1
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Vega A, Baptissart M, Martinot E, Saru JP, Baron S, Schoonjans K, Volle DH. Hepatotoxicity induced by neonatal exposure to diethylstilbestrol is maintained throughout adulthood via the nuclear receptor SHP. Expert Opin Ther Targets 2014; 18:1367-76. [PMID: 25263461 DOI: 10.1517/14728222.2014.964209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Liver physiology is sensitive to estrogens, which suggests that the liver might be a target of estrogenic endocrine disrupters (EED). However, the long-term consequences of neonatal exposure to EED on liver physiology have rarely been studied. The nuclear receptor small heterodimer partner (SHP) mediates the deleterious effects of neonatal exposure to diethylstilbestrol (DES) on male fertility. OBJECTIVES As SHP is involved in liver homeostasis, we aimed to determine whether neonatal estrogenic exposure also affected adult liver physiology through SHP. Male mouse pups were exposed to DES in the first 5 days of life. RESULTS DES exposure leads to alterations in the postnatal bile acid (BA) synthesis pathway. Neonatal DES-exposure affected adult liver BA metabolism and subsequently triglyceride (TG) homeostasis. The wild-type males neonatally exposed to DES exhibited increased liver weight and altered liver histology in the adult age. The use of deficient male mice revealed that SHP mediates the deleterious effects of DES treatment. These long-term effects of DES were associated with differently timed alterations in the expression of epigenetic factors. CONCLUSIONS However, the molecular mechanisms by which neonatal exposure persist to affect the adult liver physiology remain to be defined. In conclusion, we demonstrate that neonatal DES exposure alters adult hepatic physiology in an SHP-dependent manner.
Collapse
Affiliation(s)
- Aurélie Vega
- INSERM U 1103, Génétique Reproduction et Développement (GReD) , BP 80026, F-63171 Aubière Cedex , France +33 4 73407415 ; +33 4 73407042 ;
| | | | | | | | | | | | | |
Collapse
|
3
|
Baptissart M, Vega A, Martinot E, Baron S, Lobaccaro JMA, Volle DH. Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling? Cell Mol Life Sci 2013; 70:4511-26. [PMID: 23784309 PMCID: PMC11113643 DOI: 10.1007/s00018-013-1387-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Aurelie Vega
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Silvère Baron
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - David H. Volle
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Milona A, Owen BM, Cobbold JFL, Willemsen ECL, Cox IJ, Boudjelal M, Cairns W, Schoonjans K, Taylor-Robinson SD, Klomp LWJ, Parker MG, White R, van Mil SWC, Williamson C. Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology 2010; 52:1341-9. [PMID: 20842631 DOI: 10.1002/hep.23849] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Pregnancy alters bile acid homeostasis and can unmask cholestatic disease in genetically predisposed but otherwise asymptomatic individuals. In this report, we show that normal pregnant mice have raised hepatic bile acid levels in the presence of procholestatic gene expression. The nuclear receptor farnesoid X receptor (FXR) regulates the transcription of the majority of these genes, and we show that both ablation and activation of Fxr prevent the accumulation of hepatic bile acids during pregnancy. These observations suggest that the function of Fxr may be perturbed during gestation. In subsequent in vitro experiments, serum from pregnant mice and humans was found to repress expression of the Fxr target gene, small heterodimer partner (Shp), in liver-derived Fao cells. Estradiol or estradiol metabolites may contribute to this effect because coincubation with the estrogen receptor (ER) antagonist fulvestrant (ICI 182780) abolished the repressive effects on Shp expression. Finally, we report that ERα interacts with FXR in an estradiol-dependent manner and represses its function in vitro. CONCLUSION Ligand-activated ERα may inhibit FXR function during pregnancy and result in procholestatic gene expression and raised hepatic bile acid levels. We propose that this could cause intrahepatic cholestasis of pregnancy in genetically predisposed individuals.
Collapse
Affiliation(s)
- Alexandra Milona
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Janssen GB, Penninks AH, Knippels LMJ, van Zijverden M, Spanhaak S. The evaluation of the immunomodulating properties of ERA-63 a pharmaceutical with estrogenic activity. Toxicol Lett 2008; 180:196-201. [PMID: 18602456 DOI: 10.1016/j.toxlet.2008.06.857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 11/19/2022]
Abstract
This paper describes studies performed with ERA-63 a low molecular weight pharmaceutical with intended immunomodulatory effects. Since this compound was also known to have estrogenic activity a non-conventional approach was taken in order to differentiate between estrogenic and non-estrogenic-induced immunomodulatory effects. EE was included not only for qualitative comparison (hazard identification) between immunomodulatory effects but also, in case of similar effects, to facilitate the extrapolation of the findings in the rat to anticipated effects in humans. After 28 days of treatment with dosages ranging from pharmacological up to clearly toxic levels for both compounds the immunotoxic potential was assessed by performing a T cell-dependent antibody response and a host resistance assay in rats. Selected ERA-63 dose levels (0.167-0.2, 1.67-2 and 16.7-20mg/kg) were expected to have comparable estrogenic activity to respective EE dose levels (0.05, 0.5 and 5mg/kg). General toxicity parameters reflecting estrogenic activity (i.e. decreased body- and organ weights of thymus and testis, and increased bilirubin and GGT levels) confirmed the comparable estrogenic activity for both compounds at the dose levels tested. Together with the comparable estrogen-related immune suppression (i.e. decreases in specific antibody responses and an increased susceptibility for Listeria monocytogenes infects) for both compounds, this indicates that available clinical data for EE facilitates the human risk assessment of ERA-63.
Collapse
Affiliation(s)
- G B Janssen
- Department of Toxicology and Drug Disposition, Organon, a part of Schering-Plough Corporation, P.O. Box 20, 5340 BH Oss, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Aromataris EC, Castro J, Rychkov GY, Barritt GJ. Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:874-85. [PMID: 18342630 DOI: 10.1016/j.bbamcr.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 12/18/2022]
Abstract
Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.
Collapse
Affiliation(s)
- Edoardo C Aromataris
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
7
|
Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington's disease. Exp Neurol 2001; 171:351-60. [PMID: 11573988 DOI: 10.1006/exnr.2001.7755] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is currently no effective treatment for Huntington's disease (HD), a progressive, fatal, neurodegenerative disorder characterized by motor and cognitive deterioration. It is well established that HD is associated with perturbation of mitochondrial energy metabolism. Tauroursodeoxycholic acid (TUDCA), a naturally occurring bile acid, can stabilize the mitochondrial membrane, inhibit the mitochondrial permeability transition, decrease free radical formation, and derail apoptotic pathways. Here we report that TUDCA significantly reduced 3-nitropropionic acid (3-NP)-mediated striatal neuronal cell death in cell culture. In addition, rats treated with TUDCA exhibited an 80% reduction in apoptosis and in lesion volumes associated with 3-NP administration. Moreover, rats which received a combination of TUDCA + 3-NP exhibited sensorimotor and cognitive task performance that was indistinguishable from that of controls, and this effect persisted at least 6 months. Bile acids have traditionally been used as therapeutic agents for certain liver diseases. This is the first demonstration, however, that a bile acid can be delivered to the brain and function as a neuroprotectant and thus may offer potential therapeutic benefit in the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- C D Keene
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Maier WE, Herman JR. Pharmacology and toxicology of ethinyl estradiol and norethindrone acetate in experimental animals. Regul Toxicol Pharmacol 2001; 34:53-61. [PMID: 11502156 DOI: 10.1006/rtph.2001.1483] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For over 30 years various combinations of synthetic estrogens and progestins have been used in oral contraceptive formulations. Ethinyl estradiol (EE) and norethindrone acetate (NA) are common synthetic hormones used in oral contraceptives such as Loestrin, Brevicon, Ortho-Novum, Norlestrin, and Norinyl. In recent years these oral contraceptives have been considered for development in other therapeutic indications. Given the use of these agents for other clinical indications with different and larger target populations, an updated comprehensive review of the toxicology literature of estrogens and progestins is warranted. This review will summarize available data on the pharmacology and toxicology of estrogens and progestins with an emphasis on the specific synthetic hormones EE and NA. Ethinyl estradiol and norethindrone acetate alone or in combination, possess low acute and chronic toxicity. In some studies, EE and/or NA increased the incidence of specific tumors in susceptible strains of rodents and dogs, but not monkeys. These agents are not teratogenic when given in combination. Alone EE and NA have clastogenic properties. Overall, the animal data demonstrates that long-term exposure to EE and NA formulations pose very little health risks to humans.
Collapse
Affiliation(s)
- W E Maier
- Drug Safety Evaluation, Pfizer Global Research & Development, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
9
|
Ishizaki K, Kinbara S, Hirabayashi N, Uchiyama K, Maeda M. Effect of sodium tauroursodeoxycholate on phalloidin-induced cholestasis in rats. Eur J Pharmacol 2001; 421:55-60. [PMID: 11408049 DOI: 10.1016/s0014-2999(01)00996-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We investigated the therapeutic effect of tauroursodeoxycholate on phalloidin-induced cholestasis in rats. Intrahepatic cholestasis was induced by administration of phalloidin (500 microg/kg, i.p.) for 7 days. From the day of the last phalloidin injection, tauroursodeoxycholate (60-360 micromol/kg) was given intravenously twice a day for 4 days. On the next day after the last tauroursodeoxycholate administration, bile flow, serum biochemical parameters and biliary lipid excretion rates were determined. Tauroursodeoxycholate significantly suppressed the decrease in bile flow and increases in serum alkaline phosphatase, leucine aminopeptidase and glutamic pyruvic transaminase activities, cholesterol, phospholipid and bile acid concentrations observed in phalloidin-induced cholestasis in rats. Furthermore, tauroursodeoxycholate significantly improved the biliary cholesterol and phospholipid excretion rates in phalloidin-induced cholestasis in rats. These results demonstrate the usefulness of tauroursodeoxycholate as a therapeutic agent in intrahepatic cholestasis.
Collapse
Affiliation(s)
- K Ishizaki
- Pharmaceuticals Research Laboratory IV, Research Center, Mitsubishi-Tokyo Pharmaceuticals, Inc., 1000, Kamoshida-cho, Aoba, Kanagawa 227-0033, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
10
|
Ram VJ, Goel A. Present status of hepatoprotectants. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 52:53-101. [PMID: 10396126 DOI: 10.1007/978-3-0348-8730-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Perpetual exposure of liver to xenobiotics and therapeutic agents leads to toxic manifestations of a complex and diverse nature. Not a single curative therapeutic agent has been found so far which could provide lasting remedy to patients suffering from hepatic disorders. In fact, the remedies available in the modern system of medicine provide only symptomatic relief without any significant changes on the disease process. Moreover, their use is associated with severe side effects and chances of relapses. Except some natural products claimed to be effective, no safe synthetic product is yet available for the management of hepatic disorders. Lack of effective, least toxic and curative hepatoprotectants made the task difficult to discover newer drugs. This review is an attempt to provide an overall view of the development of synthetic and natural products as hepatoprotective agents.
Collapse
Affiliation(s)
- V J Ram
- Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
11
|
Koopen NR, Wolters H, Havinga R, Vonk RJ, Jansen PL, Müller M, Kuipers F. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Hepatology 1998; 27:537-45. [PMID: 9462655 DOI: 10.1002/hep.510270231] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To test the hypothesis that impaired activity of the bile canalicular organic anion transporting system mrp2 (cmoat) is a key event in the etiology of 17alpha-ethinylestradiol (EE)-induced intrahepatic cholestasis in rats, EE (5 mg/kg subcutaneously daily) was administered to male normal Wistar (NW) and mrp2-deficient Groningen Yellow/Transport-deficient Wistar (GY/TR-) rats. Elevated plasma bilirubin levels in GY/TR- rats increased upon EE-treatment from 65 +/- 8.4 micromol/L to 183 +/- 22.7 micromol/L within 3 days, whereas bilirubin levels remained unaffected in NW rats. Biliary bilirubin secretion was 1.5-fold increased in NW rats but remained unaltered in GY/TR- rats. Plasma bile salt concentrations remained unchanged in both strains, although hepatic levels of the sinusoidal Na+-taurocholate cotransporting protein (ntcp) were markedly reduced. Biliary secretion of endogenous bile salt was not affected in either strain. A clear reduction of mrp2 levels in liver plasma membranes of NW rats was found after 3 days of treatment. The bile salt-independent fraction of bile flow (BSIF) was reduced from 2.6 to 2.0 microL/min/100 g body weight in NW rats with a concomitant 62% reduction of biliary glutathione secretion. The absence of mrp2 and biliary glutathione in GY/TR- rats did not prevent induction of EE-cholestasis; a similar absolute reduction of BSIF, i.e., from 1.1 to 0.6 microL/min/100 g bodyweight, was found in these animals. EE treatment caused a reduction of the maximal biliary secretory rate (S(RM)) of the mrp2 substrate, dibromosulphthalein (DBSP), from 1,040 to 695 nmol/min/100 g body weight (-38%) in NW rats and from 615 to 327 nmol/min/100 g body weight (-46%) in GY/TR- rats. These results demonstrate that inhibition of mrp2 activity and/or biliary glutathione secretion is not the main cause of EE-induced cholestasis in rats. The data indicate that alternative pathways exist for the biliary secretion of bilirubin and related organic anions that are also affected by EE.
Collapse
Affiliation(s)
- N R Koopen
- Groningen Institute for Drug Studies, Laboratory of Nutrition and Metabolism, University Hospital Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Azer SA, Stacey NH. Current concepts of hepatic uptake, intracellular transport and biliary secretion of bile acids: physiological basis and pathophysiological changes in cholestatic liver dysfunction. J Gastroenterol Hepatol 1996; 11:396-407. [PMID: 8713709 DOI: 10.1111/j.1440-1746.1996.tb01390.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatic sinusoidal uptake of bile acids is mediated by defined carrier proteins against unfavourable concentration and electrical gradients. Putative carrier proteins have been identified using bile acid photoaffinity labels and more recently using immunological probes, such as monoclonal antibodies. At the sinusoidal domain, proteins with molecular weights of 49 and 54 kDa have been shown to be carriers for bile acid transport. The 49 kDa protein has been associated with the Na(+)-dependent uptake of conjugated bile acids, while the 54 kDa carrier has been involved in the Na(+)-independent bile acid uptake process. Within the hepatocyte, cytosolic proteins, such as the glutathione S-transferase (also designated the Y protein), the Y binders and the fatty acid binding proteins, are able to bind bile acids and possibly facilitate their movement to the canalicular domain. At the canalicular domain a 100 kDa carrier protein has been isolated and it has been shown by several laboratories that this particular protein is concerned with canalicular bile acid transport. The system is ATP-dependent and follows Michaelis-Menten kinetics. Interference with bile acid transport has been demonstrated by several chemicals. The mechanisms by which these chemicals inhibit bile acid transport may explain the apparent cholestatic properties observed in patients and experimental animals treated with these agents. Several studies have shown that Na+/K(+)-ATPase activity is markedly decreased in cholestasis induced by ethinyloestradiol, taurolithocholate and chlorpromazine. However, other types of interference have been described and the cholestatic effects may be the result of several mechanisms. Cholestasis is associated with several adaptive changes that may be responsible for the accumulation of bile acids and other cholephilic compounds in the blood of these patients. It may be speculated that the nature of these changes is to protect liver parenchymal cells from an accumulation of bile acids to toxic levels. However, more detailed quantitative experiments are necessary to answer questions with regard to the significance of these changes and the effect of various hepatobiliary disorders in modifying these mechanisms. It is expected that the mechanisms by which bile acid transport is regulated and efforts to understand the molecular basis for these processes will be among the areas of future research.
Collapse
Affiliation(s)
- S A Azer
- Toxicology Unit, National Institute of Occupational Health and Safety, University of Sydney, New South Wales, Australia
| | | |
Collapse
|