1
|
Rathod KS, Mathur A, Shabbir A, Khambata RS, Lau C, Beirne AM, Chhetri I, Ono M, Belgaid DR, Massimo G, Ramasamy A, Tufaro V, Jain AK, Poulter N, Falaschetti E, Jones DA, Garcia-Garcia HM, Bourantas C, Learoyd A, Warren HR, Ahluwalia A. The NITRATE-OCT study-inorganic nitrate reduces in-stent restenosis in patients with stable coronary artery disease: a double-blind, randomised controlled trial. EClinicalMedicine 2024; 77:102885. [PMID: 39469537 PMCID: PMC11513660 DOI: 10.1016/j.eclinm.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Background Coronary angioplasty and stent insertion is a first line treatment for patients with coronary artery disease, however it is complicated in the long-term by in-stent restenosis (ISR) in a proportion of patients with an associated morbidity. Despite this, currently there are no effective treatments available for the prevention of ISR. Repeat percutaneous revascularisation carries increased risks of major adverse cardiovascular events and a higher incidence of stent failure. In this study we report the efficacy of dietary inorganic nitrate in the prevention of ISR in a prospective, double-blind, randomised controlled trial. Methods NITRATE-OCT is a double-blind, randomised, single-centre, placebo-controlled phase II trial. 300 patients who were planned to undergo percutaneous coronary intervention (PCI) and drug eluting stent (DES) implantation for stable angina were randomised on a 1:1 basis to receive a daily dose of either dietary inorganic nitrate or placebo for 6 months. Block randomisation was used and patients stratified according to diabetes status. The patients then underwent quantitative coronary angiography (QCA) at baseline and at 6 months and optical coherence tomography at 6 months to quantify ISR. The primary endpoint was the QCA quantified decrease of in-stent/in-segment diameter from the baseline measure at 6 months i.e., in-stent and in-segment late-lumen loss (LLL). The study is registered with ClinicalTrials.gov, number NCT02529189. Findings From November 1st 2015 and March 31st 2020, NITRATE-OCT enrolled 300 patients with angina, with 150 each randomised to receive 70 mL of nitrate-containing beetroot juice or placebo (nitrate-deplete) juice for 6 months. Procedural characteristics were similar between the groups. The primary endpoint was available in 208 patients: 107 and 101 in the nitrate and placebo groups, respectively. There was a statistically significant effect of inorganic nitrate on both primary endpoints: in-stent LLL decreased by 0.16 mm (95% CI:0.06-0.25; P = 0.001) with mean = 0.09 ± 0.38 mm in the inorganic nitrate group versus 0.24 ± 0.33 mm in the placebo group; (P = 0.0052); and in-segment LLL decreased by 0.24 mm (95% CI:0.12-0.36; P < 0.001) with mean = 0.02 ± 0.52 mm in the inorganic nitrate group and 0.26 ± 0.37 mm in the placebo group (P = 0.0002). Inorganic nitrate treatment was associated with a rise in the plasma nitrate concentration of ∼6.1-fold and plasma nitrite (NO2 -) of ∼2.0-fold at 6 months. These rises were associated with sustained decreases in systolic blood pressure (SBP) at 6 months compared to baseline with a change SBP of -12.06 ± 15.88 mmHg compared to the placebo group of 2.52 ± 14.60 mmHg (P < 0.0001). Interpretation In patients who underwent PCI for stable coronary artery disease, a once-a-day oral inorganic nitrate treatment was associated with a significant decrease in both in-stent and in-segment LLL. Funding This trial and KSR was funded by the National Institute for Health and Care Research (NIHR) (DRF-2014-07-008) and NIHR ACL, HW and this study were supported by The NIHR Barts Biomedical Research Centre, IC was funded by The North and East London Clinical Research Network, CL, GM were funded by The Barts Charity Cardiovascular Programme MRG00913 and MO was funded by The British Heart Foundation Project Grant PG/19/4/33995.
Collapse
Affiliation(s)
- Krishnaraj S. Rathod
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Anthony Mathur
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Asad Shabbir
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rayomand S. Khambata
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Clement Lau
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anne-Marie Beirne
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Ismita Chhetri
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mutsumi Ono
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Gianmichele Massimo
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Vincenzo Tufaro
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Ajay K. Jain
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Neil Poulter
- Imperial College Trials Unit, London, United Kingdom
| | | | - Daniel A. Jones
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | | | | | - Anna Learoyd
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen R. Warren
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Amrita Ahluwalia
- Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Measurement of Tetrahydrobiopterin in Animal Tissue Samples by HPLC with Electrochemical Detection-Protocol Optimization and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061182. [PMID: 35740082 PMCID: PMC9228106 DOI: 10.3390/antiox11061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor of all nitric oxide synthase isoforms, thus determination of BH4 levels can provide important mechanistic insight into diseases. We established a protocol for high-performance liquid chromatography/electrochemical detection (HPLC/ECD)-based determination of BH4 in tissue samples. We first determined the optimal storage and work-up conditions for authentic BH4 and its oxidation product dihydrobiopterin (BH2) under various conditions (pH, temperature, presence of antioxidants, metal chelators, and storage time). We then applied optimized protocols for detection of BH4 in tissues of septic (induced by lipopolysaccharide [LPS]) rats. BH4 standards in HCl are stabilized by addition of 1,4-dithioerythritol (DTE) and diethylenetriaminepentaacetic acid (DTPA), while HCl was sufficient for BH2 standard stabilization. Overnight storage of BH4 standard solutions at room temperature in HCl without antioxidants caused complete loss of BH4 and the formation of BH2. We further optimized the protocol to separate ascorbate and the BH4 tissue sample and found a significant increase in BH4 in the heart and kidney as well as higher BH4 levels by trend in the brain of septic rats compared to control rats. These findings correspond to reports on augmented nitric oxide and BH4 levels in both animals and patients with septic shock.
Collapse
|
3
|
Ye LX, Yu J, Liang YX, Zeng JS, Huang RX, Liao SJ. Beclin 1 knockdown retards re-endothelialization and exacerbates neointimal formation via a crosstalk between autophagy and apoptosis. Atherosclerosis 2014; 237:146-54. [DOI: 10.1016/j.atherosclerosis.2014.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
|
4
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Abstract
6R l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes including phenylalanine hydroxylase and the nitric oxide synthases (NOS). Oral supplementation of BH4 has been successfully employed to treat subsets of patients with hyperphenylalaninaemia. More recently, research efforts have focussed on understanding whether BH4 supplementation may also be efficacious in cardiovascular disorders that are underpinned by reduced nitric oxide bioavailability. Whilst numerous preclinical and clinical studies have demonstrated a positive association between enhanced BH4 and vascular function, the efficacy of orally administered BH4 in human cardiovascular disease remains unclear. Furthermore, interventions that limit BH4 bioavailability may provide benefit in diseases where nitric oxide over production contributes to pathology. This review describes the pathways involved in BH4 bio-regulation and discusses other endogenous mechanisms that could be harnessed therapeutically to manipulate vascular BH4 levels.
Collapse
Affiliation(s)
- Anna Starr
- Pharmacology and Therapeutics Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street,London SE1 9NH, United Kingdom
| | | | | |
Collapse
|
7
|
Douglas G, Van Kampen E, Hale AB, McNeill E, Patel J, Crabtree MJ, Ali Z, Hoerr RA, Alp NJ, Channon KM. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification. Eur Heart J 2012; 34:3378-88. [PMID: 23008511 PMCID: PMC3827553 DOI: 10.1093/eurheartj/ehs240] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Methods and results Endothelial cell repopulation was assessed en face in stented arteries in ApoE−/− mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm2, P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm2, P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE−/− mice had less neointima formation compared with ApoE−/− littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm2, P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm2, P = 0.043). Conclusion Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.
Collapse
Affiliation(s)
- Gillian Douglas
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
PPAR-α Agonist Fenofibrate Upregulates Tetrahydrobiopterin Level through Increasing the Expression of Guanosine 5'-Triphosphate Cyclohydrolase-I in Human Umbilical Vein Endothelial Cells. PPAR Res 2011; 2011:523520. [PMID: 22190909 PMCID: PMC3236356 DOI: 10.1155/2011/523520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/04/2011] [Accepted: 09/04/2011] [Indexed: 11/17/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide (NO) synthase. Guanosine 5'-triphosphate cyclohydrolase-I (GTPCH-I) is a key limiting enzyme for BH4 synthesis. In the present in vitro study, we investigated whether peroxisome proliferator-activated receptor α (PPAR-α) agonist fenofibrate could recouple eNOS by reversing low-expression of intracellular BH4 in endothelial cells and discussed the potential mechanisms. After human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) for 24 hours, the levels of cellular eNOS, BH4 and cell supernatant NO were significantly reduced compared to control group. And the fluorescence intensity of intracellular ROS was significantly increased. But pretreated with fenofibrate (10 umol/L) for 2 hours before cells were induced by LPS, the levels of eNOS, NO, and BH4 were significantly raised compared to LPS treatment alone. ROS production was markedly reduced in fenofibrate group than LPS group. In addition, our results showed that the level of intracellular GTPCH-I detected by western blot was increased in a concentration-dependent manner after being treated with fenofibrate. These results suggested that fenofibrate might help protect endothelial function and against atherosclerosis by increasing level of BH4 and decreasing production of ROS through upregulating the level of intracellular GTPCH-I.
Collapse
|
9
|
Antoniades C, Cunnington C, Antonopoulos A, Neville M, Margaritis M, Demosthenous M, Bendall J, Hale A, Cerrato R, Tousoulis D, Bakogiannis C, Marinou K, Toutouza M, Vlachopoulos C, Leeson P, Stefanadis C, Karpe F, Channon KM. Induction of vascular GTP-cyclohydrolase I and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis. Circulation 2011; 124:1860-70. [PMID: 21969008 PMCID: PMC5238937 DOI: 10.1161/circulationaha.111.029272] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The endothelial nitric oxide synthase cofactor tetrahydrobiopterin (BH4) is essential for maintenance of enzymatic function. We hypothesized that induction of BH4 synthesis might be an endothelial defense mechanism against inflammation in vascular disease states. METHODS AND RESULTS In Study 1, 20 healthy individuals were randomized to receive Salmonella typhi vaccine (a model of acute inflammation) or placebo in a double-blind study. Vaccination increased circulating BH4 and interleukin 6 and induced endothelial dysfunction (as evaluated by brachial artery flow-mediated dilation) after 8 hours. In Study 2, a functional haplotype (X haplotype) in the GCH1 gene, encoding GTP-cyclohydrolase I, the rate-limiting enzyme in biopterin biosynthesis, was associated with endothelial dysfunction in the presence of high-sensitivity C-reactive protein in 440 coronary artery disease patients. In Study 3, 10 patients with coronary artery disease homozygotes for the GCH1 X haplotype (XX) and 40 without the haplotype (OO) underwent S Typhi vaccination. XX patients were unable to increase plasma BH4 and had a greater reduction of flow-mediated dilation than OO patients. In Study 4, vessel segments from 19 patients undergoing coronary bypass surgery were incubated with or without cytokines (interleukin-6/tumor necrosis factor-α/lipopolysaccharide) for 24 hours. Cytokine stimulation upregulated GCH1 expression, increased vascular BH4, and improved vasorelaxation in response to acetylcholine, which was inhibited by the GTP-cyclohydrolase inhibitor 2,4-diamino-6-hydroxypyrimidine. CONCLUSIONS The ability to increase vascular GCH1 expression and BH4 synthesis in response to inflammation preserves endothelial function in inflammatory states. These novel findings identify BH4 as a vascular defense mechanism against inflammation-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Hedley Way, OX3 9DU, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xie HH, Zhou S, Chen D, Channon KM, Su DF, Chen AF. GTP cyclohydrolase I/BH4 pathway protects EPCs via suppressing oxidative stress and thrombospondin-1 in salt-sensitive hypertension. Hypertension 2010; 56:1137-44. [PMID: 21059996 PMCID: PMC3003666 DOI: 10.1161/hypertensionaha.110.160622] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) are both reduced and dysfunctional in hypertension that correlates inversely with its mortality, but the mechanisms are poorly understood. Endothelial nitric oxide synthase (eNOS) critically regulates EPC mobilization and function but is uncoupled in salt-sensitive hypertension because of the reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 de novo synthesis, protects EPCs and its function in deoxycorticosterone acetate (DOCA)-salt mice. EPCs were isolated from peripheral blood and bone marrow of wild-type (WT), WT DOCA-salt, endothelial-specific GTPCH transgenic (Tg-GCH), GTPCH transgenic DOCA-salt, and BH4-deficient hph-1 mice. In WT DOCA-salt and hph-1 mice, EPCs were significantly decreased with impaired angiogenesis and adhesion, which were restored in Tg-GCH DOCA-salt mice. Superoxide (O₂⁻) and nitric oxide (NO) levels in EPCs were elevated and reduced, respectively, in WT DOCA-salt and hph-1 mice; both were rescued in Tg-GCH DOCA-salt mice. eNOS(-/-)/GCH(+/-) hybrid mice demonstrated that GTPCH preserved the circulating EPC number, reduced intracellular O₂⁻ in EPCs, and ameliorated EPC dysfunction independent of eNOS in DOCA-salt hypertension. Secreted thrombospondin-1 (TSP-1; a potent angiogenesis inhibitor) from EPCs was elevated in WT DOCA-salt and hph-1 but not DOCA-salt Tg-GCH mice. In vitro treatment with BH4, polyethylene glycol-superoxide dismutase (PEG-SOD), or Nomega-nitro-L-arginine (L-NNA) significantly augmented NO and reduced TSP-1 and O₂⁻ levels from EPCs of WT DOCA-salt mice. These results demonstrated, for the first time, that the GTPCH/BH4 pathway critically regulates EPC number and function in DOCA-salt hypertensive mice, at least in part, via suppressing TSP-1 expression and oxidative stress.
Collapse
Affiliation(s)
- He-Hui Xie
- Department of Pharmacology, The Second Military Medical University, Shanghai 200433, China
- Department of Surgery, Vascular Medicine Institute and McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shuang Zhou
- Department of Acupuncture and Moxibustion, The Second Military Medical University, Shanghai 200433, China
- Department of Surgery, Vascular Medicine Institute and McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dandan Chen
- Department of Surgery, Vascular Medicine Institute and McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Surgical Research, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Keith M. Channon
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, OX39DU, UK
| | - Ding-Feng Su
- Department of Pharmacology, The Second Military Medical University, Shanghai 200433, China
| | - Alex F. Chen
- Department of Pharmacology, The Second Military Medical University, Shanghai 200433, China
- Department of Surgery, Vascular Medicine Institute and McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Surgical Research, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
11
|
Vásquez-Vivar J. Tetrahydrobiopterin, superoxide, and vascular dysfunction. Free Radic Biol Med 2009; 47:1108-19. [PMID: 19628033 PMCID: PMC2852262 DOI: 10.1016/j.freeradbiomed.2009.07.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 06/20/2009] [Accepted: 07/15/2009] [Indexed: 01/06/2023]
Abstract
(6R)-5,6,7,8-Tetrahydrobiopterin (BH(4)) is an endogenously produced pterin that is found widely distributed in mammalian tissues. BH(4) works as a cofactor of aromatic amino acid hydroxylases and nitric oxide synthases. In the vasculature a deficit of BH(4) is implicated in the mechanisms of several diseases including atherosclerosis, hypertension, diabetic vascular disease, and vascular complications from cigarette smoking and environmental pollution. These ill-effects are connected to the ability of BH(4) to regulate reactive oxygen species levels in the endothelium. The possibility of using BH(4) as a therapeutical agent in cardiovascular medicine is becoming more compelling and many biochemical and physiological aspects involved in this application are currently under investigation. This review summarizes our current understanding of BH(4) reactivity and some aspects of cellular production and regulation.
Collapse
Affiliation(s)
- Jeannette Vásquez-Vivar
- Department of Biophysics, Free Radical Research Center, Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Hans CP, Feng Y, Naura AS, Zerfaoui M, Rezk BM, Xia H, Kaye AD, Matrougui K, Lazartigues E, Boulares AH. Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE mice: effects on eNOS and oxidative stress. PLoS One 2009; 4:e7430. [PMID: 19823587 PMCID: PMC2757717 DOI: 10.1371/journal.pone.0007430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/14/2009] [Indexed: 02/07/2023] Open
Abstract
The aims of this study were to investigate the role of poly(ADP-ribose) polymerase (PARP)-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE)−/− mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of this enzyme by gene knockout partially restored baroreflex sensitivity in ApoE−/− mice without affecting baseline heart-rate and arterial pressure, and also improved heart-rate responses following selective blockade of the autonomic nervous system. The protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction was associated with preservation of eNOS activity. Dyslipidemia induced PARP-1 activation was accompanied by oxidative tissue damage, as evidenced by increased expression of iNOS and subsequent protein nitration. PARP-1 gene deletion reversed these effects, suggesting that PARP-1 may contribute to vascular and autonomic pathologies by promoting oxidative tissue injury. Further, inhibition of this oxidative damage may account for protective effects of PARP-1 gene deletion on vascular and autonomic functions. This study demonstrates that PARP-1 participates in dyslipidemia-mediated dysregulation of the autonomic nervous system and that PARP-1 gene deletion normalizes autonomic and vascular dysfunctions. Maintenance of eNOS activity may be associated with the protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chetan P. Hans
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yumei Feng
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Amarjit S. Naura
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Mourad Zerfaoui
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Bashir M. Rezk
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alan D. Kaye
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Anesthesiology Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Khalid Matrougui
- Department of Physiology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - A. Hamid Boulares
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Du YH, Guan YY, Alp NJ, Channon KM, Chen AF. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation 2008; 117:1045-54. [PMID: 18268143 DOI: 10.1161/circulationaha.107.748236] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tetrahydrobiopterin (BH4) is an essential cofactor of endothelial nitric oxide synthase (eNOS). When BH4 levels are decreased, eNOS becomes uncoupled to produce superoxide anion (O2(-)) instead of NO, which contributes to endothelial dysfunction. Deoxycorticosterone acetate (DOCA)-salt hypertension is characterized by a suppressed plasma renin level due to sodium retention but manifests in eNOS uncoupling; however, how endogenous BH4 regulates blood pressure is unknown. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for de novo BH4 synthesis. This study tested the hypothesis that endothelium-specific GTPCH I overexpression retards the progression of hypertension through preservation of the structure and function of resistance mesenteric arteries. METHODS AND RESULTS During 3 weeks of DOCA-salt treatment, arterial blood pressure was increased significantly in wild-type mice, as determined by radiotelemetry, but this increase was attenuated in transgenic mice with endothelium-specific GTPCH I overexpression (Tg-GCH). Arterial GTPCH I activity and BH4 levels were decreased significantly in wild-type DOCA-salt mice, but both were preserved in Tg-GCH mice despite DOCA-salt treatment. Significant remodeling of resistance mesenteric arteries (approximately 100-microm outside diameter) in wild-type DOCA-salt mice exists, evidenced by increased medial cross-sectional area, media thickness, and media-lumen ratio and overexpression of tenascin C, an extracellular matrix glycoprotein that contributes to hypertrophic remodeling; all of these effects were prevented in DOCA-salt-treated Tg-GCH mice. Furthermore, NO-mediated relaxation in mesenteric arteries was significantly improved in DOCA-salt-treated Tg-GCH mice, in parallel with reduced O2(-) levels. Finally, phosphorylation of eNOS at serine residue 1177 (eNOS-S1177), but not its dimer-monomer ratio, was decreased significantly in wild-type DOCA-salt mice compared with sham controls but was preserved in DOCA-salt-treated Tg-GCH mice. CONCLUSIONS These results demonstrate that endothelium-specific GTPCH I overexpression abrogates O2(-) production and preserves eNOS phosphorylation, which results in preserved structural and functional integrity of resistance mesenteric arteries and lowered blood pressure in low-renin hypertension.
Collapse
Affiliation(s)
- Yan-Hua Du
- Department of Pharmacology, Michigan State University, East Lansing, USA
| | | | | | | | | |
Collapse
|