1
|
Kabakci R, Clark KL, Plewes MR, Monaco CF, Davis JS. Perfluorooctanoic acid (PFOA) inhibits steroidogenesis and mitochondrial function in bovine granulosa cells in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122698. [PMID: 37832777 PMCID: PMC10873118 DOI: 10.1016/j.envpol.2023.122698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 μM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ruhi Kabakci
- Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey; Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kendra L Clark
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Corrine F Monaco
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198, USA
| | - John S Davis
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
2
|
McGraw MS, Daigneault BW. Environment to embryo: intersections of contaminant exposure and preimplantation embryo development in agricultural animals. Biol Reprod 2022; 107:869-880. [PMID: 35691671 DOI: 10.1093/biolre/ioac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
Environmental impacts on reproductive function are well documented in humans, yet little information is known about effects on large animals. The interface of environment and reproduction has evolved prudently with a concerted effort to ensure global food sustainability tightly integrated with application of technological advances in agriculture production that include nutrient and resource management. Exposure to environmental toxicants through chemical pesticide application and industry practices have coincided with a decline in cattle and human fertility. The increased adoption of agriculture animals for human biomedical models further emphasizes the importance of understanding the consequences of livestock exposure to environmentally and physiologically relevant levels of contaminants to preimplantation embryo development. In addition, increased awareness of paternal contributions to the early embryo that include both genetic and non-genetic factors support the need to define environmental interactions from gamete to genome. Herein we summarize current knowledge of common environmental contaminants on reproductive function including direct and indirect effects on embryo development success in livestock. Information obtained from a diverse number of species including humans is presented to illustrate gaps in knowledge within livestock directly pertaining to agriculture success, sustainability, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Maura S McGraw
- Department of Animal Science, University of Florida, Gainesville, Florida
| | | |
Collapse
|
3
|
Heidari AH, Zamiri MJ, Nazem MN, Jafarzadeh Shirazi MR, Akhlaghi A, Ansari Pirsaraei Z. Detrimental effects of long-term exposure to heavy metals on histology, size and trace elements of testes and sperm parameters in Kermani Sheep. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111563. [PMID: 33254417 DOI: 10.1016/j.ecoenv.2020.111563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been hypothesized as a cause of declining sheep reproductive efficiency. Understanding the long-term effects of EDCs such as heavy metals on reproductive health requires investigation in 'real life' of sheep that are reared in industrial areas. The aim of this study was to evaluate the effect of long-term exposure of Kermani rams to high levels of environmental heavy metals probably emitted from a copper smelter at KhatoonAbad in ShahreBabak, Kerman province. Testicular characteristics were determined in randomly-selected rams (3-4 years old) at 4 directions (south, north, east, and west) and 4 distances (10, 20, 30, and 40 km) from the smelter. Testicular trace element contents, size, serum testosterone, histological attributes and seminal characteristics, except semen volume, were affected by both the direction and the distance from the smelter (P < 0.05). Testicular contents of Pb, Cd, Cr, and Ni, and sperm abnormalities were higher at 10 km south from the smelter and lower at 40 km west. Other parameters were higher at 40 km west and lower at 10 km south. Interestingly, the testicular contents of Cu at 10 km south were lower and associated with higher sperm abnormalities in the rams reared closer to the smelter. The highest weight, length and circumference of the testis were found at 40 km west. The lowest concentration of testosterone was observed at 10 km south, being 92.6% lower than the highest values obtained at 40 km west. The diameter of seminiferous tubules and epithelial height at 10 km south were 8.9% and 27.5% lower than the highest values obtained at 40 km west. A positive correlation between Pb, Cd, Cr and Ni contents in the testis with sperm abnormalities, and a negative correlation between these elements with the other parameters were found. It was concluded that long-term exposure to heavy metals might have been a cause of decreased fertility in rams and probably other living species in this region.
Collapse
Affiliation(s)
- Amir Hassan Heidari
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Naser Nazem
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | | - Amir Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Zarbakht Ansari Pirsaraei
- Department of Animal Science and Fishery, Sari Agricultural Science and Natural Resources University, Farah Abad, Sari, Iran.
| |
Collapse
|
4
|
Guo D, Liu W, Qiu J, Li Y, Chen L, Wu S, Wang Q, Qian Y. Changes in thyroid hormone levels and related gene expressions in embryo-larval zebrafish exposed to binary combinations of bifenthrin and acetochlor. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:584-593. [PMID: 32468518 DOI: 10.1007/s10646-020-02206-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Bifenthrin (BF) and acetochlor (AT) are widely used as an insecticide and herbicide, respectively, which are introduced to the aquatic environment as a natural result. Although the thyroid active substances may coexist in the environment, their joint effects on fish have not been identified. We examined the joint toxicity of BF and AT in zebrafish (Danio rerio) in this study. An acute lethal toxicity test indicated that the median lethal concentration (LC50) values of BF and AT under 96 h treatment were 0.40 and 4.56 µmol L-1, respectively. The binary mixture of BF + AT displayed an antagonistic effect on the acute lethal toxicity. After 14 days post fertilization (dpf) with exposure to individual pesticides at sub-lethal concentrations of, no effects were observed on the catalase (CAT) and peroxidase (POD) activities, while the binary mixtures (except for the 7.2 × 10-3 µmol L-1 BF + 1.2 × 10-2 µmol L-1 AT exposure group) significantly induced the CAT activity. The superoxide dismutase (SOD) activity and triiodothyronine (T3) level were significantly increased in all exposure groups. The thyroxine (T4) level remained unchanged after exposure to individual pesticides, but significantly increased in the 7.2 × 10-3 µmol L-1 BF + 1.2 × 10-2 µmol L-1 AT group. The expressions of the genes Dio2, TRa, TSHβ and CRH in the thyroid hormone (TH) axis were significantly up-regulated in the 7.2 × 10-3 µmol L-1 BF + 0.4 × 10-2 µmol L-1 AT group. Our data indicated that the binary mixture of BF + AT significantly altered the antioxidant enzyme activities and gene expressions in the hypothalamic-pituitary-thyroid (HPT) axis and changed the TH levels.
Collapse
Affiliation(s)
- Dongmei Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Wenping Liu
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Changchun, 136100, PR China
| | - Jing Qiu
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, 100081, Beijing, PR China
| | - Yun Li
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, 100081, Beijing, PR China
| | - Liezong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Yongzhong Qian
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, 100081, Beijing, PR China.
| |
Collapse
|
5
|
Zhu H, Wang L, Liu C, Stryker Z, Loganathan BG, Kannan K. Phthalate Metabolites, Hydroxy-Polycyclic Aromatic Hydrocarbons, and Bisphenol Analogues in Bovine Urine Collected from China, India, and the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11524-11531. [PMID: 31478646 DOI: 10.1021/acs.est.9b04178] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human exposure to endocrine-disrupting chemicals (EDCs) has aroused considerable public concern over the last three decades. Nevertheless, little is known with regard to the exposure of EDCs in farm animals. In this study, concentrations of 22 phthalate metabolites (PhMs), 15 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), and 8 bisphenols (BPs) were determined in 183 bovine urine samples collected from China, India, and the United States. The median concentrations of urinary PhMs, OH-PAHs, and BPs in bovines, collectively, were 66, 4.6, and 16 ng/mL, respectively. Mono-n-butyl phthalate (mBP; median, 14 ng/mL) and ∑4DEHP (four secondary metabolites of di(2-ethylhexyl) phthalate; 13 ng/mL) were the dominant PhMs; hydroxy-fluorene (OH-Fluo; 1.2 ng/mL) and -phenanthrene (OH-Phen; 1 ng/mL) were the dominant OH-PAHs; and 4,4'-di-hydroxydiphenylmethane (BPF; 10 ng/mL) and 2,2-bis(4-hydroxyphenyl) propane (BPA; 6.7 ng/mL) were the dominant BPs. Bovine urine samples from India and China contained the highest concentrations of PhMs and OH-PAHs, whereas those from India and the United States contained the highest concentrations of BPs. PhM and OH-PAH concentrations were significantly higher in the urine of bulls than those of cows; no such difference was found for BPs. Our findings establish baseline exposure information about three classes of EDCs in domestic farm animals.
Collapse
Affiliation(s)
- Hongkai Zhu
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany , Empire State Plaza , P.O. Box 509, Albany , New York 12201-0509 , United States
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Zachary Stryker
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany , Empire State Plaza , P.O. Box 509, Albany , New York 12201-0509 , United States
| | - Bommanna G Loganathan
- Department of Chemistry and Watershed Studies Institute , Murray State University , 1201 Jesse D. Jones Hall , Murray , Kentucky 42071-3300 , United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany , Empire State Plaza , P.O. Box 509, Albany , New York 12201-0509 , United States
- Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| |
Collapse
|
6
|
Schwarzbacherová V, Wnuk M, Deregowska A, Holečková B, Lewinska A. In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicol In Vitro 2019; 61:104654. [PMID: 31533058 DOI: 10.1016/j.tiv.2019.104654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022]
Abstract
A proprietary thiacloprid-based neonicotinoid insecticide formulation is widely used in agriculture to protect vegetables and fruit against various pests. However, its effect on animal cells has not been fully elucidated. In this study, bovine peripheral lymphocytes were incubated with different concentrations of this formulation (10; 30; 60; 120 and 240 μg.mL-1) for 4 h to address the potential cytotoxic and genotoxic effects of the insecticide. Insecticide formulation treatment resulted in decreased cell viability and proliferation, p53-mediated cell cycle arrest at the G0/G1 phase, and apoptosis induction accompanied by elevated levels of mitochondrial superoxide and protein carbonylation. Oxidant-based DNA damage and DNA damage response (DDR) were also observed, namely the formation of micronuclei, DNA double-strand breaks and slightly elevated recruitment of p53 binding protein (53BP1) foci. Our results contribute to the elucidation of insecticide effects on animal lymphocyte cultures after short-term exposure. Due to increased application of neonicotinoids worldwide, resulting in both higher yields and adverse effects on non-target animals and humans, further in vivo and in vitro experiments should be performed to confirm their cytotoxic and genotoxic activities during short-term exposure.
Collapse
Affiliation(s)
- Viera Schwarzbacherová
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Beáta Holečková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Anna Lewinska
- Department of Cell Biochemistry, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
7
|
Kanda R. Reproductive Impact of Environmental Chemicals on Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:41-70. [PMID: 31471794 DOI: 10.1007/978-3-030-23633-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wildlife is exposed to a diverse range of natural and man-made chemicals. Some environmental chemicals possess specific endocrine disrupting properties, which have the potential to disrupt reproductive and developmental process in certain animals. There is growing evidence that exposure to endocrine disrupting chemicals plays a key role in reproductive disorders in fish, amphibians, mammals, reptiles and invertebrates. This evidence comes from field-based observations and laboratory based exposure studies, which provide substantial evidence that environmental chemicals can cause adverse effects at environmentally relevant doses. There is particular concern about wildlife exposures to cocktails of biologically active chemicals, which combined with other stressors, may play an even greater role in reproductive disorders than can be reproduced in laboratory experiments. Regulation of chemicals affords some protection to animals of the adverse effects of exposure to legacy chemicals but there continues to be considerable debate on the regulation of emerging pollutants.
Collapse
Affiliation(s)
- Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.
| |
Collapse
|
8
|
Roth Z. Symposium review: Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci 2018; 101:3642-3654. [DOI: 10.3168/jds.2017-13389] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
|
9
|
Campen KA, Lavallee M, Combelles CM. The impact of bisphenol S on bovine granulosa and theca cells. Reprod Domest Anim 2018; 53:450-457. [PMID: 29330967 PMCID: PMC5847463 DOI: 10.1111/rda.13130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Bisphenol S (BPS) is an endocrine-disrupting chemical with multiple potential mechanisms of action, including as an oestrogen receptor agonist. BPS is increasingly used in plastics and thermal receipts as a substitute for bisphenol A, which has been phased out due to concerns about human health implications. The ability of BPS to alter female reproductive function in mammals has not been widely studied, despite the importance of normal hormone signalling for female reproduction. The aim of this study was to investigate how BPS (in a wide range of doses, including very low doses) affects granulosa cell and theca cell steroid hormone production and cell viability in the bovine. Granulosa cell oestradiol production was stimulated when cells were exposed to 100 μM BPS under basal conditions, but there was no effect of BPS when cells were stimulated with follicle-stimulating hormone (FSH). Additionally, there was no effect of BPS on granulosa cell progesterone production or cell viability under basal or FSH-stimulated conditions. BPS did not affect theca cell androstenedione or progesterone production, or theca cell viability under basal or luteinizing hormone-stimulated conditions. This study suggests for the first time that BPS may alter oestradiol production by bovine granulosa cells, albeit at a concentration that is unlikely to be physiologically relevant. Further studies are needed to determine the effects of BPS on the bovine oocyte and on other functions of follicular cells.
Collapse
Affiliation(s)
| | - Muriel Lavallee
- Biology Department, Middlebury College, Middlebury, Vermont, United States of America
| | | |
Collapse
|
10
|
Guo D, Wang Y, Qian Y, Chen C, Jiao B, Cai L, Wang Q. Joint acute and endocrine disruptive toxicities of malathion, cypermethrin and prochloraz to embryo-larval zebrafish, Danio rerio. CHEMOSPHERE 2017; 166:63-71. [PMID: 27684438 DOI: 10.1016/j.chemosphere.2016.09.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 05/18/2023]
Abstract
It remains a daunting challenge to determine ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) in environmental toxicology. In the present study, we investigated acute and endocrine disruptive toxicities of cypermethrin (CPM), malathion (MAL), prochloraz (PRO) and their binary mixtures of MAL + CPM and MAL + PRO to the early life stages of zebrafish. In the acute lethal toxicity test, three pesticides exhibited different levels of toxicity to zebrafish larvae, and the order of toxicity was as follows: CPM > PRO > MAL. The binary mixture of MAL + CPM displayed a synergistic effect on zebrafish larvae after exposure for 24, 48, 72 and 96 h. However, binary mixture of MAL + PRO showed an antagonistic effect. To evaluate the estrogenic effect, the expression of genes in the hypothalamic-pituitary-gonadal axis was assessed after zebrafish embryos were exposed to CPM, MAL, PRO and their binary mixtures from blastula stage (1 h post-fertilization, 1 hpf) to 14 dpf (14 d post-fertilization). Our data indicated that the transcription patterns of many key genes (vtg1, vtg2, era, erβ1, erβ2, cyp19a1a and cyp19a1b) were affected in hatched zebrafish after exposure to CPM, MAL and PRO. Moreover, following exposure to binary mixtures of 1000 μg/L MAL +4 μg/L CPM and 1000 μg/L MAL +900 μg/L PRO, the gene expressions were significantly changed compared with the individual pesticides. Our data provided a better understanding of bidirectional interactions of toxic response induced by these pesticides.
Collapse
Affiliation(s)
- Dongmei Guo
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chen Chen
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bining Jiao
- Citrus Research Institute c/o Key Laboratory of Horticulture Science for Southern Mountainious Regions of Ministry of Education, Southwest University, Chongqing 400715, China
| | - Leiming Cai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Rich AL, Phipps LM, Tiwari S, Rudraraju H, Dokpesi PO. The Increasing Prevalence in Intersex Variation from Toxicological Dysregulation in Fetal Reproductive Tissue Differentiation and Development by Endocrine-Disrupting Chemicals. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:163-171. [PMID: 27660460 PMCID: PMC5017538 DOI: 10.4137/ehi.s39825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
An increasing number of children are born with intersex variation (IV; ambiguous genitalia/hermaphrodite, pseudohermaphroditism, etc.). Evidence shows that endocrine-disrupting chemicals (EDCs) in the environment can cause reproductive variation through dysregulation of normal reproductive tissue differentiation, growth, and maturation if the fetus is exposed to EDCs during critical developmental times in utero. Animal studies support fish and reptile embryos exhibited IV and sex reversal when exposed to EDCs. Occupational studies verified higher prevalence of offspring with IV in chemically exposed workers (male and female). Chemicals associated with endocrine-disrupting ability in humans include organochlorine pesticides, poly-chlorinated biphenyls, bisphenol A, phthalates, dioxins, and furans. Intersex individuals may have concurrent physical disorders requiring lifelong medical intervention and experience gender dysphoria. An urgent need exists to determine which chemicals possess the greatest risk for IV and the mechanisms by which these chemicals are capable of interfering with normal physiological development in children.
Collapse
Affiliation(s)
- Alisa L. Rich
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
- World Health Organization Chemical Risk Assessment Network Member, Geneva, Switzerland
| | - Laura M. Phipps
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Sweta Tiwari
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Hemanth Rudraraju
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Philip O. Dokpesi
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| |
Collapse
|
12
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
13
|
Bean TG, Boxall ABA, Lane J, Herborn KA, Pietravalle S, Arnold KE. Behavioural and physiological responses of birds to environmentally relevant concentrations of an antidepressant. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0575. [PMID: 25405964 DOI: 10.1098/rstb.2013.0575] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many wildlife species forage on sewage-contaminated food, for example, at wastewater treatment plants and on fields fertilized with sewage sludge. The resultant exposure to human pharmaceuticals remains poorly studied for terrestrial species. On the basis of predicted exposure levels in the wild, we administered the common antidepressant fluoxetine (FLUOX) or control treatment via prey to wild-caught starlings (Sturnus vulgaris) for 22 weeks over winter. To investigate responses to fluoxetine, birds were moved from their group aviaries into individual cages for 2 days. Boldness, exploration and activity levels showed no treatment effects but controls and FLUOX birds habituated differently to isolation in terms of the concentration of corticosterone (CORT) metabolites in faeces. The controls that excreted higher concentrations of CORT metabolites on day 1 lost more body mass by day 2 of isolation than those which excreted lower levels of CORT metabolites. CORT metabolites and mass loss were unrelated in FLUOX birds. When we investigated the movements of birds in their group aviaries, we found the controls made a higher frequency of visits to food trays than FLUOX birds around the important foraging periods of sunrise and sunset, as is optimal for wintering birds. Although individual variability makes interpreting the sub-lethal endpoints measured challenging, our data suggest that fluoxetine at environmentally relevant concentrations can significantly alter behaviour and physiology.
Collapse
Affiliation(s)
- Tom G Bean
- Environment Department, University of York, York YO10 5DD, UK
| | | | - Julie Lane
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency, York YO41 1LZ, UK
| | - Katherine A Herborn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
14
|
Kalo D, Hadas R, Furman O, Ben-Ari J, Maor Y, Patterson DG, Tomey C, Roth Z. Carryover Effects of Acute DEHP Exposure on Ovarian Function and Oocyte Developmental Competence in Lactating Cows. PLoS One 2015; 10:e0130896. [PMID: 26154164 PMCID: PMC4496077 DOI: 10.1371/journal.pone.0130896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022] Open
Abstract
We examined acute exposure of Holstein cows to di(2-ethylhexyl) phthalate (DEHP) and its carryover effects on ovarian function and oocyte developmental competence. Synchronized cows were tube-fed with water or 100 mg/kg DEHP per day for 3 days. Blood, urine and milk samples were collected before, during and after DEHP exposure to examine its clearance pattern. Ovarian follicular dynamics was monitored through an entire estrous cycle by ultrasonographic scanning. Follicular fluids were aspirated from the preovulatory follicles on days 0 and 29 of the experiment and analyzed for phthalate metabolites and estradiol concentration. The aspirated follicular fluid was used as maturation medium for in-vitro embryo production. Findings revealed that DEHP impairs the pattern of follicular development, with a prominent effect on dominant follicles. The diameter and growth rate of the first- and second-wave dominant follicles were lower (P < 0.05) in the DEHP-treated group. Estradiol concentration in the follicular fluid was lower in the DEHP-treated group than in controls, and associated with a higher number of follicular pathologies (follicle diameter >25 mm). The pattern of growth and regression of the corpus luteum differed between groups, with a lower volume in the DEHP-treated group (P < 0.05). The follicular fluid aspirated from the DEHP-treated group, but not the controls, contained 23 nM mono(2-ethylhexyl) phthalate. Culturing of cumulus oocyte complexes in the follicular fluid aspirated from DEHP-treated cows reduced the proportion of oocytes progressing to the MII stage, and the proportions of 2- to 4-cell-stage embryos (P < 0.04) and 7-day blastocysts (P < 0.06). The results describe the risk associated with acute exposure to DEHP and its deleterious carryover effects on ovarian function, nuclear maturation and oocyte developmental competence.
Collapse
Affiliation(s)
- Dorit Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
- Center of Excellence in Agriculture and Environmental Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | - Ron Hadas
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | - Ori Furman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | - Julius Ben-Ari
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | - Yehoshua Maor
- Center of Excellence in Agriculture and Environmental Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | | | - Cynthia Tomey
- AXYS Analytical Services Inc., Sidney, British Columbia, V8L 5X2, Canada
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
- Center of Excellence in Agriculture and Environmental Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
15
|
Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol 2014; 49:117-35. [DOI: 10.1016/j.reprotox.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
|
16
|
Padmanabhan V, Veiga-Lopez A. Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 2014; 92:3199-210. [PMID: 25074449 PMCID: PMC4153374 DOI: 10.2527/jas.2014-7637] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Collapse
Affiliation(s)
- V Padmanabhan
- Departments of Pediatrics Obstetrics and Gynecology Molecular and Integrative Physiology Environmental Health Sciences, The University of Michigan, Ann Arbor 48108
| | | |
Collapse
|
17
|
Validated ultra high performance liquid chromatography-tandem mass spectrometry method for quantitative analysis of total and free thyroid hormones in bovine serum. J Chromatogr A 2014. [DOI: 10.1016/j.chroma.2014.04.032 pmid: 24786658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Validated ultra high performance liquid chromatography-tandem mass spectrometry method for quantitative analysis of total and free thyroid hormones in bovine serum. J Chromatogr A 2014; 1345:164-73. [DOI: 10.1016/j.chroma.2014.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
|
19
|
Aitkenhead MJ, Rhind SM, Zhang ZL, Kyle CE, Coull MC. Neural network integration of field observations for soil endocrine disruptor characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:240-248. [PMID: 24036219 DOI: 10.1016/j.scitotenv.2013.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
A neural network approach was used to predict the presence and concentration of a range of endocrine disrupting compounds (EDCs), based on field observations. Soil sample concentrations of endocrine disrupting compounds (EDCs) and site environmental characteristics, drawn from the National Soil Inventory of Scotland (NSIS) database, were used. Neural network models were trained to predict soil EDC concentrations using field observations for 184 sites. The results showed that presence/absence and concentration of several of the EDCs, mostly no longer in production, could be predicted with some accuracy. We were able to predict concentrations of seven of 31 compounds with r(2) values greater than 0.25 for log-normalised values and of eight with log-normalised predictions converted to a linear scale. Additional statistical analyses were carried out, including Root Mean Square Error (RMSE), Mean Error (ME), Willmott's index of agreement, Percent Bias (PBIAS) and ratio of root mean square to standard deviation (RSR). These analyses allowed us to demonstrate that the neural network models were making meaningful predictions of EDC concentration. We identified the main predictive input parameters in each case, based on a sensitivity analysis of the trained neural network model. We also demonstrated the capacity of the method for predicting the presence and level of EDC concentration in the field, identified further developments required to make this process as rapid and operator-friendly as possible and discussed the potential value of a system for field surveys of soil composition.
Collapse
Affiliation(s)
- M J Aitkenhead
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK.
| | | | | | | | | |
Collapse
|
20
|
Rhind SM, Kyle CE, Ruffie H, Calmettes E, Osprey M, Zhang ZL, Hamilton D, McKenzie C. Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:262-270. [PMID: 23896644 DOI: 10.1016/j.envpol.2013.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured.
Collapse
Affiliation(s)
- S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bellingham M, Amezaga MR, Mandon-Pepin B, Speers CJ, Kyle CE, Evans NP, Sharpe RM, Cotinot C, Rhind SM, Fowler PA. Exposure to chemical cocktails before or after conception--- the effect of timing on ovarian development. Mol Cell Endocrinol 2013; 376:156-72. [PMID: 23791816 PMCID: PMC3731555 DOI: 10.1016/j.mce.2013.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022]
Abstract
Exposure of female fetuses to environmental chemicals (ECs) during pregnancy results in a disturbed ovarian adult phenotype. We investigated the influence of pre- and/or post-conception exposure to low-level mixtures of ECs on the structure and function of the fetal ovine ovary. We examined ovarian morphology, expression of oocyte and granulosa cell-specific genes and proteome. Female fetuses were collected at day 110 of gestation, from dams exposed continuously until, and after mating, by grazing in pastures treated with sewage sludge as a fertiliser (TT) or in control fields treated with inorganic fertiliser (CC). In addition, in a cross-over design, fetal ovaries were collected from dams maintained on sludge pastures up to the time of mating but then transferred to control pastures (TC) and, reciprocally, those transferred from control to treated pastures at mating (CT). On examination, the proportion of type 1a follicles (activating primordial follicles) was significantly lower in animals from the CT groups compared with CC and TT groups (P<0.05). Of the 23 ovarian gene transcripts studied, 14 were altered in the ovaries of exposed fetuses (CT, TC, and TT) relative to controls, with the largest number of changes observed in cross-exposure pattern groups (CT or TC). Continuous EC exposure (TT) produced fewer transcript alterations and only two genes (INHBA and GSN) presented differential profiles between CC and TT. Fetal ovarian proteome analysis (2-DE gels) showed, across all exposure groups, 86 differentially expressed protein spots compared to controls. Animals in the CT group exhibited the highest number (53) while TC and TT presented the same number of affected protein spots (42). Fetal ovarian proteins with altered expression included MVP (major vault protein) and several members of the heat-shock family (HSPA4L, HSP90AA1 and HSF1). The present findings indicate that continuous maternal EC exposure before and during gestation, are less deleterious for fetal ovarian development than a change in maternal EC exposure between pre and post-conception. The pathways by which the ovary responds to this chemical stress were common in TT, CT, TC exposed foetuses. In addition to the period of pregnancy, the pre-conception period appears also as crucial for conditioning long-term effects of EC exposure on ovarian development and primordial follicle reserve and hence future fertility.
Collapse
Affiliation(s)
- Michelle Bellingham
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria R. Amezaga
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Beatrice Mandon-Pepin
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Christopher J.B. Speers
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol E. Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Neil P. Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard M. Sharpe
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Stewart M. Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Paul A. Fowler
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
22
|
Fortune JE, Yang MY, Allen JJ, Herrick SL. Triennial Reproduction Symposium: the ovarian follicular reserve in cattle: what regulates its formation and size? J Anim Sci 2013; 91:3041-50. [PMID: 23736047 PMCID: PMC5418586 DOI: 10.2527/jas.2013-6233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ovarian follicular reserve has been linked to fertility in cattle. Young adult cattle with low vs. high numbers of antral follicles ≥ 3 mm in diameter in follicular waves also have fewer preantral follicles and decreased fertility. This underscores the importance of understanding the factors that regulate early follicular development and establish the ovarian follicular reserve, but little is known about how the follicular reserve is first established. In ruminants and humans, follicles form during fetal life, but there is a gap (about 50 d in cattle) between the appearance of the first primordial follicles and the first growing, primary follicles. In this review we present evidence that in cattle, fetal ovarian steroids (i.e., estradiol and progesterone) are negative regulators of both follicle formation and of the acquisition by newly formed follicles of the capacity to activate (i.e., initiate growth). The results indicate that capacity to activate is linked to the completion of meiotic prophase I by the oocyte. The inhibitory effects of estradiol on follicle activation were found to be reversible and correlated with inhibition of the progression of meiotic prophase I. Fetal bovine ovaries produce steroid hormones and production varies considerably during gestation and in a pattern consistent with the hypothesis that they inhibit follicle formation and capacity of newly formed follicles to activate in vivo. However, little was known about how steroid production is regulated. In our studies, both LH and FSH stimulated progesterone and estradiol production by ovarian pieces in vitro. The addition of testosterone to the culture medium enhanced estradiol production, especially when FSH was also present, but inhibited progesterone production, even in the presence of gonadotropins. Evidence is also presented for effects of maternal nutrition and health and for potential effects of estrogenic endocrine-disrupting chemicals on the size of the ovarian follicular reserve established during fetal life. In summary, fetal ovarian steroids may be important regulators of the early stages of follicular development in cattle. Therefore, external factors that alter steroid production or action may affect the size of the ovarian follicular reserve.
Collapse
Affiliation(s)
- J E Fortune
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
23
|
Herreros MA, Gonzalez-Bulnes A, Iñigo-Nuñez S, Contreras-Solis I, Ros JM, Encinas T. Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep. Reprod Biol 2013; 13:66-74. [DOI: 10.1016/j.repbio.2013.01.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 10/27/2022]
|
24
|
Introduction to Organic Contaminants in Soil: Concepts and Risks. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2013. [DOI: 10.1007/698_2012_208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Petro E, Leroy J, Van Cruchten S, Covaci A, Jorssen E, Bols P. Endocrine disruptors and female fertility: Focus on (bovine) ovarian follicular physiology. Theriogenology 2012; 78:1887-900. [DOI: 10.1016/j.theriogenology.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/03/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
26
|
Grossman D, Kalo D, Gendelman M, Roth Z. Effect of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate on in vitro developmental competence of bovine oocytes. Cell Biol Toxicol 2012; 28:383-96. [PMID: 22956148 DOI: 10.1007/s10565-012-9230-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
In the last decade, potential exposure of humans and animals to industrial chemicals and pesticides has been a growing concern. In the present study, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) were used to model the effects of endocrine-disrupting compounds and their risk in relation to early embryonic losses. Exposure of cumulus oocyte complexes during maturation to 50 μM MEHP reduced the proportion of oocytes that underwent nuclear maturation (p < 0.05) and increased the proportion of apoptotic oocytes (p < 0.05). Furthermore, phthalates reduced cleavage rate in the MEHP-treated group (p < 0.05) and the proportion of embryos developing to the blastocyst stage in both DEHP- and MEHP-treated groups (p < 0.05). The total cell count for blastocysts developing from MEHP-treated oocytes was lower than in controls (p < 0.05). Exposure of oocytes to MEHP during maturation reduced (p < 0.05) the expression of ASAH1 (an anti-apoptotic factor), CCNA2 (involved in cell cycle control), and POU5F1 (responsible for pluripotency) in matured oocytes. Furthermore, the reduced mRNA expression of POU5F1 and ASAH1 lasted into two-cell stage embryos (p < 0.05). Phthalate-induced alterations in POU5F1, ASAH1, and CCNA2 expression might explain in part the reduced developmental competence of MEHP-treated oocytes.
Collapse
Affiliation(s)
- D Grossman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
27
|
Abstract
Summary
Collapse
|
28
|
Favetta L, Villagómez D, Iannuzzi L, Di Meo G, Webb A, Crain S, King W. Disorders of Sexual Development and Abnormal Early Development in Domestic Food-Producing Mammals: The Role of Chromosome Abnormalities, Environment and Stress Factors. Sex Dev 2012; 6:18-32. [DOI: 10.1159/000332754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Bellingham M, McKinnell C, Fowler PA, Amezaga MR, Zhang Z, Rhind SM, Cotinot C, Mandon-Pepin B, Evans NP, Sharpe RM. Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. ACTA ACUST UNITED AC 2011; 35:317-29. [PMID: 22150464 PMCID: PMC3440584 DOI: 10.1111/j.1365-2605.2011.01234.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to ubiquitous, environmental chemicals (ECs) has been hypothesized as a cause for declining male reproductive health. Understanding the long-term effects of EC exposure on reproductive health in humans requires animal models and exposure to ‘real life’, environmentally relevant, mixtures during development, a life stage of particular sensitivity to ECs. The aim of this study was to evaluate the effects of in utero and post-natal exposure to environmentally relevant levels of ECs, via sewage sludge application to pasture, on the adult male sheep testis. Hormones, liver concentrations of candidate ECs and Sertoli and germ cell numbers in testes of adult rams that were exposed to ECs in sewage sludge in utero, and until weaning via maternal exposure, and post-weaning via grazing pastures fertilized with sewage sludge, were quantified. Evaluated as a single group, exposure to sludge ECs was without significant effect on most parameters. However, a more detailed study revealed that 5 of 12 sludge-exposed rams exhibited major spermatogenic abnormalities. These consisted of major reductions in germ cell numbers per testis or per Sertoli cell and more Sertoli cell-only tubules, when compared with controls, which did not show any such changes. The sludge-related spermatogenic changes in the five affected animals were significantly different from controls (p < 0.001); Sertoli cell number was unaffected. Hormone profiles and liver candidate EC concentrations were not measurably affected by exposure. We conclude that developmental exposure of male sheep to real-world mixtures of ECs can result in major reduction in germ cell numbers, indicative of impaired sperm production, in a proportion of exposed males. The individual-specific effects are presumed to reflect EC effects on a heterogeneous population in which some individuals may be more susceptible to adverse EC effects. Such effects of EC exposure in humans could have adverse consequences for sperm counts and fertility in some exposed males.
Collapse
Affiliation(s)
- M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rhind SM, Kyle CE, Kerr C, Osprey M, Zhang ZL. Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3850-3856. [PMID: 21767868 DOI: 10.1016/j.scitotenv.2011.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 05/31/2023]
Abstract
Liver tissue concentrations of selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) were determined in groups of Texel ewes and lambs following exposure to pastures fertilised with either sewage sludge (Treated; T) or inorganic fertiliser (Control; C). Lambs were slaughtered at the age of 6 months, in each of 3 years, while ewes were slaughtered at 5 to 6 years of age having been exposed to the respective pastures for approximately 6, 18 or 30 months, during the same, respective years, immediately before slaughter. Mean liver concentrations of very few of the chemical classes were elevated in either ewe or lamb tissue as a result of exposure of the animals to sewage sludge. Mean concentrations, in lamb liver, of chemicals of each of the classes differed significantly, but inconsistently, between years, reflecting temporal variations in exposure, although the pattern of annual change differed with individual chemical. On the other hand, in ewes, liver concentrations of many chemicals increased, significantly and consistently, with increasing duration of exposure. It was concluded that the increases in tissue concentrations with increased duration of exposure were unlikely to be sufficient to be of concern to consumers and that tissue burdens cannot be linked, easily, with the physiological effects reported previously for animals similarly exposed.
Collapse
Affiliation(s)
- S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Petro EML, Covaci A, Leroy JLMR, Dirtu AC, De Coen W, Bols PEJ. Occurrence of endocrine disrupting compounds in tissues and body fluids of Belgian dairy cows and its implications for the use of the cow as a model to study endocrine disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5423-5428. [PMID: 20709361 DOI: 10.1016/j.scitotenv.2010.07.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 07/09/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
The reproductive performance of high producing dairy cows has dropped severely throughout the last decades. It has already been suggested that the presence of endocrine disrupting compounds (EDCs) in the environment could be one of the reasons for this declining fertility. Reliable data concerning tissue and body fluid concentrations of these chemicals are thus crucial, but currently only scarcely available. Therefore, we selected dairy cows (≥6years) from diverse locations in Belgium and analysed tissues (liver, adipose tissue, muscle, kidney, and ovaria) and body fluids (serum, follicular fluid, and milk) for their content of potential EDCs, such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). Furthermore, we collected milk and serum samples from high producing dairy cows 2-3weeks post-partum to verify if the massive lipolysis required to sustain milk production is accompanied with an increase in EDC concentrations in milk and serum. Overall, contamination was very low (median sum PCBs liver: 11.7ngg(-1) lw), with follicular fluid samples showing no detectable contamination. CB 153 was present in each tissue sample. Strong correlations could be found between EDCs in the same tissue. The increased PCB concentrations observed in milk samples from high producing dairy cows could indicate that massive lipolysis can play a role in liberating and thereby increasing EDC concentrations in milk. Because concentrations of the most prevalent EDCs in dairy cow tissues and body fluids are very low, exposure to EDCs can hardly be considered as a major cause of declining fertility in high producing dairy cows in Belgium. As a result of this low contamination and the similarities between the female bovine and human reproductive physiology, in vitro studies based on Belgian dairy cow ovarian follicles can be considered as a valuable model to study the effects of EDCs on human reproduction.
Collapse
Affiliation(s)
- Evi M L Petro
- Gamete Research Center, Laboratory for Veterinary Physiology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Rhind SM, Kyle CE, Mackie C, McDonald L, Zhang Z, Duff EI, Bellingham M, Amezaga MR, Mandon-Pepin B, Loup B, Cotinot C, Evans NP, Sharpe RM, Fowler PA. Maternal and fetal tissue accumulation of selected endocrine disrupting compounds (EDCs) following exposure to sewage sludge-treated pastures before or after conception. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2010; 12:1582-93. [PMID: 20676422 PMCID: PMC3175732 DOI: 10.1039/c0em00009d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/14/2010] [Indexed: 11/23/2022]
Abstract
Liver concentrations of selected pollutant classes were determined in groups of sheep fetuses and their dams, at 55 (Experiment 1) and 110 (Experiment 2) days of gestation (term = 145 d) following exposure, throughout their breeding lives and after mating, to pasture treated with either inorganic fertiliser (control, CC) or with sewage sludge (treated, TT). In a unique study designed to separate the respective contributions of environmental sources and mobilised tissue to the available EDC burden, in additional groups of animals, pollutant burdens at 110 days gestation were assessed following exposure to the respective treatments, either throughout their breeding lives until mating, but not thereafter (TC), or only between mating and slaughter (CT) (Experiment 3). With very few exceptions, maternal and fetal liver concentrations of diethylhexyl phthalate (DEHP) and selected polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDE) and polycyclic aromatic hydrocarbons (PAHs) were not significantly affected by sludge exposure in any group. In some cases, maternal and fetal tissue EDC concentrations were different but the differences were not consistent, and maternal and fetal concentrations of none of the classes of chemical were significantly correlated. It was not possible to identify a single chemical, or class of chemical, that may be responsible for previously observed physiological effects of exposure to sludge-treated pastures. It is concluded that exposure of sheep to pastures fertilised with sewage sludge was not associated with increased liver concentrations of EDCs, irrespective of the stage of development at which they were measured and of maternal tissue mobilisation and EDC release during gestation. Thus, retrospective measurements of EDC tissue burdens could not be used to accurately assess earlier fetal EDC insults.
Collapse
Affiliation(s)
- S. M. Rhind
- Macaulay Land Use Research Institute , Craigiebuckler , Aberdeen , AB15 8QH , UK . ; Fax: +44 (0) 1224 395010 ; Tel: +44 (0) 1224 395228
| | - C. E. Kyle
- Macaulay Land Use Research Institute , Craigiebuckler , Aberdeen , AB15 8QH , UK . ; Fax: +44 (0) 1224 395010 ; Tel: +44 (0) 1224 395228
| | - C. Mackie
- Macaulay Land Use Research Institute , Craigiebuckler , Aberdeen , AB15 8QH , UK . ; Fax: +44 (0) 1224 395010 ; Tel: +44 (0) 1224 395228
| | - L. McDonald
- Macaulay Land Use Research Institute , Craigiebuckler , Aberdeen , AB15 8QH , UK . ; Fax: +44 (0) 1224 395010 ; Tel: +44 (0) 1224 395228
| | - Z. Zhang
- Macaulay Land Use Research Institute , Craigiebuckler , Aberdeen , AB15 8QH , UK . ; Fax: +44 (0) 1224 395010 ; Tel: +44 (0) 1224 395228
| | - E. I. Duff
- Biomathematics and Statistics , Scotland , Craigiebuckler , Aberdeen , AB15 8QH , Scotland, UK
| | - M. Bellingham
- Division of Cell Sciences , Institute of Comparative Medicine , University of Glasgow Veterinary School , Glasgow , G61 1QH , UK
| | - M. R. Amezaga
- Department of Obstetrics and Gynaecology , Institute of Medical Sciences , CLSM , University of Aberdeen , Foresterhill , Aberdeen , AB25 2ZD , UK
| | - B. Mandon-Pepin
- INRA , UMR 1198 , Biologie du Developpement et de la Reproduction , 78350 , Jouy-en-Josas , France
| | - B. Loup
- INRA , UMR 1198 , Biologie du Developpement et de la Reproduction , 78350 , Jouy-en-Josas , France
| | - C. Cotinot
- INRA , UMR 1198 , Biologie du Developpement et de la Reproduction , 78350 , Jouy-en-Josas , France
| | - N. P. Evans
- Division of Cell Sciences , Institute of Comparative Medicine , University of Glasgow Veterinary School , Glasgow , G61 1QH , UK
| | - R. M. Sharpe
- MRC Human Reproductive Sciences Unit , Queen's Medical Research Institute , University of Edinburgh , 47 Little France Crescent , Edinburgh , EH16 4TJ , UK
| | - P. A. Fowler
- Department of Obstetrics and Gynaecology , Institute of Medical Sciences , CLSM , University of Aberdeen , Foresterhill , Aberdeen , AB25 2ZD , UK
| |
Collapse
|
33
|
Wang X, Shang L, Wang J, Wu N, Wang S. Effect of phthalate esters on the secretion of prostaglandins (F2alpha and E2) and oxytocin in cultured bovine ovarian and endometrial cells. Domest Anim Endocrinol 2010; 39:131-6. [PMID: 20444570 DOI: 10.1016/j.domaniend.2010.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/21/2010] [Accepted: 03/21/2010] [Indexed: 11/30/2022]
Abstract
The influence of phthalate esters di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) on uterine prostaglandin (PGF2alpha and PGE2) and ovarian oxytocin secretion was investigated. Endometrial, granulosa, and luteal cells from cows on days 8-12 of the estrous cycle were treated with DEHP or MEHP (0.1, 1, or 10 ng/mL). We found that DEHP and MEHP stimulated (P < 0.05) secretion of PGF2alpha and inhibited (P < 0.001) secretion of PGE2 from endometrial cells. The ratio of PGF2alpha to PGE2 was markedly altered. The endocrine disrupting chemicals also enhanced secretion of oxytocin (P < 0.05) from ovarian cells. Our results indicated that DEHP and its metabolite MEHP could affect the process of the estrous cycle by impairing secretion of prostaglandin from the uterus and oxytocin from the ovary.
Collapse
Affiliation(s)
- Xin Wang
- Department Gynecology and Obstetrics, Beijing Military Region Main Hospital, Dongcheng District, Beijing 100700, China
| | | | | | | | | |
Collapse
|
34
|
Rhind SM, Evans NP, Bellingham M, Sharpe RM, Cotinot C, Mandon-Pepin B, Loup B, Sinclair KD, Lea RG, Pocar P, Fischer B, van der Zalm E, Hart K, Schmidt JS, Amezaga MR, Fowler PA. Effects of environmental pollutants on the reproduction and welfare of ruminants. Animal 2010; 4:1227-1239. [PMID: 20582145 PMCID: PMC2888112 DOI: 10.1017/s1751731110000595] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/02/2010] [Indexed: 12/27/2022] Open
Abstract
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.
Collapse
Affiliation(s)
- S. M. Rhind
- Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - N. P. Evans
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - M. Bellingham
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - R. M. Sharpe
- MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Cotinot
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Mandon-Pepin
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Loup
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - K. D. Sinclair
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - R. G. Lea
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - P. Pocar
- Department of Animal Science, Division of Veterinary Anatomy and Histology, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - B. Fischer
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - E. van der Zalm
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - K. Hart
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - J.-S. Schmidt
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - M. R. Amezaga
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - P. A. Fowler
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
35
|
Bellingham M, Fowler PA, Amezaga MR, Whitelaw CM, Rhind SM, Cotinot C, Mandon-Pepin B, Sharpe RM, Evans NP. Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion. J Neuroendocrinol 2010; 22:527-33. [PMID: 20236231 PMCID: PMC4959564 DOI: 10.1111/j.1365-2826.2010.01974.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin-releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long-term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function.
Collapse
Affiliation(s)
- M Bellingham
- Division of Cell Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lind PM, Oberg D, Larsson S, Kyle CE, Orberg J, Rhind SM. Pregnant ewes exposed to multiple endocrine disrupting pollutants through sewage sludge-fertilized pasture show an anti-estrogenic effect in their trabecular bone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2340-2346. [PMID: 20202673 DOI: 10.1016/j.scitotenv.2010.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 05/28/2023]
Abstract
Pregnant ewes were maintained on pastures fertilized, twice yearly, with either sewage sludge (2.25tonnes dry matter/ha; Treated; T) or inorganic fertilizer containing equivalent amounts of nitrogen (Control; C), to determine effects on maternal and fetal bone structures, density and mechanical properties of exposure to environmental concentrations of multiple endocrine disrupting compounds (EDCs) and heavy metal pollutants. The ewes were maintained on the respective pastures from the age of about 8months until they were 4-6years of age and they were slaughtered at 110d gestation. Metaphyseal parts of adult ewe femurs exhibited a significantly reduced mean, total cross sectional area (CSA, -4%; p<0.05), lower trabecular bone mineral content (BMC, mg/mm; -18%; p<0.05), trabecular bone mineral density (BMD, mg/cm(3), -8.0%; p<0.05) and trabecular CSA, mm(2), -11.1%; p<0.05) in T compared with C animals. Femurs of T ewes were stronger than those of C ewes but this may reflect greater body weights. At the mid-diaphyseal part of the fetal bones, there was a reduction in endosteal circumference (-6.7%, p<0.05) and marrow cavity area (-13.8%, p<0.05) in the female T fetuses compared with female C fetuses. In the male fetuses the mid-diaphyseal part total bone mineral content was higher (+3.0%, p<0.05) in T than in C animals. No treatment difference in biomechanical bending was detected in the fetuses. It is concluded that ewes grazing pasture fertilized with sewage sludge exhibited an anti-estrogenic effect on their trabecular bone in the form of reduced mineral content and density, despite increased body weight. It is suggested that human exposure to low levels of multiple EDCs may have implications for bone structure and human health.
Collapse
Affiliation(s)
- P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Ulleråkersvägen 40, 751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Rhind SM. Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B Biol Sci 2010; 364:3391-401. [PMID: 19833650 DOI: 10.1098/rstb.2009.0122] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.
Collapse
Affiliation(s)
- S M Rhind
- Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
38
|
Bellingham M, Fowler PA, Amezaga MR, Rhind SM, Cotinot C, Mandon-Pepin B, Sharpe RM, Evans NP. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1556-62. [PMID: 20019906 PMCID: PMC2790510 DOI: 10.1289/ehp.0900699] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/05/2009] [Indexed: 05/09/2023]
Abstract
BACKGROUND Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. OBJECTIVES We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. METHODS KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. RESULTS Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. CONCLUSIONS This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.
Collapse
Affiliation(s)
- Michelle Bellingham
- Division of Cell Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Fowler
- Centre for Reproductive Endocrinology and Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Maria R. Amezaga
- Centre for Reproductive Endocrinology and Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Corinne Cotinot
- Unité de Biologie du Dévelopement et Reproduction, Institut National de la Recherche Agronomique (INRA), Jouy en Josas, France
| | - Beatrice Mandon-Pepin
- Unité de Biologie du Dévelopement et Reproduction, Institut National de la Recherche Agronomique (INRA), Jouy en Josas, France
| | - Richard M. Sharpe
- Centre for Reproductive Biology, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil P. Evans
- Division of Cell Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Address correspondence to N. Evans, Division of Cell Sciences, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH UK. Telephone: 0141-330-5795. Fax: 0141-330-5797. E-mail:
| |
Collapse
|
39
|
Jin Y, Chen R, Sun L, Qian H, Liu W, Fu Z. Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:414-20. [PMID: 19559814 DOI: 10.1016/j.cbpc.2009.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Real-time quantitative RT-PCR was adopted to investigate the transcription of the estrogen-responsive genes in different developmental stages of zebrafish exposed to endocrine disrupting chemicals (EDCs). The lowest observed effect concentrations (LOECs) of 17beta-estradiol for inducing vtg1 transcription were 0.25, 0.5, 0.25 and <or=0.1 microg/L for embryo, larvae, juvenile and adult male zebrafish, respectively, while the LOECs of nonylphenol for induction of vtgs transcription were 50 microg/L in embryo and 100 microg/L in larvae and adult stages. The mRNA levels of the two vtgs were low in both the embryo and larvae stages, even at the highest 17beta-estradiol or nonylphenol exposure concentrations, while the mRNA levels in liver of adult zebrafish of the two vtgs were 10(2) or even 10(4) times higher than those of the control groups at the corresponding nonylphenol or 17beta-estradiol exposure concentrations. Similarity, the ERalpha and ERbeta mRNA levels in juvenile and adult zebrafish livers were also higher. Results suggest that in the early developmental stages of zebrafish might be more sensitive (low LOECs) to the presence of EDCs such as nonylphenol, but juvenile and adult zebrafish have a more effective (high induction levels). The use of zebrafish juveniles, larvae and embryos offers an alternative stage to detect EDCs.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | | | |
Collapse
|
40
|
Rhind SM, Kyle CE, Mackie C, McDonald L. Accumulation of endocrine disrupting compounds in sheep fetal and maternal liver tissue following exposure to pastures treated with sewage sludge. ACTA ACUST UNITED AC 2009; 11:1469-76. [PMID: 19657530 DOI: 10.1039/b902085c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fetal tissue concentrations of endocrine disrupting compounds (EDCs), and their relationship to maternal tissue concentrations, are largely unknown, in any species. In particular, the patterns of accumulation in the respective tissues following increased rates of environmental exposure are little known. This study was designed to determine fetal and maternal tissue concentrations of selected EDCs in sheep exposed to background, environmental concentrations of EDCs (pastures treated with inorganic fertiliser; Control; C) or to elevated, environmental concentrations (sludge-treated pastures; Treated; T). Mean log concentrations of diethylhexyl phthalate (DEHP) were similar in adult and fetal livers but there was a significant interaction between stage of development (maternal or fetal) and treatment reflecting the fact that mean concentrations were lower (P < 0.05) in C than T fetuses but not adults. Relative concentrations of polychlorinated biphenyls (PCB) in maternal and fetal tissue differed with congener; concentrations of congener 101 were higher (P < 0.05) in fetal tissue. Neither maternal nor fetal liver concentrations of any of the PCB congeners differed significantly with treatment. Polybrominated diphenyl ethers (PBDE) in the tissue were represented primarily by congeners 47 and 99. PBDE 99 concentrations were higher in maternal than fetal tissue (P = 0.01). None differed with treatment in either maternal or fetal tissues. Concentrations of many polycyclic aromatic hydrocarbons (PAH) were higher in maternal tissue but none differed with treatment in either adult or fetuses. It is concluded that sheep fetal liver EDC concentrations are variably related to those of their dams and in some cases appear to be selectively accumulated in fetuses. Differential accumulation of individual pollutants may have important implications for the assessment of risk from exposure.
Collapse
Affiliation(s)
- S M Rhind
- Macaulay Institute, Craigiebuckler, Aberdeen, UK.
| | | | | | | |
Collapse
|
41
|
Lind PM, Gustafsson M, Hermsen SAB, Larsson S, Kyle CE, Orberg J, Rhind SM. Exposure to pastures fertilised with sewage sludge disrupts bone tissue homeostasis in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2200-2208. [PMID: 19162300 DOI: 10.1016/j.scitotenv.2008.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/12/2008] [Accepted: 12/14/2008] [Indexed: 05/27/2023]
Abstract
The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter. T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+10.5%, p<0.01) compared with C rams but had a reduced total cross sectional area (CSA, -11.5%, p<0.001), trabecular CSA (-17.1%, p<0.01) and periosteal circumference (-5.7%, p<0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+13.8%, p<0.0001) and stiffness (+6.4%, p<0.01) but reduced total CSA (-12.1%, p<0.0001) and marrow cavity (-25.8%, p<0.0001), relative to C rams. In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (-17.3%, p<0.01) and stiffness (-10.7%, p<0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males.
Collapse
Affiliation(s)
- P Monica Lind
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Jin Y, Chen R, Sun L, Wang W, Zhou L, Liu W, Fu Z. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. CHEMOSPHERE 2009; 74:1238-1244. [PMID: 19095286 DOI: 10.1016/j.chemosphere.2008.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/01/2008] [Accepted: 11/08/2008] [Indexed: 05/27/2023]
Abstract
Enantioselectivity in the separation, toxicology, biodegradation and estrogenic activity of chiral pesticides has become a groundbreaking topic recently. In this study, real-time, quantitative polymerase chain reaction was adapted to investigate the induction of estrogen-responsive gene expression in embryo-larval zebrafish after 7 d of exposure to permethrin (PM) enantiomers. The PM enantiomers were completely separated by a chiral HPLC column. The in vivo study found that a 7 d exposure to 250 ng L(-1) PM racemate and its enantiomers was sufficient to stimulate vtg1, esralpha and cyp19b expression, while 1000 ng L(-1) exposure significantly induced gene expression in a pattern similar to that of the control (50 ng L(-1) E2), except for vtg2. Significant differences were detected between the enantiomers in the induction of estrogen-responsive gene expression. At the exposure level of 1000 ng L(-1), the vtg1, esralpha and cyp19b responses to the (-)-trans enantiomer were about 3.2-, 1.8- and 1.5-fold higher, respectively, than those in the group treated with (+)-trans enantiomer (p < 0.05). In the two cis-enantiomer treatment groups, (+)-cis increased the mRNA level of the cyp19b gene about 1.5-fold higher than the (-)-cis-enantiomer did. Of the four enantiomers, the (-)-trans enantiomer showed the greatest estrogenic activity. The results strongly indicate the occurrence of significant enantioselectivity in estrogenic activity of PM enantiomers exposed to embryo-larval zebrafish. These findings add to a growing body of evidence concerning enantioselectivity in the toxicity, endocrine-disrupting activity, and environmental biodegradation of chiral pesticides.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Hall CM, Rhind SM, Wilson MJ. The potential for use of gastropod molluscs as bioindicators of endocrine disrupting compounds in the terrestrial environment. ACTA ACUST UNITED AC 2009; 11:491-7. [DOI: 10.1039/b804320e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Rhind SM. Endocrine disruptors and other food-contaminating environmental pollutants as risk factors in animal reproduction. Reprod Domest Anim 2008; 43 Suppl 2:15-22. [PMID: 18638101 DOI: 10.1111/j.1439-0531.2008.01138.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pollutants of many chemical classes, derived primarily from anthropogenic activities, are ubiquitous in the environment, persistent, biologically available and can exert adverse effects on the reproductive and other, indirectly related, physiological systems. Food is generally considered to be the major route of animal exposure in vertebrate species but the relative contributions of other routes of exposure such as through lungs, gills or skin are not well studied and may be of importance for certain animal groups, depending on their immediate environment. Animals are particularly sensitive to exposure during developmental stages but the pattern of exposure to chemicals is likely to be different to that of adults. Quantification of the risk posed by the ingestion of pollutants in food is complex and depends on many factors including species, diet composition, duration of exposure to the food, efficiency of pollutant absorption, subsequent metabolism, sensitivity of target organs and stage of development. While the effects of high doses of single chemicals are proven, dietary exposure to pollutants generally involves prolonged, low-level exposure to a large number of compounds, each of which has different chemical characteristics, exerts different biological effects and is present at varying concentrations. Thus, while exposure to pollutants through feed is undoubtedly a significant risk factor for many species and may be the most important one for many terrestrial vertebrates, other routes of exposure may be more important in other groups.
Collapse
|
45
|
Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17{alpha}-ethynylestradiol. Proc Natl Acad Sci U S A 2008; 105:19786-91. [PMID: 19066213 DOI: 10.1073/pnas.0808333105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental contaminants that mimic native estrogens (i.e., environmental estrogens) are known to significantly impact a wide range of vertebrate species and have been implicated as a source for increasing human male reproductive deficiencies and diseases. Despite the widespread occurrence of environmental estrogens and recognized detrimental effects on male vertebrate reproduction, no specific mechanism has been determined indicating how reduced fertility and/or fecundity is achieved. Previous studies show that male rainbow trout, Oncorhynchus mykiss, exposed to the environmental estrogen 17alpha-ethynylestradiol (EE2) before gamete formation and fertilization produce progeny with significantly reduced embryonic survival. To determine whether this observed decrease results from sperm chromosome alterations during spermatogenesis, male rainbow trout were exposed to 10 ng of EE2/l for 50 days. After exposure, semen was collected and sperm aneuploidy levels analyzed with two chromosome markers by fluorescent in situ hybridization. In vitro fertilizations were also conducted by using control and exposed sperm crossed to eggs from an unexposed female for offspring analysis. Evaluations for nucleolar organizer region number and karyotype were performed on developing embryos to determine whether sperm aneuploidy translated into embryonic aneuploidy. Results conclusively show increased aneuploid sperm formation due to EE2 exposure. Additionally, embryonic cells from propagated progeny of individuals possessing elevated sperm aneuploidy display high levels of embryonic aneuploidy. This study concludes that EE2 exposure in sexually developing male rainbow trout increases levels of aneuploid sperm, providing a mechanism for decreased embryonic survival and ultimately diminished reproductive success in EE2 exposed males.
Collapse
|
46
|
Jin Y, Wang W, Xu C, Fu Z, Liu W. Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 88:146-152. [PMID: 18499281 DOI: 10.1016/j.aquatox.2008.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 05/26/2023]
Abstract
Despite recent studies on enantioselectivity in acute aquatic toxicity and biodegradation of some pyrethroid pesticides, including permethrin (PM), enantiomer-specific estrogenic activity has been the subject of limited research. In this study, real-time quantitative RT-PCR was adopted to investigate induction of hepatic expression of mRNA of selected genes in male adult zebrafish after short-term exposure to PM enantiomers. The PM enantiomers were completely separated by a chiral HPLC column. The in vivo study found that a 2-day exposure to 100 ng/l PM racemate and its enantiomers was sufficient to stimulate transcription of two vitellogenin (vtg) genes, while 250 ng/l exposure significantly induced gene transcription in a pattern and content similar to that of the control (50 ng/l 17beta-estradiol (E2)). Significant differences were detected between the enantiomers in induction of hepatic gene transcription. At exposure level of 500 ng/l, the response to the (-)-trans enantiomer was 2.6 and 1.8 times greater than the (+)-trans enantiomer based on zebrafish vtg1 and vtg2 mRNA induction (p<0.05), respectively. Of the four enantiomers, the (-)-trans enantiomer showed the greatest estrogenic activity, with a relative activity 4-fold higher than the 50 ng/l E2 group. The results strongly suggested the occurrence of significant enantioselectivity in estrogenic activity of PM enantiomers. It would appear from our results and previous studies that using chiral pesticide as a single compound would increase the environmental risk of chronic toxicity, such as endocrine disruption, to humans and wildlife.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou 310032, China
| | | | | | | | | |
Collapse
|
47
|
Rhind SM, Kyle CE, Mackie C, Telfer G. Effects of exposure of ewes to sewage sludge-treated pasture on phthalate and alkyl phenol concentrations in their milk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 383:70-80. [PMID: 17582469 DOI: 10.1016/j.scitotenv.2007.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 05/15/2023]
Abstract
Concentrations of endocrine disrupting compounds (EDCs) of two classes, the alkyl phenols (nonyl phenol (NP) and octyl phenol (OP)) and phthalates, in the milk of ewes grazed on pastures fertilised with sewage sludge or with inorganic fertiliser were determined at three stages of lactation. Milk concentrations of these compounds varied greatly between individuals and stages of lactation for both nonyl phenol (NP; < 30-> 1000 microg/kg DM) and total phthalates (< 200-> 20,000 microg/kg DM). Overall, there was no significant effect of sludge treatment on milk concentrations of chemicals of either class. Significant differences between years were recorded in mean log concentrations of both NP (P < 0.001) and total phthalate (P < 0.001) but there were no consistent changes with stage of lactation, ewe body condition or age in mean milk concentrations of either class of compound. Milk concentrations of NP were low, and little higher than environmental concentrations, while phthalate concentrations were approximately two-fold higher than environmental concentrations. Estimated daily intakes of phthalates were considered to be of potential, biological significance with respect to the health of animal and human consumers. It is concluded that the importance of milk as a route of EDC exposure in growing ruminants differs with class of compound and individual animal. Exposure of the offspring to these EDCs may be transiently exacerbated by exposure of their dams to additional EDCs via the application of sewage sludge to their pasture.
Collapse
|