1
|
Samuel CS, Li Y, Wang Y, Widdop RE. Functional crosstalk between angiotensin receptors (types 1 and 2) and relaxin family peptide receptor 1 (RXFP1): Implications for the therapeutic targeting of fibrosis. Br J Pharmacol 2024; 181:2302-2318. [PMID: 36560925 DOI: 10.1111/bph.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Class A, rhodopsin-like, G-protein-coupled receptors (GPCRs) are by far the largest class of GPCRs and are integral membrane proteins used by various cells to convert extracellular signals into intracellular responses. Initially, class A GPCRs were believed to function as monomers, but a growing body of evidence has emerged to suggest that these receptors can function as homodimers and heterodimers and can undergo functional crosstalk to influence the actions of agonists or antagonists acting at each receptor. This review will focus on the angiotensin type 1 (AT1) and type 2 (AT2) receptors, as well as the relaxin family peptide receptor 1 (RXFP1), each of which have their unique characteristics but have been demonstrated to undergo some level of interaction when appropriately co-expressed, which influences the function of each receptor. In particular, this receptor functional crosstalk will be discussed in the context of fibrosis, the tissue scarring that results from a failed wound-healing response to injury, and which is a hallmark of chronic disease and related organ dysfunction. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Blessing WA, Okajima SM, Cubria MB, Villa-Camacho JC, Perez-Viloria M, Williamson PM, Sabogal AN, Suarez S, Ang LH, White S, Flynn E, Rodriguez EK, Grinstaff MW, Nazarian A. Intraarticular injection of relaxin-2 alleviates shoulder arthrofibrosis. Proc Natl Acad Sci U S A 2019; 116:12183-12192. [PMID: 31160441 PMCID: PMC6589647 DOI: 10.1073/pnas.1900355116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthrofibrosis is a prevalent condition affecting greater than 5% of the general population and leads to a painful decrease in joint range of motion (ROM) and loss of independence due to pathologic accumulation of periarticular scar tissue. Current treatment options are limited in effectiveness and do not address the underlying cause of the condition: accumulation of fibrotic collagenous tissue. Herein, the naturally occurring peptide hormone relaxin-2 is administered for the treatment of adhesive capsulitis (frozen shoulder) and to restore glenohumeral ROM in shoulder arthrofibrosis. Recombinant human relaxin-2 down-regulates type I collagen and α smooth muscle actin production and increases intracellular cAMP concentration in human fibroblast-like synoviocytes, consistent with a mechanism of extracellular matrix degradation and remodeling. Pharmacokinetic profiling of a bolus administration into the glenohumeral joint space reveals the brief systemic and intraarticular (IA) half-lives of relaxin-2: 0.96 h and 0.62 h, respectively. Furthermore, using an established, immobilization murine model of shoulder arthrofibrosis, multiple IA injections of human relaxin-2 significantly improve ROM, returning it to baseline measurements collected before limb immobilization. This is in contrast to single IA (sIA) or multiple i.v. (mIV) injections of relaxin-2 with which the ROM remains constrained. The histological hallmarks of contracture (e.g., fibrotic adhesions and reduced joint space) are absent in the animals treated with multiple IA injections of relaxin-2 compared with the untreated control and the sIA- and mIV-treated animals. As these findings show, local delivery of relaxin-2 is an innovative treatment of shoulder arthrofibrosis.
Collapse
Affiliation(s)
- William A Blessing
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Medicine, Boston University, Boston, MA 02215
| | - Stephen M Okajima
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - M Belen Cubria
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Juan C Villa-Camacho
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Miguel Perez-Viloria
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Patrick M Williamson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Angie N Sabogal
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Sebastian Suarez
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Lay-Hong Ang
- Confocal Imaging and IHC Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Suzanne White
- Confocal Imaging and IHC Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Evelyn Flynn
- Orthopedic Research Laboratories, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Edward K Rodriguez
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115;
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215;
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Medicine, Boston University, Boston, MA 02215
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115;
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| |
Collapse
|
3
|
Idrizaj E, Garella R, Francini F, Squecco R, Baccari MC. Relaxin influences ileal muscular activity through a dual signaling pathway in mice. World J Gastroenterol 2018; 24:882-893. [PMID: 29491682 PMCID: PMC5829152 DOI: 10.3748/wjg.v24.i8.882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the signaling pathways involved in the relaxin (RLX) effects on ileal preparations from mice through mechanical and electrophysiological experiments.
METHODS For mechanical experiments, ileal preparations from female mice were mounted in organ baths containing Krebs-Henseleit solution. The mechanical activity was recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrophysiological measurements were performed in current- and voltage-clamp conditions by a microelectrode inserted in a single smooth muscle cell (SMC) of the ileal longitudinal layer. Both the membrane passive properties and inward voltage-dependent L-type Ca2+ currents were recorded using suitable solutions and voltage stimulation protocols.
RESULTS Mechanical experiments showed that RLX induced a decay of the basal tension and a reduction in amplitude of the spontaneous contractions. The effects of RLX were partially reduced by 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ) or 9-cyclopentyladenine mesylate (9CPA), inhibitors of guanylate cyclase (GC) and adenylate cyclase (AC), respectively, and were abolished in the concomitant presence of both drugs. Electrophysiological experiments demonstrated that RLX directly influenced the biophysical properties of ileal SMCs, decreasing the membrane conductance, hyperpolarizing the resting membrane potential, reducing the L-type calcium current amplitude and affecting its kinetics. The voltage dependence of the current activation and inactivation time constant was significantly speeded by RLX. Each electrophysiological effect of RLX was reduced by ODQ or 9CPA, and abolished in the concomitant presence of both drugs as observed in mechanical experiments.
CONCLUSION Our new findings demonstrate that RLX influences ileal muscle through a dual mechanism involving both GC and AC.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
4
|
Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, Portolés M, Roselló-Lletí E, Rivera M, González-Juanatey JR, Lago F. Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol 2017; 8:599. [PMID: 28868039 PMCID: PMC5563388 DOI: 10.3389/fphys.2017.00599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Miguel Rivera
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - José R. González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| |
Collapse
|
5
|
Glynn DJ, Heng K, Russell DL, Sharkey DJ, Robertson SA, Anand-Ivell R, Ivell R. Male Seminal Relaxin Contributes to Induction of the Post-mating Cytokine Response in the Female Mouse Uterus. Front Physiol 2017; 8:422. [PMID: 28674503 PMCID: PMC5474474 DOI: 10.3389/fphys.2017.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
The hormone relaxin is important in female reproduction for embryo implantation, cardiovascular function, and during labor and lactation. Relaxin is also synthesized in males by organs of the male tract. We hypothesized that relaxin might be one component of seminal plasma responsible for eliciting the female cytokine response induced in the uterus at mating. When recombinant relaxin was injected into the uterus of wild-type (Rln+/+) mice at estrus, it evoked the production of Cxcl1 mRNA and its secreted protein product CXCL1 in four of eight animals. Mating experiments were then conducted using mice with a null mutation in the relaxin gene (Rln−/− mice). qRT-PCR analysis of mRNA expression in wild-type females showed diminished uterine expression of several cytokine and chemokine genes in the absence of male relaxin. Similar differences were also noted comparing Rln−/− and Rln+/+ females mated to wild-type males. Quantification of uterine luminal fluid cytokine content confirmed that male relaxin provokes the production of CXCL10 and CSF3 in Rln+/+ females. Differences were also seen comparing Rln−/− and Rln+/+ females mated with Rln−/− males for CXCL1, CSF3, and CCL5, implying that endogenous relaxin in females might prime the uterus to respond appropriately to seminal fluid at coitus. Finally, pan-leukocyte CD45 mRNA was increased in wild-type matings compared to other combinations, implying that male and female relaxin may trigger leukocyte expansion in the uterus. We conclude that male and/or female relaxin may be important in activating the uterine cytokine/chemokine network required to initiate maternal immune adaptation to pregnancy.
Collapse
Affiliation(s)
- Danielle J Glynn
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Kee Heng
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Darryl L Russell
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Ravinder Anand-Ivell
- School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| | - Richard Ivell
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| |
Collapse
|
6
|
Pini A, Boccalini G, Lucarini L, Catarinicchia S, Guasti D, Masini E, Bani D, Nistri S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). J Pharmacol Exp Ther 2016; 357:451-8. [PMID: 27048661 DOI: 10.1124/jpet.116.232215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2023] Open
Abstract
Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases.
Collapse
Affiliation(s)
- Alessandro Pini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Giulia Boccalini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Laura Lucarini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Stefano Catarinicchia
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Guasti
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Emanuela Masini
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Daniele Bani
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| | - Silvia Nistri
- Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy
| |
Collapse
|
7
|
Huang Z, Myhr C, Bathgate RAD, Ho BA, Bueno A, Hu X, Xiao J, Southall N, Barnaeva E, Agoulnik IU, Marugan JJ, Ferrer M, Agoulnik AI. Activation of Relaxin Family Receptor 1 from Different Mammalian Species by Relaxin Peptide and Small-Molecule Agonist ML290. Front Endocrinol (Lausanne) 2015; 6:128. [PMID: 26347712 PMCID: PMC4538381 DOI: 10.3389/fendo.2015.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small-molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the seven-transmembrane domain (7TM). Two splice variants of rabbit RXFP1 derived through alternative splicing of the fourth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit RLNs. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled RLN to rabbit RXFP1 was detected, suggesting that in this species, RXFP1 might be non-functional. We used chimeric rabbit-human and guinea pig-human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing.
Collapse
Affiliation(s)
- Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Brian A. Ho
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Amaya Bueno
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jingbo Xiao
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Elena Barnaeva
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Juan J. Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- *Correspondence: Alexander I. Agoulnik, Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, AHCI 419B, Miami, FL 33199, USA,
| |
Collapse
|
8
|
Meadows KL, Byrnes EM. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. Neuroscience 2014; 284:337-348. [PMID: 25313002 DOI: 10.1016/j.neuroscience.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/04/2014] [Accepted: 10/03/2014] [Indexed: 01/04/2023]
Abstract
Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. RLN3 has been shown to activate both RXFP1 and relaxin-like family peptide receptor 3 (RXFP3) receptor subtypes. Studies suggest wide-ranging neuromodulatory effects of both RXFP1 and RXFP3 activation, although to date the majority of studies have been conducted in young males. In the current study, we examined potential sex- and age-related changes in RLN3 gene expression in the NI as well as RXFP1 and RXFP3 gene expression in the dorsal hippocampus (HI), ventral hippocampus (vHI) and amygdala (AMYG) using young adult (9-12weeks) and middle-aged (9-12months) male and female rats. In addition, regional changes in RXFP1 and RXFP3 protein expression were examined in the CA1, CA2/CA3 and dentate gyrus (DG) as well as within basolateral (BLA), central (CeA), and medial (MeA) amygdaloid nuclei. In the NI, RLN3 showed an age-related decrease in males. In the HI, only the RXFP3 receptor showed an age-related change in gene expression, however, both receptor subtypes showed age-related changes in protein expression that were region specific. Additionally, while gene and protein expression of both receptors increased with age in AMYG, these effects were both region- and sex-specific. Finally, overall males displayed a greater number of cells that express the RXFP3 protein in all of the amygdaloid nuclei examined. Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have focused on sex hormones, with few studies examining the role of neuropeptides. The current findings suggest that changes in relaxin family peptides may contribute to the significant sex differences observed in these brain regions as a function of aging.
Collapse
Affiliation(s)
- K L Meadows
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, Grafton, MA 01536, United States.
| | - E M Byrnes
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, Grafton, MA 01536, United States.
| |
Collapse
|
9
|
Sasser JM. The emerging role of relaxin as a novel therapeutic pathway in the treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 2013; 305:R559-65. [PMID: 23883673 DOI: 10.1152/ajpregu.00528.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports a potential therapeutic role of relaxin in fibrotic diseases, including chronic kidney disease. Relaxin is a pleiotropic hormone, best characterized for its role in the reproductive system; however, recent studies have demonstrated a role of relaxin in the cardiorenal system. Both relaxin and its receptor, RXFP1, are expressed in the kidney, and relaxin has been shown to play a role in renal vasodilation, in sodium excretion, and as an antifibrotic agent. Together, these findings suggest that the kidney is a target organ of relaxin. Therefore, the purpose of this review is to describe the functional and structural impacts of relaxin treatment on the kidney and to discuss evidence that relaxin prevents disease progression in several experimental models of kidney disease. In addition, this review will present potential mechanisms that are involved in the therapeutic actions of relaxin.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
McGowan BMC, Minnion JS, Murphy KG, White NE, Roy D, Stanley SA, Dhillo WS, Gardiner JV, Ghatei MA, Bloom SR. Central and peripheral administration of human relaxin-2 to adult male rats inhibits food intake. Diabetes Obes Metab 2010; 12:1090-6. [PMID: 20977581 DOI: 10.1111/j.1463-1326.2010.01302.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Relaxin is a polypeptide hormone involved in pregnancy and lactation. It is mainly secreted by the corpus luteum and placenta, but is expressed in a number of other tissues, including heart and brain. Within the brain, relaxin is expressed in the olfactory and limbic systems, the cortex and the hypothalamic arcuate nucleus (ARC). Its cognate receptor, relaxin family peptide receptor 1 (RXFP1), is also widely expressed in the brain, including the hypothalamic ARC and paraventricular nucleus (PVN), areas important in appetite regulation. The aim of this study was to investigate whether relaxin influences food intake through central hypothalamic circuits. METHODS The human form of relaxin, human relaxin-2 (H2) was administered centrally and peripherally to male Wistar rats and food intake measured. Behaviour was also assessed. RESULTS Intracerebroventricular (ICV) administration of H2 significantly decreased 1-h food intake in the early dark phase [2.95 ± 0.45 g (saline) vs. 0.95 ± 0.18 g (180 pmol H2), p < 0.001]. ICV administration of H2 decreased feeding behaviour and increased grooming and headdown behaviour. Intraparaventricular injections of H2 significantly decreased 1-h food intake in the early dark phase [3.13 ± 0.35 g (saline) vs. 1.35 ± 0.33 g (18 pmol H2), p < 0.01, 1.61 ± 0.31 g (180 pmol H2), p < 0.05 and 1.23 ± 0.32 g (540 pmol H2), p < 0.001]. Intraperitoneal (IP) administration of H2 significantly decreased 1-h food intake in the early dark phase [4.63 ± 0.46 g (vehicle) vs. 3.08 ± 0.15 g (66 nmol H2), p < 0.01, 3.00 ± 0.17 g (200 nmol H2), p < 0.01 and 2.26 ± 0.36 g (660 nmol H2), p < 0.001]. CONCLUSIONS Central and peripheral administration of H2 reduces the food intake in rats. This effect may be mediated via the PVN and/or other brain regions.
Collapse
Affiliation(s)
- B M C McGowan
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kong RCK, Shilling PJ, Lobb DK, Gooley PR, Bathgate RAD. Membrane receptors: structure and function of the relaxin family peptide receptors. Mol Cell Endocrinol 2010; 320:1-15. [PMID: 20138959 DOI: 10.1016/j.mce.2010.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/14/2009] [Accepted: 02/02/2010] [Indexed: 01/17/2023]
Abstract
The receptors for members of the relaxin peptide family have only recently been discovered and are G-protein-coupled receptors (GPCRs). Relaxin and insulin-like peptide 3 (INSL3) interact with the leucine-rich-repeat-containing GPCRs (LGRs) LGR7 and LGR8, respectively. These receptors show closest similarity to the glycoprotein hormone receptors and contain large ectodomains with 10 leucine-rich repeats (LRRs) but are unique members of the LGR family (class C) as they have an LDL class A (LDLa) module at their N-terminus. In contrast, relaxin-3 and INSL5 interact with another class of type I GPCRs which lack a large ectodomain, the peptide receptors GPCR135 and GPCR142, respectively. These receptors are now classified as relaxin family peptide (RXFP) receptors, RXFP1 (LGR7), RXFP2 (LGR8), RXFP3 (GPCR135) and RXFP4 (GPCR142). This review outlines the identification of the peptides and receptors, their expression profiles and physiological roles and the functional interactions of the peptides with their unique receptors.
Collapse
Affiliation(s)
- Roy C K Kong
- Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
13
|
Royce SG, Miao YR, Lee M, Samuel CS, Tregear GW, Tang MLK. Relaxin reverses airway remodeling and airway dysfunction in allergic airways disease. Endocrinology 2009; 150:2692-9. [PMID: 19213838 DOI: 10.1210/en.2008-1457] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice deficient in the antifibrotic hormone relaxin develop structural changes in the airway that resemble airway remodeling, and demonstrate exaggerated remodeling changes in models of allergic airways disease (AAD). Relaxin expression in asthma has not been previously studied. We evaluated the efficacy of relaxin in the treatment of established airway remodeling in a mouse model of AAD. Relaxin expression in mouse AAD was also examined by immunohistochemistry and real-time PCR. BALB/c mice with established AAD were treated with relaxin or vehicle control (sc for 14 d), and effects on airway remodeling, airway inflammation, and airway hyperresponsiveness (AHR) were assessed. Relaxin expression was significantly reduced in the airways of mice with AAD compared with controls. Recombinant relaxin treatment in a mouse model of AAD reversed collagen deposition and epithelial thickening, and significantly improved AHR (all P < 0.05 vs. vehicle control), but did not influence airway inflammation or goblet cell hyperplasia. Relaxin treatment was associated with increased matrix metalloproteinase-2 levels, suggesting a possible mechanism for its antifibrotic effects. Endogenous relaxin expression is decreased in murine AAD, whereas exogenous relaxin represents a novel treatment capable of reversing established airway remodeling and AHR.
Collapse
Affiliation(s)
- Simon G Royce
- Departments of Allergy and Immunology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Relaxin physiology in the female reproductive tract during pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:34-48. [PMID: 18161480 DOI: 10.1007/978-0-387-74672-2_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The characteristic functions of relaxin are associated with female reproductive tract physiology. These include the regulation of biochemical processes involved in remodeling the extracellular matrix of the cervix and vagina during pregnancy and rupture of the fetal membranes at term. Such modifications enable the young to move unimpeded through the birth canal and prevent dystocia. However, relaxin's physiological actions are not limited to late gestation. New functions for this peptide hormone in implantation and placentation are also emerging. Relaxin promotes uterine and placental growth and influences vascular development and proliferation in the endometrium. This chapter provides an overview of the current literature on relaxin physiology in the uterus, cervix and vagina of pregnant females and the impact on fetal health. It also outlines the potential mechanisms of relaxin action, particularly in the cervical extracellular matrix and uterine endometrium.
Collapse
|
15
|
Sedaghat K, Shen PJ, Finkelstein D, Henderson J, Gundlach A. Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: Enrichment in thalamic neurons and their efferent projections. Neuroscience 2008; 156:319-33. [DOI: 10.1016/j.neuroscience.2008.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 11/25/2022]
|
16
|
Ganguly K, Stoeger T, Wesselkamper SC, Reinhard C, Sartor MA, Medvedovic M, Tomlinson CR, Bolle I, Mason JM, Leikauf GD, Schulz H. Candidate genes controlling pulmonary function in mice: transcript profiling and predicted protein structure. Physiol Genomics 2007; 31:410-21. [PMID: 17804602 DOI: 10.1152/physiolgenomics.00260.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Impaired development and reduced lung capacity are risk factors of asthma and chronic obstructive pulmonary disease. Previously, our genomewide linkage analysis of C3H/HeJ (C3H) and JF1/Msf (JF1) mouse strains identified quantitative trait loci (QTLs) associated with the complex traits of dead space volume (Vd), total lung capacity (TLC), lung compliance (CL), and diffusing capacity for CO (D(CO)). We assessed positional candidate genes by comparing C3H with JF1 lung transcript levels by microarray and by comparing C3H, BALB/cByJ, C57BL/6J, A/J, PWD/PhJ, and JF1 strains, using exon sequencing to predict protein structure. Microarray identified >900 transcripts differing in C3H and JF1 lungs related to lung development, function, and remodeling. Of these, three genes localized to QTLs associated with differences in lung function. C3H and JF1 strains differed in transcript and protein levels of superoxide dismutase 3, extracellular [SOD3; mouse chromosome (mCh) 5: VD] and transcript of trefoil factor 2 (TFF2; mCh 17: TLC and D(CO)), and ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; mCh 15: TLC and CL). Nucleotide sequencing of Sod3, Tff2, and previously identified Relaxin 1 (Rln1; mCh 19: CL) uncovered polymorphisms that could lead to nonsynonymous amino acid changes and altered predicted protein structure. Gene-targeted Sod3(-/-) mice had increased conducting airway volume (Vd/TLC) compared with strain-matched control Sod3(+/+) mice, consistent with the QTL on mCh 5. Two novel genes (Tff2 and Enpp2) have been identified and two suspected genes (Sod3 and Rln1) have been supported as determinants of lung function in mice. Findings with gene-targeted mice suggest that SOD3 is a contributing factor defining the complex trait of conducting airway volume.
Collapse
Affiliation(s)
- Koustav Ganguly
- National Research Center for Environment and Health (GSF), Institute for Inhalation Biology, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hopkins EJ, Layfield S, Ferraro T, Bathgate RAD, Gooley PR. The NMR Solution Structure of the Relaxin (RXFP1) Receptor Lipoprotein Receptor Class A Module and Identification of Key Residues in the N-terminal Region of the Module That Mediate Receptor Activation. J Biol Chem 2007; 282:4172-84. [PMID: 17148455 DOI: 10.1074/jbc.m609526200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling. The mechanism by which the LDLa module modulates receptor signaling is unknown; however, it represents a unique paradigm in understanding G-protein-coupled receptor signaling. Here we present the structure of the RXFP1 receptor LDLa module determined by solution NMR spectroscopy. The structure is similar to other LDLa modules but shows small differences in side chain orientations and inter-residue packing. Interchange of the module with the second ligand binding domain of the LDL receptor, LB2, results in a receptor that binds relaxin with full affinity but is unable to signal. Furthermore, we demonstrate via structural studies on mutated LDLa modules and functional studies on mutated full-length receptors that a hydrophobic surface within the N-terminal region of the module is essential for activation of RXFP1 receptor signal in response to relaxin stimulation. This study has highlighted the necessity to understand the structural effects of single amino acid mutations on the LDLa module to fully interpret the effects of these mutations on receptor activity.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Cell Line
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Peptide Fragments/chemistry
- Peptide Fragments/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Receptors, LDL/chemistry
- Receptors, LDL/classification
- Receptors, LDL/genetics
- Receptors, LDL/physiology
- Receptors, Peptide
- Relaxin/metabolism
- Solutions
Collapse
Affiliation(s)
- Emma J Hopkins
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
18
|
Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes. Open Life Sci 2006. [DOI: 10.2478/s11535-006-0035-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFunctional disturbance in the novel adenylyl cyclase signaling mechanism (ACSM) of insulin and relaxin action in rat streptozotocin (STZ) type I diabetes was studied on the basis of the authors’ conception of molecular defects in hormonal signaling systems as the main causes of endocrine diseases. Studying the functional state of molecular components of the ACSM and the mechanism as a whole, the following changes were found in the skeletal muscles of diabetic rats compared with control animals: 1) increase of insulin receptor binding due to an increase in the number of insulin binding sites with high and low affinity; 2) increase of the basal adenylyl cyclase (AC) activity and the reduction of AC-activating effect of non-hormonal agents (guanine nucleotides, sodium fluoride, forskolin); 3) reduction of ACSM response to stimulatory action of insulin and relaxin; 4) decrease of the insulin-activating effect on the key enzymes of carbohydrate metabolism, glycogen synthase and glucose-6-phosphate dehydrogenase. Hence, the functional activity of GTP-binding protein of stimulatory type, AC and their functional coupling are decreased during experimental type 1 diabetes that leads to the impairment of the transduction of insulin and relaxin signals via ACSM.
Collapse
|
19
|
Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin—a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther 2006; 112:38-56. [PMID: 16647137 DOI: 10.1016/j.pharmthera.2006.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 01/30/2023]
Abstract
The insulin-related peptide hormone relaxin (Rlx) is known as pregnancy hormone for decades. In the 1980s, researchers began to recognize the highly intriguing fact that Rlx plays a role in a multitude of physiological processes far beyond pregnancy and reproduction. So, Rlx's contribution to the regulation of vasotonus, plasma osmolality, angiogenesis, collagen turnover, and renal function has been established. In addition, the peptide has been demonstrated to represent a mediator of cardiovascular pathology. The ongoing efforts to identify Rlx receptors eventually precipitated the discovery of the G protein-coupled receptors (GPCR) LGR7 and LGR8 as membrane receptors for human Rlx-2 in 2002. This review will summarize the current state of insight into this rapidly evolving field, which has further been expanded by the discovery of GPCR135 and GPCR142 as receptors for Rlx-3. In addition, Rlx has also been shown to activate the human glucocorticoid receptor (GR). There is evidence from Rlx and Rlx receptor knockouts suggesting that LGR7 is the only relevant receptor for mouse Rlx-1 (corresponding to human Rlx-2) in vivo and that insulin-like peptide (INSL)-3 represents the physiological ligand for LGR8. Regarding Rlx signal transduction, the cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) pathways will be characterized as major cascades. Investigation of downstream signaling remains an important field for future research. Finally, the current state of therapeutical strategies using Rlx in animal models as well as in humans is summarized.
Collapse
Affiliation(s)
- Thomas Dschietzig
- Medizinische Klinik m. S. Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin, Campus Mitte, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
20
|
Samuel CS, Du XJ, Bathgate RAD, Summers RJ. 'Relaxin' the stiffened heart and arteries: the therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharmacol Ther 2006; 112:529-52. [PMID: 16814863 DOI: 10.1016/j.pharmthera.2005.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 05/15/2005] [Indexed: 12/20/2022]
Abstract
Although originally characterised as a reproductive hormone, relaxin has emerged as a multi-functional endocrine and paracrine factor that plays a number of important roles in several organs, including the normal and diseased cardiovascular system. The recent discovery of the H3/relaxin-3 gene, and the elusive receptors for relaxin (Relaxin family peptide receptor; RXFP1) and relaxin-3 (RXFP3/RXFP4) have led to the re-classification of a distinct relaxin peptide/receptor family. Additionally, the identification of relaxin and RXFP1 mRNA and/or relaxin binding sites in the heart and blood vessels has confirmed that the cardiovascular system is a target for relaxin peptides. While evidence for the production of relaxins within the cardiovascular system is limited, several studies have established that the relaxin genes are upregulated in the diseased human and rodent heart where they likely act as cardioprotective agents. The ability of relaxin to protect the heart is most likely mediated via its antifibrotic, anti-hypertrophic, anti-inflammatory and vasodilatory actions, but it may also directly stimulate myocardial regeneration and repair. This review describes relaxin and its primary receptor (RXFP1) in relation to the roles and effects of relaxin in the normal and pathological cardiovascular system. It is becoming increasingly clear that relaxin has a number of diverse physiological and pathological roles in the cardiovascular system that may have important therapeutic and clinical implications.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Howard Florey Institute, University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
21
|
Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev 2006; 58:7-31. [PMID: 16507880 DOI: 10.1124/pr.58.1.9] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the hormone relaxin was discovered 80 years ago, only in the past 5 years have the receptors for relaxin and three other receptors that respond to related peptides been identified with all four receptors being G-protein-coupled receptors. In this review it is suggested that the receptors for relaxin (LGR7) and those for the related peptides insulin-like peptide 3 (LGR8), relaxin-3 (GPCR135), and insulin-like peptide 5 (LGPCR142) be named the relaxin family peptide receptors 1 through 4 (RXFP1-4). RXFP1 and RXFP2 are leucine-rich repeat-containing G-protein-coupled receptors with complex binding characteristics involving both the large ectodomain and the transmembrane loops. RXFP1 activates adenylate cyclase, protein kinase A, protein kinase C, phosphatidylinositol 3-kinase, and extracellular signaling regulated kinase (Erk1/2) and also interacts with nitric oxide signaling. RXFP2 activates adenylate cyclase in recombinant systems, but physiological responses are sensitive to pertussis toxin. RXFP3 and RXFP4 resemble more conventional peptide liganded receptors and both inhibit adenylate cyclase, and in addition RXFP3 activates Erk1/2 signaling. Physiological studies and examination of the phenotypes of transgenic mice have established that relaxin has roles as a reproductive hormone involved in uterine relaxation (some species), reproductive tissue growth, and collagen remodeling but also in the cardiovascular and renal systems and in the brain. The connective tissue remodeling properties of relaxin acting at RXFP1 receptors have potential for the development of agents effective for the treatment of cardiac and renal fibrosis, asthma, and scleroderma and for orthodontic remodelling. Agents acting at RXFP2 receptors may be useful for the treatment of cryptorchidism and infertility, whereas antagonists may be used as contraceptives. The brain distribution of RXFP3 receptors suggests that actions at these receptors have the potential for the development of antianxiety and antiobesity drugs.
Collapse
Affiliation(s)
- Ross A Bathgate
- Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
22
|
Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RAD. Characterization of the Mouse and Rat Relaxin Receptors. Ann N Y Acad Sci 2006; 1041:8-12. [PMID: 15956680 DOI: 10.1196/annals.1282.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rodent models have been used for many years to probe the actions of relaxin. Identification of the orthologs of human leucine-rich repeat-containing g-protein-coupled receptor 7 (LGR7), the relaxin receptor, in mouse and rat will enable characterization of the response of LGR7 to relaxin in these species. Partial LGR7 homologous sequences from mouse and rat were discovered in the Celera and NCBI gene databases, amplified, cloned, and sequenced. At the protein level, mouse and rat LGR7 are 85.2% and 85.7% identical to human LGR7. Mouse and rat LGR7 were able to bind to and be activated by relaxin ligands.
Collapse
Affiliation(s)
- D J Scott
- Howard Florey Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Wilson BC, Connell B, Saleh TM. Relaxin-induced reduction of infarct size in male rats receiving MCAO is dependent on nitric oxide synthesis and not estrogenic mechanisms. Neurosci Lett 2006; 393:160-4. [PMID: 16233954 DOI: 10.1016/j.neulet.2005.09.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/14/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
Relaxins are members of the insulin peptide superfamily. Previous evidence has shown that relaxin pretreatment reduces cortical infarct size in anesthetized, male rats receiving permanent middle cerebral artery occlusion (MCAO). Therefore, the current study was designed to determine if estrogenic mechanisms or nitric oxide production are involved in mediating this relaxin-induced neuroprotection. In separate groups of rats (n=4-6), the following drugs were injected directly into the cortex 30 min prior to MCAO: (a) relaxin, (b) relaxin and estrogen, and (c) relaxin and an estrogen receptor antagonist (ICI 182,780). To investigate the involvement of nitric oxide, relaxin or relaxin and an inhibitor of endothelial nitric oxide synthase (L-NIO) were injected i.v. 30 min prior to MCAO. Saline-treated rats (both intracortical (i.c.) and intravenously (i.v.)) served as controls. Brains were harvested 4h post stroke, coronally sectioned using a brain matrix and stained using 2,3,5-triphenoltetrazolium chloride (TTC). Digital photographs were taken of brain sections and the ratio comparing the area of the infarct to the area of the ipsilateral hemisphere was calculated. Mean ratios were compared using ANOVA and Tukey's test. Intracortical and intravenous relaxin pretreatment significantly reduced the infarct area in the cortex by 33.7 and 58.6%, respectively compared to saline-treated controls. This effect was not dependent on an interaction with estrogenic receptors as co-injection of relaxin and ICI 182,780 did not reverse this effect. However, inhibition of nitric oxide synthase significantly reduced the relaxin-mediated neuroprotection suggesting that relaxin may induce the endothelin-NOS cascade in cerebral vasculature causing vasodilation and improved perfusion of neural tissue.
Collapse
Affiliation(s)
- Brian C Wilson
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6.
| | | | | |
Collapse
|
24
|
Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C. Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 2004; 80:298-307. [PMID: 15677880 DOI: 10.1159/000083656] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022]
Abstract
G-protein-coupled receptor 135 (GPCR135), a former orphan GPCR also known as SALPR, has recently been shown to be modulated by relaxin-3 (R3). In addition to GPCR135, R3 has been shown to be an agonist for GPCR142 (which is a pseudogene in the rat) and to activate LGR7, which is primarily the receptor for relaxin-1/2. The interaction of R3 with LGR7 has confounded the autoradiographic study of the GPCR135 distribution in the rat CNS due to significant expression of LGR7 in the brain. R3/I5, a chimera of the B-chain of R3 bonded to the A-chain of INSL-5, is a specific GPCR135 agonist which is highly selective for GPCR135 over LGR7. [(125)I]R3/I5 specifically binds to sites on rat brain sections with a pharmacology matching results from membrane preparations of recombinant GPCR135 receptors. Autoradiographic studies show the GPCR135 receptor density is most prominent in areas such as the olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, supraoptic nucleus, inferior and superior colliculus. The GPCR135 mRNA distribution generally overlaps the pattern of GPCR135 binding sites shown by autoradiography using [(125)I]R3/I5. The nucleus incertus, which has been implicated in the extrapituitary actions of corticotropin-releasing hormone, is the primary source of R3 in the rat central nervous system and expresses GPCR135 receptors. These binding autoradiography and in situ hybridization data suggest that GPCR135 plays an important role in the central processing of sensory signals in rats, are consistent with a putative role for R3/GPCR135 as modulators of stress responses, and confirm the identity of R3 as the central nervous system ligand for GPCR135.
Collapse
Affiliation(s)
- Steven W Sutton
- Neuroscience Group, Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|