1
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
2
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
3
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
4
|
Establishment of a Coilia nasus Gonadal Somatic Cell Line Capable of Sperm Induction In Vitro. BIOLOGY 2022; 11:biology11071049. [PMID: 36101428 PMCID: PMC9312022 DOI: 10.3390/biology11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022]
Abstract
Coilia nasus is an important economic anadromous migratory fish of the Yangtze River in China. In recent years, overfishing and the deterioration of the ecological environment almost led to the extinction of the wild resources of C.nasus. Thus, there is an urgent need to protect this endangered fish. Recently, cell lines derived from fish have proven a promising tool for studying important aspects of aquaculture. In this study, a stable C. nasus gonadal somatic cell line (CnCSC) was established and characterized. After over one year of cell culture (>80 passages), this cell line kept stable growth. RT-PCR results revealed that the CnGSC expressed some somatic cell markers such as clu, fshr, hsd3β, and sox9b instead of germ cell markers like dazl, piwi, and vasa. The strong phagocytic activity of CnGSC suggested that it contained a large number of Sertoli cells. Interestingly, CnGSC could induce medaka spermatogonial cells (SG3) to differentiate into elongated spermatids while co-cultured together. In conclusion, we established a C. nasus gonadal somatic cell line capable of sperm induction in vitro. This research provides scientific evidence for the long-term culture of a gonadal cell line from farmed fish, which would lay the foundation for exploring the regulatory mechanisms between germ cells and somatic cells in fish.
Collapse
|
5
|
Zhao H, Zhang L, Li Q, Zhao Z, Duan Y, Huang Z, Ke H, Liu C, Li H, Liu L, Du J, Wei Z, Mou C, Zhou J. Integrated analysis of the miRNA and mRNA expression profiles in Leiocassis longirostris at gonadal maturation. Funct Integr Genomics 2022; 22:655-667. [PMID: 35467220 DOI: 10.1007/s10142-022-00857-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Leiocassis longirostris is a commercially important fish species that shows a sexually dimorphic growth pattern. A lack of molecular data from the gonads of this species has hindered research and selective breeding efforts. In this study, we conducted a comprehensive analysis of the expression profile of miRNA and mRNA to explore their regulatory roles in the gonadal maturation stage of L. longirostris. We identified 60 differentially expressed miRNAs and 20,752 differentially expressed genes by sequencing. A total of 90 miRNAs and 21 target genes involved in gonad development and sex determination were identified. Overall, the results of this study enhance our understanding of the molecular mechanisms underlying sex determination and differentiation and provide valuable genomic information for the selective breeding of L. longirostris.
Collapse
Affiliation(s)
- Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yuanliang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Chao Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Lu Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Zhen Wei
- Leiocassis Longirostris Foundation Seed Farm, Sichuan Province, China
| | - Chengyan Mou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
6
|
Hou M, Feng K, Luo H, Jiang Y, Xu W, Li Y, Song Y, Chen J, Tao B, Zhu Z, Hu W. Complete Depletion of Primordial Germ Cells Results in Masculinization of Monopterus albus, a Protogynous Hermaphroditic Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:320-334. [PMID: 35303208 DOI: 10.1007/s10126-022-10106-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Primordial germ cells (PGCs) play an important role in sexual fate determination and gonadal development in gonochoristic fish, such as zebrafish and medaka. However, little is known about the function of PGCs in hermaphroditic fish. Rice field eel (Monopterus albus), a protogynous hermaphroditic fish, is an economically valuable aquaculture species. We eliminated PGCs in rice field eels during embryogenesis via morpholino-mediated knockdown dead end (dnd). The PGCs-depleted gonads developed into testis-like structures with Sertoli cells and Leydig cells. The gene expression pattern of 15-month-old PGCs-depleted gonads showed that male-biased genes, dmrt1, sox9a, gsdf, and amh, were significantly higher than that of the WT, whereas female-biased genes, foxl2 and cyp19a1a, were significantly decreased. These results indicate that PGCs are essential for ovarian differentiation in rice field eel, and PGCs-depleted gonads develop into sterile males without undergoing the female and intersex stages. Our study is the first to identify the role of PGCs in sex differentiation in rice field eel, a protogynous hermaphrodite teleost. And it is of great significance in rice field eel for discovering the underlying mechanism of sex differentiation and establishing sex control technology.
Collapse
Affiliation(s)
- Mingxi Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Sexual plasticity in bony fishes: Analyzing morphological to molecular changes of sex reversal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Duan W, Gao FX, Chen ZW, Gao Y, Gui JF, Zhao Z, Shi Y. A sex-linked SNP mutation in amhr2 is responsible for male differentiation in obscure puffer (Takifugu obscurus). Mol Biol Rep 2021; 48:6035-6046. [PMID: 34341900 DOI: 10.1007/s11033-021-06606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anti-Mullerian hormone receptor type II (Amhr2) is a key receptor of Amh signaling in regulating gonad development. The amhr2 gene has been identified in numerous species, including a few teleost fishes. However, the roles of Amhr2 in Amh signaling in fish are poorly studied. METHODS AND RESULTS In this study, an amhr2 homolog from obscure puffer (Takifugu obscurus) was identified, and its molecular characteristics were systematically analyzed. Expression analysis revealed that amhr2 was highly expressed in the gonads of adult pufferfish and significantly upregulated during sex differentiation. Significantly, a sex-linked SNP site was verified in obscure puffer amhr2. Females exhibited a homozygous genotype (C/C), while males possessed a heterozygous genotype (C/G), resulting in an amino acid variation (His/Asp384) in the kinase domain of Amhr2. Then, the functions of the different Amhr2 genotypes were further investigated. The male genotype protein (Amhr2D384) showed an enhanced ability to interact with the type I receptor (Bmpr1a) compared to the female genotype (Amhr2H384). The phosphorylation levels of Smads and activity of the target gene (id3) induced by the male genotype were also much higher than those induced by the female genotype. These results confirmed that the male genotype had an enhanced effect on the Amh signaling pathway compared with the female genotype. CONCLUSIONS This study provides direct experimental evidence for the roles of different Amhr2 genotypes in pufferfish and suggests that amhr2 is responsible for male sex differentiation in obscure puffer.
Collapse
Affiliation(s)
- Wen Duan
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Fan-Xiang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Wei Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Jian-Fang Gui
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
9
|
Effects of busulfan on somatic cells after inhibiting germ cells in the gonads of the young olive flounder Paralichthys olivaceus. Anim Reprod Sci 2021; 228:106746. [PMID: 33819898 DOI: 10.1016/j.anireprosci.2021.106746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Busulfan is widely used in some species to inhibit germ cell proliferation. This study was conducted to evaluate effects of busulfan on germ and somatic cells in gonads of olive flounder, Paralichthys olivaceus, one of the most economically important mariculture fish species. After intraperitoneal injection with 80 (80B) or 120 (120B) mg/kg busulfan, both gonads were atrophied, and ovaries were discolored with adhesion to the visceral mass. Histological results indicated that germ cells in the gonads were detached, and there was a larger nucleus size and smaller cytoplasmic volume in spermatogonia. Numbers of oocytes and somatic cells in the ovary were both less (P < 0.05), while in the testis, numbers of spermatogonia and somatic cells were markedly lesser and greater, respectively (P < 0.05). In ovaries of the flounder treated with 80B and 120B, relative abundance of vasa and cyp19a1a mRNA transcripts was very small in the cytoplasm of oocytes, while the cyp19a1a transcript was still present in theca cells. In the testis of flounder treated with 80B and 120B, abundance of vasa was markedly less (P < 0.05) with there being very little vasa in spermatogonia and disruption of the spermatogonium structure. In the 80B treatment group, amh was in lesser abundance with there being very little amh in spermatogonia, however, with the 120B treatment there was a large amh abundance in spermatogonium with there being disruption of structure of these germ cells and Sertoli cells. Busulfan, therefore, might inhibit the development of spermatogonia in the flounder testis.
Collapse
|
10
|
Adolfi MC, Fischer P, Herpin A, Regensburger M, Kikuchi M, Tanaka M, Schartl M. Increase of cortisol levels after temperature stress activates dmrt1a causing female-to-male sex reversal and reduced germ cell number in medaka. Mol Reprod Dev 2019; 86:1405-1417. [PMID: 31140678 DOI: 10.1002/mrd.23177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
In vertebrates, there is accumulating evidence that environmental factors as triggers for sex determination and genetic sex determination are not two opposing alternatives but that a continuum of mechanisms bridge those extremes. One prominent example is the model fish species Oryzias latipes which has a stable XX/XY genetic sex determination system, but still responds to environmental cues, where high temperatures lead to female-to-male sex reversal. However, the mechanisms behind are still unknown. We show that high temperatures increase primordial germ cells (PGC) numbers before they reach the genital ridge, which, in turn, regulates the germ cell proliferation. Complete ablation of PGCs led to XX males with germ cell less testis, whereas experimentally increased PGC numbers did not reverse XY genotypes to female. For the underlying molecular mechanism, we provide support for the explanation that activation of the dmrt1a gene by cortisol during early development of XX embryos enables this autosomal gene to take over the role of the male determining Y-chromosomal dmrt1bY.
Collapse
Affiliation(s)
| | - Peter Fischer
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Mariko Kikuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Germany and Hagler Institute for Advanced Study and Department of Biology, Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, Mourot B, Schmidt C, Wilhelm D, Centanin L, Guiguen Y, Herpin A. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol 2018; 16:16. [PMID: 29378592 PMCID: PMC5789577 DOI: 10.1186/s12915-018-0485-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element. Electronic supplementary material The online version of this article (10.1186/s12915-018-0485-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital, 97080, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Susanne Schories
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yuko Wakamatsu
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yusuke Nagao
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chloé Bertin
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Cornelia Schmidt
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dagmar Wilhelm
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lazaro Centanin
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Amaury Herpin
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
12
|
Rehman ZU, Worku T, Davis JS, Talpur HS, Bhattarai D, Kadariya I, Hua G, Cao J, Dad R, Hussain T, Yang L. Role and mechanism of AMH in the regulation of Sertoli cells in mice. J Steroid Biochem Mol Biol 2017; 174:133-140. [PMID: 28851672 DOI: 10.1016/j.jsbmb.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Sertoli cells produce anti-Müllerian hormone (AMH), a glycoprotein belonging to the transforming growth factor-beta family. AMH mediates the regression of Müllerian ducts in the developing male fetus. However, the role of AMH in the regulation of primary Sertoli cells remains unclear. The present study was designed to investigate the effect of AMH on the viability and proliferation of Sertoli cells, with an additional focus on stem cell factor (SCF). Treatment of Sertoli cells with increasing concentrations of rh-AMH (0, 10, 50, 100, and 800ng/ml) for two days revealed that AMH, at high concentrations, increased apoptosis. These results were confirmed by a significant increase in Caspase-3 and Bax and a decrease in Bcl-2 protein and mRNA expression (P<0.01). Paradoxically, treatment with a low concentration of rh-AMH (10ng/ml), but not higher concentrations (50-800ng/ml), promoted Sertoli cell proliferation, which was verified by an increase in PCNA mRNA (P<0.05). Furthermore, only low concentrations of rh-AMH activated the non-canonical ERK signaling pathway. Similarly, low concentrations of rh-AMH (10-50ng/ml) significantly increased (P<0.05) SCF mRNA and SCF protein levels. These findings indicate that AMH differentially regulates the fate of Sertoli cells in vitro by promoting proliferation at low concentrations and apoptosis at high concentrations. In addition, AMH increased the expression of SCF, an important regulator of Sertoli cell development. Therefore, AMH may play a role in Sertoli cell development.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - John S Davis
- Olson Center for Women's Health, Omaha VA Medical Center, Omaha, NE, USA; Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ishwari Kadariya
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rahim Dad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tarique Hussain
- Lab of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese of Academy of Science, Changsha, Hunan, 410125, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Goikoetxea A, Todd EV, Gemmell NJ. Stress and sex: does cortisol mediate sex change in fish? Reproduction 2017; 154:R149-R160. [PMID: 28890443 DOI: 10.1530/rep-17-0408] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture.
Collapse
Affiliation(s)
| | - Erica V Todd
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Huang W, Yang P, Lv Z, Wu C, Gui J, Lou B. Cloning, expression pattern and promoter functional analysis of cyp19a1a gene in miiuy croaker. Gene 2017; 627:271-277. [DOI: 10.1016/j.gene.2017.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/07/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
15
|
Żelazowska M, Fopp-Bayat D. Ovarian nests in cultured females of the Siberian sturgeon Acipenser baerii (Chondrostei, Acipenseriformes). J Morphol 2017; 278:1438-1449. [PMID: 28681453 DOI: 10.1002/jmor.20723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 01/20/2023]
Abstract
Ovaries of Acipenser baerii are of an alimentary type and probably are meroistic. They contain ovarian nests, individual follicles, inner germinal ovarian epithelium, and fat tissue. Nests comprise cystoblasts, germline cysts, numerous early previtellogenic oocytes, and somatic cells. Cysts are composed of cystocytes, which are connected by intercellular bridges and are in the pachytene stage of the first meiotic prophase. They contain bivalents, finely granular, medium electron dense material, and nucleoli in the nucleoplasm. Many cystocytes degenerate. Oocytes differ in size and structure. Most oocytes are in the pachytene and early diplotene stages and are referred to as the PACH oocytes. Oocytes in more advanced diplotene stage are referred to as the DIP oocytes. Nuclei in the PACH oocytes contain bivalents and irregularly shaped accumulation of DNA (DNA-body), most probably corresponding to the rDNA-body. The DNA-body is composed of loose, fine granular material, and comprises multiple nucleoli. At peripheries, it is fragmented into blocks that remain in contact with the inner nuclear membrane. In the ooplasm, there is the rough endoplasmic reticulum, Golgi complexes, free ribosomes, complexes of mitochondria with cement, fine fibrillar material containing granules, and lipid droplets. The organelles and material of nuclear origin form a distinct accumulation (a granular ooplasm) in the vicinity of the nucleus. Some of the PACH oocytes are surrounded by flat somatic cells. There are lampbrush chromosomes and multiple nucleoli present (early diplotene stage) in the nucleoplasm. These PACH oocytes and neighboring somatic cells have initiated the formation of ovarian follicles. The remaining PACH oocytes transform to the DIP oocytes. The DIP oocytes contain lampbrush chromosomes and a DNA-body is absent in nuclei. Multiple nucleoli are numerous in the nucleoplasm and granular ooplasm is present at the vegetal region of the oocyte.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, Kraków, 30-387, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology, Faculty of Environmental Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, Olsztyn, 10-917, Poland
| |
Collapse
|
16
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
17
|
Nishimura T, Herpin A, Kimura T, Hara I, Kawasaki T, Nakamura S, Yamamoto Y, Saito TL, Yoshimura J, Morishita S, Tsukahara T, Kobayashi S, Naruse K, Shigenobu S, Sakai N, Schartl M, Tanaka M. Analysis of a novel gene, Sdgc, reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development 2014; 141:3363-9. [DOI: 10.1242/dev.106864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Amaury Herpin
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- INRA, UR1037 Fish Physiology and Genomics, Rennes F-35000, France
| | - Tetsuaki Kimura
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuyo Hara
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
| | - Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Taro L. Saito
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Jun Yoshimura
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Japan
| | - Satoru Kobayashi
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kiyoshi Naruse
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Manfred Schartl
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
18
|
|
19
|
Tanaka M. Vertebrate female germline--the acquisition of femaleness. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:231-8. [PMID: 24896659 DOI: 10.1002/wdev.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 01/16/2023]
Abstract
The cellular and molecular characteristics of female germ cells have primarily been studied in the mammalian ovary. In most female mammals, all primordial germ cells (PGCs) develop into oocytes early during ovary formation, and germline stem cells are few in number or absent in postnatal ovaries (Lei L, Spradling AC. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci USA 2013, 110:8585-8590). Research efforts in the field have largely focused on meiosis and follicular development, but a fundamental question regarding establishment of femaleness, which is very important to understand the 'female' germline, has not been discussed sufficiently. Recent work has revealed the presence of germline stem cells in the vertebrate ovary, using the teleost fish, medaka (Oryzias latipes) (Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka, M. Identification of germline stem cells in the ovary of teleost medaka. Science 2010, 328:1561-1563). This discovery allows direct comparison between female and male germline stem cells and raises an interesting and heretofore unaddressed issue regarding femaleness of germline stem cells. In this article, the germ cell behavior in the ovaries of different species is reviewed and compared, the molecular mechanisms underlying the generation of female germ cells are discussed, and the relationship between female germ cells and the surrounding somatic cells is examined.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
20
|
Fernandino JI, Hattori RS, Moreno Acosta OD, Strüssmann CA, Somoza GM. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen Comp Endocrinol 2013; 192:36-44. [PMID: 23770022 DOI: 10.1016/j.ygcen.2013.05.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023]
Abstract
This review deals with the gonadal masculinization induced by thermal stress in fish with focus on the action of 11β-hydroxysteroid dehydrogenase (11β-HSD) as this mechanism key transducer. High temperatures have been reported to produce male-skewed sex ratios in several species with TSD (temperature-dependent sex determination), and in some of them, this process was reported to be associated with high levels of cortisol, the hormone-related stress in vertebrates, during early gonad development. In addition, in pejerrey larvae reared at high-masculinizing temperatures, 11-ketotestosterone (11-KT), the main and most potent androgen in fish, was also detected at high levels. In testicular explants, cortisol induced the synthesis of 11-KT, suggesting that its synthesis could be under the control of the stress axis at the time of gonadal fate determination. 11β-HSD is one of the enzymes shared by the glucocorticoid and androgen pathways; this enzyme converts cortisol to cortisone and also participates in the finals steps of the synthesis of the 11-oxigenated androgens. Based on these data and literature information, here we propose that the masculinization induced by thermal stress can be considered as a consequence of cortisol inactivation and the concomitant synthesis of 11-KT and discussing this as a possible mechanism of masculinization induced by different types of environmental stressors.
Collapse
Affiliation(s)
- Juan I Fernandino
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
| | | | | | | | | |
Collapse
|
21
|
Valdivia K, Mourot B, Jouanno E, Volff JN, Galiana-Arnoux D, Guyomard R, Cauty C, Collin B, Rault P, Helary L, Fostier A, Quillet E, Guiguen Y. Sex differentiation in an all-female (XX) rainbow trout population with a genetically governed masculinization phenotype. Sex Dev 2013; 7:196-206. [PMID: 23485832 DOI: 10.1159/000348435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Sex determination is known to be male heterogametic in the rainbow trout, Oncorhynchus mykiss; however, scattered observations that deviate from this rather strict genetic control have been reported. Here, we provide a detailed morphological and histological characterization of the gonadal differentiation and development (from 43 days postfertilization to 11 months of age) in an all-female (XX) population with a genetically governed masculinization phenotype. In comparison with control males and females, the gonadal differentiation in these animals was characterized by many perturbations, including significantly fewer germ cells. This decrease in germ cells was confirmed by the significantly decreased expression of 2 germ cell maker genes (vasa and sycp3) in the masculinized XX populations as compared with the control females and control males. Although only a proportion of the total adult population was partially or fully masculinized, this early differentiating phenotype affected nearly all the sampled animals. This suggests that the adult masculinization phenotype is the consequence of an early functional imbalance in ovarian differentiation in the entire population. We hypothesize that the lower number of germ cells that we observed in this population could be one cause of their masculinization.
Collapse
Affiliation(s)
- K Valdivia
- INRA, UR1037 LPGP Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Capel B, Tanaka M. Forward to the special issue on sex determination. Dev Dyn 2013; 242:303-6. [PMID: 23404452 DOI: 10.1002/dvdy.23937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/04/2023] Open
|
23
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
24
|
Guerrero-Estévez S, Moreno-Mendoza N. Gonadal morphogenesis and sex differentiation in the viviparous fish Chapalichthys encaustus (Teleostei, Cyprinodontiformes, Goodeidae). JOURNAL OF FISH BIOLOGY 2012; 80:572-594. [PMID: 22380554 DOI: 10.1111/j.1095-8649.2011.03196.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study describes the structural and ultrastructural characteristics of gonadal sex differentiation and expression of Vasa, a germline marker, in different developmental stages of embryos and newborn fry of the barred splitfin Chapalichthys encaustus, a viviparous freshwater teleost endemic to Mexico. In stage 2 embryos, the gonadal crest was established; gonadal primordia were located on the coelomic epithelium, formed by scarce germ and somatic cells. At stage 3, the undifferentiated gonad appeared suspended from the mesentery of the developing swimbladder and contained a larger number of germ and somatic cells. At stages 4 and 5, the gonads had groups of meiotic and non-meiotic germ cells surrounded by somatic cells; meiosis was evident from the presence of synaptonemal complexes. These stages constituted a transition towards differentiation. At stage 6 and at birth, the gonad was morphologically differentiated into an ovary or a testis. Ovarian differentiation was revealed by the presence of follicles containing meiotic oocytes, and testicular differentiation by the development of testicular lobules containing spermatogonia in mitotic arrest, surrounded by Sertoli cells. Nuage, electron-dense material associated with mitochondria, was observed in germ cells at all gonadal stages. The Vasa protein was detected in all of the previously described stages within the germ-cell cytoplasm. This is the first report on morphological characteristics and expression of the Vasa gene during sexual differentiation in viviparous species of the Goodeidae family. Chapalichthys encaustus may serve as a model to study processes of sexual differentiation in viviparous fishes and teleosts.
Collapse
Affiliation(s)
- S Guerrero-Estévez
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 70228, Mexico DF 04510, Mexico
| | | |
Collapse
|
25
|
Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M. Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 2012; 7:e29982. [PMID: 22253846 PMCID: PMC3257256 DOI: 10.1371/journal.pone.0029982] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022] Open
Abstract
The sex determining gene is divergent among different animal species. However, sox9 is up-regulated in the male gonads in a number of species in which it is the essential regulator of testis determination. It is therefore often discussed that the sex determining gene-sox9 axis functions in several vertebrates. In our current study, we show that sox9b in the medaka (Oryzias latipes) is one of the orthologues of mammalian Sox9 at syntenic and expression levels. Medaka sox9b affects the organization of extracellular matrices, which represents a conserved role of sox9, but does not directly regulate testis determination. We made this determination via gene expression and phenotype analyses of medaka with different copy numbers of sox9b. Sox9b is involved in promoting cellular associations and is indispensible for the proper proliferation and survival of germ cells in both female and male medaka gonads. Medaka mutants that lack sox9b function exhibit a seemingly paradoxical phenotype of sex reversal to male. This is explained by a reduction in the germ cell number associated with aberrant extracellular matrices. Together with its identified roles in other vertebrate gonads, a testis-determining role for Sox9 in mammals is likely to have been neofunctionalized and appended to its conserved role in germ cell maintenance.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
| | - Ikuko Watakabe
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
| | - Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University Shinanomachi 35, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- * E-mail:
| |
Collapse
|
26
|
Abstract
The medaka fish, Oryzias latipes, is an emerging vertebrate model and now has a high quality draft genome and a number of unique mutants. The long history of medaka research in Japan has provided medaka with unique features, which are complementary to other vertebrate models. A large collection of spontaneous mutants collected over a century, the presence of highly polymorphic inbred lines established over decades, and the recently completed genome sequence all give the medaka a big boost. This review focuses on the state of the art in medaka genetics and genomics, such as the first isolation of active transposons in vertebrates, the influence of chromatin structure on sequence variation, fine quantitative trait locus (QTL) analysis, and versatile mutants as human disease models.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
27
|
Fatima S, Adams M, Wilkinson R. Histological study of gonadal development and sex differentiation in Salvelinus fontinalis under Tasmanian climate conditions. AUST J ZOOL 2011. [DOI: 10.1071/zo11092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study describes the developmental process of gonads in brook trout from 0 degree days post-hatch (°dph) until completion of sex differentiation (3354°dph). Gonadal development was divided into undifferentiated (0–2013°dph) and differentiated phases (2769–3354°dph). Fertilised eggs (n = 1000) were incubated at 9.5−10°C until hatching at 66 days post-fertilisation (dpf). A total of 20% of alevins sampled on 0°dph were found with unpaired and undifferentiated gonads, indicating that gonadal development commenced before hatch. Initially, undifferentiated gonads contained stromal tissue and few primordial gonadal cells (PGC) (n = 2–5). During the undifferentiated phase, gonads increased in size and proliferative activity of the PGC increased their number (n = 15–22). The differentiated phase commenced with the appearance of sex differentiation at 2769°dph where gonads could be clearly differentiated as ovaries and presumptive testes. Ovaries were identified by the presence of oogonia while presumptive testes contained spermatogonia, vena comittis and a proximal network of cavities. Both ovaries and testes underwent further differentiation until the end of this phase (3354°dph). Oogonia were transformed into primary oocytes while spermatogonial cysts were observed in testes. However, differentiation of steroidogenic cells could not be observed. Direct sex differentiation was found in this study as undifferentiated gonads directly developed into testes and ovaries with anatomical differentiation preceding cytological differentiation. This study confirms previous studies that the prehatch period should be targeted when attempting to produce future monosex populations via indirect sex reversal using androgen treatment.
Collapse
|
28
|
Jørgensen A, Nielsen JE, Nielsen BF, Morthorst JE, Bjerregaard P, Leffers H. Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:102-8. [PMID: 20362066 DOI: 10.1016/j.cbpa.2010.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E2 synthase (pges) and especially the lipocalin-type prostaglandin D2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found in other species. In mice and chicken, the lipocalin-type Pgds is specifically expressed in pre-Sertoli cells just after Sry and Sox9 and is involved in masculinisation of the developing testis. Furthermore, Pges are implicated in female reproduction including follicular development and ovulation. In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph. The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference between individual juvenile zebrafish was observed.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | |
Collapse
|
29
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
30
|
Guiguen Y, Fostier A, Piferrer F, Chang CF. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 2010; 165:352-66. [PMID: 19289125 DOI: 10.1016/j.ygcen.2009.03.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/23/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
The present review focuses on the roles of estrogens and aromatase (Cyp19a1a), the enzyme needed for their synthesis, in fish gonadal sex differentiation. Based on the recent literature, we extend the already well accepted hypothesis of an implication of estrogens and Cyp19a1a in ovarian differentiation to a broader hypothesis that would place estrogens and Cyp19a1a in a pivotal position to control not only ovarian, but also testicular differentiation, in both gonochoristic and hermaphrodite fish species. This working hypothesis states that cyp19a1a up-regulation is needed not only for triggering but also for maintaining ovarian differentiation and that cyp19a1a down-regulation is the only necessary step for inducing a testicular differentiation pathway. When considering arguments for and against, most of the information available for fish supports this hypothesis since either suppression of cyp19a1a gene expression, inhibition of Cyp19a1a enzymatic activity, or blockage of estrogen receptivity are invariably associated with masculinization. This is also consistent with reports on normal gonadal differentiation, and steroid-modulated masculinization with either androgens, aromatase inhibitors or estrogen receptor antagonists, temperature-induced masculinization and protogynous sex change in hermaphrodite species. Concerning the regulation of fish cyp19a1a during gonadal differentiation, the transcription factor foxl2 has been characterized as an ovarian specific upstream regulator of a cyp19a1a promoter that would co-activate cyp19a1a expression, along with some additional partners such as nr5a1 (sf1) or cAMP. In contrast, upstream factors potentially down-regulating cyp19a1a during testicular differentiation are still hypothetical, such as the dmrt1 gene, but their definitive characterization as testicular repressors of cyp19a1a would strongly strengthen the hypothesis that early testicular differentiation would need active repression of cyp19a1a expression.
Collapse
Affiliation(s)
- Yann Guiguen
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | | | | | |
Collapse
|
31
|
Aoki Y, Nakamura S, Ishikawa Y, Tanaka M. Expression and syntenic analyses of four nanos genes in medaka. Zoolog Sci 2009; 26:112-8. [PMID: 19341327 DOI: 10.2108/zsj.26.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene nanos is essential for germ cell development. Although its functions and expression have been investigated in the mouse, nanos genes have yet to be well characterized in other vertebrates. Based on similarity and a syntenic analysis of nanos, we have identified four different nanos in the genome of medaka (Oryzias latipes). nanos1 is duplicated in teleost fish genomes and named nanos1a and nanos1b. Of all medaka nanos, nanos3 is well conserved in terms of expression and synteny. In contrast to a previous study on mice, nanos2 expression was not detected in the gonads at early stages of sex differentiation; however, both oogonia and spermatogonia in adult gonads exhibit nanos2 expression. nanos1a and 1b are both expressed in the developing brain, consistent with the expression of nanos1 in mice. In the gonads, nanos1a is expressed in the somatic cells surrounding oocytes and spermatocytes, whereas expression of nanos1b is not detectable in the gonads by in-situ hybridization. These results suggest common and distinct functions of nanos genes among vertebrates.
Collapse
Affiliation(s)
- Yumiko Aoki
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
A critical element of successful sexual reproduction is the generation of sexually dimorphic adult reproductive organs, the testis and ovary, which produce functional gametes. Examination of different vertebrate species shows that the adult gonad is remarkably similar in its morphology across different phylogenetic classes. Surprisingly, however, the cellular and molecular programs employed to create similar organs are not evolutionarily conserved. We highlight the mechanisms used by different vertebrate model systems to generate the somatic architecture necessary to support gametogenesis. In addition, we examine the different vertebrate patterns of germ cell migration from their site of origin to colonize the gonad and highlight their roles in sex-specific morphogenesis. We also discuss the plasticity of the adult gonad and consider how different genetic and environmental conditions can induce transitions between testis and ovary morphology.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
33
|
Tanaka A, Akahane H, Ban Y. The problem of the number of tarsomeres in the regenerated cockroach leg. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:61-70. [PMID: 1583453 DOI: 10.1002/jez.1402620109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are 5 tarsomeres in the normal cockroach leg, but this number is often reduced in regenerated legs. In order to examine this complicated situation, fore-, mid-, and hindlegs of German cockroaches were amputated at 11 different tarsal levels and at 18 different times during the last instar. When tarsi were amputated at or proximal to the 3rd tarsomere, 4-segmented tarsi regenerated. When legs were amputated distal to the 3rd tarsomere, the regenerated tarsi had 5 segments. Three-segmented tarsi rarely regenerated when legs were amputated proximal to 3rd tarsomere and in the latter half of the instar period. The lengths of all tarsomeres of regenerated tarsi were measured together with those of unoperated contralateral tarsomeres, and the ratios of the former to the latter were calculated. The ratios ranged from 28 to 138% for the various tarsomeres and levels of amputation. From a comparison of the ratios and morphological observations, it was suggested that the 3rd tarsomere of the normal 5-segmented tarsus has disappeared in the regenerated 4-segmented tarsus. Pads and disto-lateral spines of tarsomeres were observed on unoperated and regenerated tarsi. It was of interest that double spines were often found on the 4-segmented tarsi, mostly on the 2nd tarsomere, just proximal to the position of the missing 3rd tarsomere. This observation supported the idea that the 3rd tarsomere has not simply disappeared, but has probably fused with the 2nd tarsomere.
Collapse
Affiliation(s)
- A Tanaka
- Department of Biology, Nara Women's University, Japan
| | | | | |
Collapse
|