
Collapse
|
28
|
|
29
|
An integrative redescription of Echiniscus testudo (Doyère, 1840), the nominal taxon for the class Heterotardigrada (Ecdysozoa: Panarthropoda: Tardigrada). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Stec D, Roszkowska M, Kaczmarek Ł, Michalczyk Ł. Paramacrobiotus lachowskae, a new species of Tardigrada from Colombia (Eutardigrada: Parachela: Macrobiotidae). NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1354896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Stec
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
31
|
Gąsiorek P, Stec D, Morek W, Marnissi J, Michalczyk Ł. The tardigrade fauna of Tunisia, with an integrative description of Bryodelphax maculatus sp. nov. (Heterotardigrada: Echiniscidae). AFRICAN ZOOLOGY 2017. [DOI: 10.1080/15627020.2017.1297688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Piotr Gąsiorek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Daniel Stec
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Witold Morek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jamila Marnissi
- Department of Biological Sciences, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
32
|
Guidetti R, Rebecchi L, Bertolani R, Jönsson KI, Møbjerg Kristensen R, Cesari M. Morphological and molecular analyses onRichtersius(Eutardigrada) diversity reveal its new systematic position and lead to the establishment of a new genus and a new family within Macrobiotoidea. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12428] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Guidetti
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D, 41125 Modena Italy
| | - Lorena Rebecchi
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D, 41125 Modena Italy
| | - Roberto Bertolani
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D, 41125 Modena Italy
| | - Kjell Ingemar Jönsson
- School of Education and Environment; Kristianstad University; SE-291 88 Kristianstad Sweden
| | - Reinhardt Møbjerg Kristensen
- Section of Biosystematics; Zoological Museum; Natural History Museum of Denmark; University of Copenhagen; Universitetsparken 15, DK-2100 Copenhagen, OE Denmark
| | - Michele Cesari
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D, 41125 Modena Italy
| |
Collapse
|
33
|
DeMilio E, Lawton C, Marley NJ. Tardigrada of Ireland: a review of records and an updated checklist of species including a new addition to the Irish fauna. Zookeys 2016; 616:77-101. [PMID: 27667947 PMCID: PMC5027762 DOI: 10.3897/zookeys.616.8222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/23/2016] [Indexed: 11/12/2022] Open
Abstract
The phylum Tardigrada was not recorded in Ireland until the Clare Island Survey of 1909-1911, with only rare subsequent reports on Irish tardigrade species. In recent decades, significant taxonomic revision has occurred within Tardigrada. This has resulted in the need for a review of all known historical records from Ireland and Northern Ireland in order to produce an updated checklist of valid taxa. The new checklist includes fifty-one tardigrade species and subspecies including a new addition to the Irish fauna reported herein, Echiniscus quadrispinosus quadrispinosus Richters, 1902 from Newtown, Ballyvaughan, Co. Clare.
Collapse
Affiliation(s)
- Erica DeMilio
- Animal Ecology & Conservation Unit, Department of Zoology, School of Natural Sciences, Martin Ryan Institute, National University of Ireland Galway, Republic of Ireland
| | - Colin Lawton
- Animal Ecology & Conservation Unit, Department of Zoology, School of Natural Sciences, Martin Ryan Institute, National University of Ireland Galway, Republic of Ireland
| | - Nigel J. Marley
- Marine Biology & Ecology Research Centre, Plymouth University, Drakes Circus, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
34
|
Cesari M, McInnes SJ, Bertolani R, Rebecchi L, Guidetti R. Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada : Hypsibiidae) – evidence that it is a truly pan-Antarctic species. INVERTEBR SYST 2016. [DOI: 10.1071/is15045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antarctica is an ice-dominated continent and all its terrestrial and freshwater habitats are fragmented, which leads to genetic divergence and, eventually, speciation. Acutuncus antarcticus is the most common Antarctic tardigrade and its cryptobiotic capabilities, small size and parthenogenetic reproduction present a high potential for dispersal and colonisation. Morphological (light and electron microscopy, karyology) and molecular (18S rRNA and cytochrome c oxidase subunit I (COI) genes) analyses on seven populations of A. antarcticus elucidated the genetic diversity and distribution of this species. All analysed populations were morphologically indistinguishable and made up of diploid females. All specimens presented the same 18S rRNA sequence. In contrast, COI analysis showed higher variability, with most Victoria Land populations presenting up to five different haplotypes. Genetic distances between Victoria Land specimens and those found elsewhere in Antarctica were low, while distances between Dronning Maud Land and specimens from elsewhere were high. Our analyses show that A. antarcticus can still be considered a pan-Antarctic species, although the moderately high genetic diversity within Victoria Land indicates the potential for speciation events. Regions of Victoria Land are considered to have been possible refugia during the last glacial maximum and a current biodiversity hotspot, which the populations of A. antarcticus mirror with a higher diversity than in other regions of Antarctica.
Collapse
|
35
|
Vecchi M, Cesari M, Bertolani R, Jönsson KI, Rebecchi L, Guidetti R. Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea. INVERTEBR SYST 2016. [DOI: 10.1071/is15033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tardigrades represent one of the most abundant groups of Antarctic metazoans in terms of abundance and diversity, thanks to their ability to withstand desiccation and freezing; however, their biodiversity is underestimated. Antarctic tardigrades from Dronning Maud Land and Victoria Land were analysed from a morphological point of view with light microscopy and scanning electron microscopy, and from a molecular point of view using two genes (18S, 28S) analysed in Bayesian inference and maximum-likelihood frameworks. In addition, indel-coding datasets were used for the first time to infer tardigrade phylogenies. We also compared Antarctic specimens with those from Italy and Greenland. A combined morphological and molecular analysis led to the identification of two new evolutionary lineages, for which we here erect the new genera Acanthechiniscus, gen. nov. (Echiniscidae, Echiniscoidea) and Mesobiotus, gen. nov. (Macrobiotidae, Macrobiotoidea). Moreover, two species new to science were discovered: Pseudechiniscus titianae, sp. nov. (Echiniscidae : Echiniscoidea) and Mesobiotus hilariae, sp. nov. (Macrobiotidae : Macrobiotoidea). This study highlights the high tardigrade diversity in Antarctica and the importance of an integrated approach in faunal and taxonomic studies. http://zoobank.org/urn:lsid:zoobank.org:pub:8AAB42BF-B781-4418-A385-DC80C18EC31D
Collapse
|
36
|
Roszkowska M, Ostrowska M, Kaczmarek Ł. The genus Milnesium Doyère, 1840 (Tardigrada) in South America with descriptions of two new species from Argentina and discussion of the feeding behaviour in the family Milnesiidae. Zool Stud 2015; 54:e12. [PMID: 31966099 DOI: 10.1186/s40555-014-0082-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The diversity and distribution of the tardigrades in South America are rather poor and selective, as is information about their feeding behaviour and diet. To date, only ca. 210 tardigrade taxa have been reported from the region of South America. In the present paper, we provide an update of the distribution of the genus Milnesium inSouth America and discuss some aspects of the feeding behaviour in the family Milnesiidae. RESULTS In seven moss samples collected in the Argentinean province of Río Negro, 31 specimens, 4 exuviae and 32 eggs belonging to the genus Milnesium were found. Among them, four species were identified: Milnesium argentinum sp. nov., Milnesium beatae sp. nov., Milnesium brachyungue and Milnesium granulatum. By its dorsal sculpture,M.argentinum sp.nov. is most similar to M.beatae sp.nov., Milnesiumbeasleyi andMilnesiumberladnicorum, butit differs from M.beasleyi andM.berladnicorum mainlyby having a different claw configuration and from M. beatae and M. beasleyi by having stylet supports inserted in a more caudal position and by some other morphometriccharacters. In the width of its buccal tube and the claw configuration [3-3]-[3-3], M.beatae sp.nov. is most similar to Milnesiumbohleberi,M.brachyungue andMilnesiumeurystomum,but it differs from them mainly by having a sculptured dorsal cuticle and by some other morphometric characters. CONCLUSIONS The study discusses distribution and taxonomic problems of the Milnesium species known from South America. As of now, nine Milnesium taxa are known from this region (including two new species reported in this paper). Additionally, the study broadens our knowledge of tardigrades' feeding behaviour, provides some details about their diet and suggests that the type of prey chosen by some species belonging to the family Milnesiidae may be associated with the width of their buccal tube.
Collapse
Affiliation(s)
- Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland.,Laboratorio de Ecología Natural y Aplicada de Invertebrados, Universidad Estatal Amazónica, Campus Principal Km 2.1/2 via a Napo (Paso Lateral) Puyo, Pastaza, Ecuador
| | - Marta Ostrowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
37
|
Velasco-Castrillón A, McInnes SJ, Schultz MB, Arróniz-Crespo M, D'Haese CA, Gibson JAE, Adams BJ, Page TJ, Austin AD, Cooper SJB, Stevens MI. Mitochondrial DNA analyses reveal widespread tardigrade diversity in Antarctica. INVERTEBR SYST 2015. [DOI: 10.1071/is14019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antarctica contains some of the most challenging environmental conditions on the planet due to freezing temperatures, prolonged winters and lack of liquid water. Whereas 99.7% of Antarctica is permanently covered by ice and snow, some coastal areas and mountain ridges have remained ice-free and are able to sustain populations of microinvertebrates. Tardigrades are one of the more dominant groups of microfauna in soil and limno-terrestrial habitats, but little is known of their diversity and distribution across Antarctica. Here, we examine tardigrades sampled from across an extensive region of continental Antarctica, and analyse and compare their partial mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences with those from the Antarctic Peninsula, maritime and sub-Antarctica, Tierra del Fuego and other worldwide locations in order to recognise operational taxonomic units (OTUs). From 439 new tardigrade COI sequences, we identified 98 unique haplotypes (85 from Antarctica) belonging to Acutuncus, Diphascon, Echiniscus, Macrobiotus, Milnesium and unidentified Parachela. Operational taxonomic units were delimited by Poisson tree processes and general mixed Yule coalescent methods, resulting in 58 and 55 putative species, respectively. Most tardigrades appear to be locally endemic (i.e. restricted to a single geographic region), but some (e.g. Acutuncus antarcticus (Richters, 1904)) are widespread across continental Antarctica. Our molecular results reveal: (i) greater diversity than has previously been appreciated with distinct OTUs that potentially represent undescribed species, and (ii) a lack of connectivity between most OTUs from continental Antarctica and those from other Antarctic geographical zones.
Collapse
|
38
|
Guil N, Rodrigo E, Machordom A. Soil tardigrade biodiversity with the description of a new eutardigrade genus and its phylogenetic position. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.986554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol Phylogenet Evol 2014; 76:110-26. [DOI: 10.1016/j.ympev.2014.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/18/2013] [Accepted: 03/07/2014] [Indexed: 01/30/2023]
|
40
|
Zawierucha K, Dziamięcki J, Jakubowska N, Michalczyk L, Kaczmarek L. New tardigrade records for the Baltic states with a description of Minibiotus formosus sp. n. (Eutardigrada, Macrobiotidae). Zookeys 2014:81-105. [PMID: 24899839 PMCID: PMC4042828 DOI: 10.3897/zookeys.408.6612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/14/2014] [Indexed: 11/12/2022] Open
Abstract
In sixteen moss, lichen and mixed (moss/lichen) samples, collected from Estonia, Latvia and Lithuania, 291 specimens, 48 simplexes, including one exuvium with 6 eggs, and 8 free-laid eggs of eutardigrades were found. In total, 17 species, together with one new to science, were identified (all are new records for the Baltic states): Astatumen bartosi, Diphascon (Adropion) prorsirostre, D. (Diphascon) bullatum, D. (D.) pingue pingue, D. (D.) recamieri, D. (D.) rugosum, Hypsibius convergens, H. dujardini, H. cf. scabropygus, Isohypsibius ronsisvallei, I. sattleri, Macrobiotus harmsworthi harmsworthi, M. hufelandi hufelandi, Milnesium asiaticum, Milnesium tardigradum tardigradum, Minibiotus formosus sp. n. and Paramacrobiotus richtersi. The new species is most similar to Minibiotus gumersindoi, but differs from it mainly by the presence of two types of cuticular pores, the absence of a triangular or pentagonal arrangement of pores above a single large pore on legs, the presence of granulation on all legs and a different macroplacoid length sequence. In this paper we also provide photographs and morphometrics of H. cf. scabropygus.
Collapse
Affiliation(s)
- Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Jakub Dziamięcki
- Department of Animal Taxonomy and Ecology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Natalia Jakubowska
- Department of Water Protection, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Lukasz Michalczyk
- Department of Entomology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Lukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
41
|
Guil N, Jørgensen A, Giribet G, Kristensen RM. Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada). Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noemí Guil
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales de Madrid (CSIC); José Gutiérrez Abascal 2 28006 Madrid Spain
| | - Aslak Jørgensen
- Natural History Museum of Denmark; University of Copenhagen; Universitetsparken 15 Copenhagen Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology; Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | | |
Collapse
|
42
|
Marchioro T, Rebecchi L, Cesari M, Hansen JG, Viotti G, Guidetti R. Somatic musculature of Tardigrada: phylogenetic signal and metameric patterns. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Trevor Marchioro
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D 41125 Modena Italy
| | - Lorena Rebecchi
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D 41125 Modena Italy
| | - Michele Cesari
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D 41125 Modena Italy
| | - Jesper Guldberg Hansen
- Invertebrate Department; Zoological Museum; Natural History Museum of Denmark; University of Copenhagen; Universitetsparken 15 DK-2100 Copenhagen Ø Denmark
| | - Giulia Viotti
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D 41125 Modena Italy
| | - Roberto Guidetti
- Department of Life Sciences; University of Modena and Reggio Emilia; via Campi 213/D 41125 Modena Italy
| |
Collapse
|
43
|
Guil N, Machordom A, Guidetti R. High level of phenotypic homoplasy amongst eutardigrades (Tardigrada) based on morphological and total evidence phylogenetic analyses. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noemi Guil
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales de Madrid (MNCN-CSIC); José Gutiérrez Abascal 2; Madrid; 28006; Spain
| | - Annie Machordom
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales de Madrid (MNCN-CSIC); José Gutiérrez Abascal 2; Madrid; 28006; Spain
| | - Roberto Guidetti
- Department of Life Sciences; University of Modena and Reggio Emilia; Via Campi 213/d; Modena; 41125; Italy
| |
Collapse
|
44
|
Halberg KA, Larsen KW, Jørgensen A, Ramløv H, Møbjerg N. Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes. J Exp Biol 2012; 216:1235-43. [DOI: 10.1242/jeb.075531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na+ and Cl- are the principle inorganic ions in tardigrade fluids, albeit other ions, i.e. K+, NH4+, Ca2+, Mg2+, F-, SO42- and PO43- were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared to that of the external medium (Na+, ×70-800; K+, ×20-90; Ca2+ and Mg2+, ×30-200; F-, ×160-1040, Cl-, ×20-50; PO43-, ×700-2800; SO42-, ×30-150). In contrast, in the marine species H. crispae Na+, Cl- and SO42- are almost in ionic equilibrium with (brackish) salt water, while K+, Ca2+, Mg2+ and F- are only slightly concentrated (×2-10). An anion deficit of ~120 mEq 1-1 in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg-1 in R. coronifer to 961±43 mOsm kg-1 in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.
Collapse
|
45
|
Guil N, Giribet G. A comprehensive molecular phylogeny of tardigrades-adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 2011; 28:21-49. [DOI: 10.1111/j.1096-0031.2011.00364.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
46
|
Jørgensen A, Møbjerg N, Kristensen RM. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) – an investigation of the congruence between molecules and morphology. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00592.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aslak Jørgensen
- Laboratory of Molecular Systematics, The Natural History Museum of Denmark
| | | | - Reinhardt M. Kristensen
- The Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Schill RO, Jönsson KI, Pfannkuchen M, Brümmer F. Food of tardigrades: a case study to understand food choice, intake and digestion. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00601.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ralph O. Schill
- Department of Zoology, Universität Stuttgart, Biological Institute, Stuttgart, Germany
| | - K. Ingemar Jönsson
- Kristianstad University, School of Teacher Education, Aquatic Biology & Chemistry Group, Kristianstad, Sweden
| | - Martin Pfannkuchen
- Department of Zoology, Universität Stuttgart, Biological Institute, Stuttgart, Germany
| | - Franz Brümmer
- Department of Zoology, Universität Stuttgart, Biological Institute, Stuttgart, Germany
| |
Collapse
|
48
|
Hohberg K, Russell DJ, Elmer M. Mass occurrence of algal‐feeding tardigrade
Apodibius confusus
, in the young soils of a post‐mining site. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00600.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karin Hohberg
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | | | - Michael Elmer
- Brandenburg University of Technology, Cottbus, Germany
| |
Collapse
|
49
|
Fontoura P, Morais P. Assessment of traditional and geometric morphometrics for discriminating cryptic species of the
Pseudechiniscus suillus
complex (Tardigrada, Echiniscidae). J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00594.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paulo Fontoura
- Eco‐Ethology Research Unit (FCT‐331/94) and Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo Morais
- Eco‐Ethology Research Unit (FCT‐331/94) and Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Calloway S, Miller WR, Johansson C, Whiting J. Tardigrades of North America: Oreella chugachii, a new species (Heterotardigrada, Echiniscoide, Oreellidae) from Alaska. P BIOL SOC WASH 2011. [DOI: 10.2988/10-08.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|