1
|
Kuo N, Li P, Cunha JB, Chen L, Shavit JA, Omary MB. The Histamine Pathway is a Target to Treat Hepatic Experimental Erythropoietic Protoporphyria. Cell Mol Gastroenterol Hepatol 2025:101463. [PMID: 39824305 DOI: 10.1016/j.jcmgh.2025.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND & AIMS Erythropoietic protoporphyria (EPP) is caused by mutations in ferrochelatase, which inserts iron into protoporphyrin-IX (PP-IX) to generate heme. EPP is characterized by PP-IX accumulation, skin photosensitivity, cholestasis, and end-stage liver disease. Despite available drugs that address photosensitivity, treatment of EPP-related liver disease remains an unmet need. METHODS We administered delta-aminolaevulinic acid (ALA) and deferoxamine (DFO), which results in PP-IX overproduction and accumulation. High-throughput compound screening of ALA + DFO-treated zebrafish identified chlorcyclizine (first generation H1-antihistamine receptor blocker), as a drug that reduces zebrafish liver PP-IX levels. The effect of chlorcyclizine was validated in porphyrin-loaded primary mouse hepatocytes (PMHs), transgenic Fechm1Pas EPP mice, and mice fed the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Plasma and tissue PP-IX were measured by fluorescence; livers were analyzed by histology, immunoblotting, and quantitative polymerase chain reaction. RESULTS Chlorcyclizine-treated zebrafish larvae and DDC-fed and transgenic EPP mice manifested reduced hepatic PP-IX levels compared with controls. Histamine increased PP-IX accumulation in porphyrin-stressed hepatocytes, whereas H1/H2-receptor blockade decreased PP-IX levels. In both mouse models, chlorcyclizine lowered PP-IX levels in female but not male mice in liver, erythrocytes, and bone marrow; improved liver injury; decreased porphyrin-triggered protein aggregation and oxidation; and increased clearance of stool PP-IX. In PMHs, chlorcyclizine induced nuclear translocation of constitutive androstane and farnesoid X receptors, and transactivated bile acid transporter expression. Knockdown of the transporters BSEP and MRP4 led to increased detection of sequestosome-1 (p62 protein) high-molecular-weight species. Chlorcyclizine also reduced hepatic mast cell number and histamine level in EPP mice. CONCLUSIONS Histamine plays an important role in PP-IX accumulation in zebrafish and 2 experimental EPP models. Chlorcyclizine and/or other antihistamines provide a potential therapeutic strategy to treat EPP-associated liver disease via decreasing PP-IX accumulation.
Collapse
Affiliation(s)
- Ning Kuo
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey; Current affiliation: Biomedical Sciences Graduate Program, University of California San Diego, San Diego, California
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey
| | - Juliana Bragazzi Cunha
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey; Current affiliation: Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lu Chen
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey
| | - Jordan A Shavit
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, Michigan; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
2
|
Eadie AL, Simpson JA, Brunt KR. Teaching an old drug new tricks: Regulatory insights for the repurposing of hemin in cardiovascular disease. Pharmacol Res Perspect 2024; 12:e1225. [PMID: 38923404 PMCID: PMC11194834 DOI: 10.1002/prp2.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Drug repurposing has gained significant interest in recent years due to the high costs associated with de novo drug development; however, comprehensive pharmacological information is needed for the translation of pre-existing drugs across clinical applications. In the present study, we explore the current pharmacological understanding of the orphan drug, hemin, and identify remaining knowledge gaps with regard to hemin repurposing for the treatment of cardiovascular disease. Originally approved by the United States Food and Drug Administration in 1983 for the treatment of porphyria, hemin has attracted significant interest for therapeutic repurposing across a variety of pathophysiological conditions. Yet, the clinical translation of hemin remains limited to porphyria. Understanding hemin's pharmacological profile in health and disease strengthens our ability to treat patients effectively, identify therapeutic opportunities or limitations, and predict and prevent adverse side effects. However, requirements for the pre-clinical and clinical characterization of biologics approved under the U.S. FDA's Orphan Drug Act in 1983 (such as hemin) differed significantly from current standards, presenting fundamental gaps in our collective understanding of hemin pharmacology as well as knowledge barriers to clinical translation for future applications. Using information extracted from the primary and regulatory literature (including documents submitted to Health Canada in support of hemin's approval for the Canadian market in 2018), we present a comprehensive case study of current knowledge related to hemin's biopharmaceutical properties, pre-clinical/clinical pharmacokinetics, pharmacodynamics, dosing, and safety, focusing specifically on the drug's effects on heme regulation and in the context of acute myocardial infarction.
Collapse
Affiliation(s)
- Ashley L. Eadie
- Department of PharmacologyDalhousie UniversitySaint JohnNew BrunswickCanada
- IMPART investigator team CanadaSaint JohnNew BrunswickCanada
| | - Jeremy A. Simpson
- IMPART investigator team CanadaSaint JohnNew BrunswickCanada
- Department of Human Health & NutritionUniversity of GuelphGuelphOntarioCanada
| | - Keith R. Brunt
- Department of PharmacologyDalhousie UniversitySaint JohnNew BrunswickCanada
- IMPART investigator team CanadaSaint JohnNew BrunswickCanada
| |
Collapse
|
3
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
4
|
Walke A, Krone C, Stummer W, König S, Suero Molina E. Protoporphyrin IX in serum of high-grade glioma patients: A novel target for disease monitoring via liquid biopsy. Sci Rep 2024; 14:4297. [PMID: 38383693 PMCID: PMC10881484 DOI: 10.1038/s41598-024-54478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
High-grade gliomas (HGG) carry a dismal prognosis. Diagnosis comprises MRI followed by histopathological evaluation of tissue; no blood biomarker is available. Patients are subjected to serial MRIs and, if unclear, surgery for monitoring of tumor recurrence, which is laborious. MRI provides only limited diagnostic information regarding the differentiation of true tumor progression from therapy-associated side effects. 5-aminolevulinic acid (5-ALA) is routinely used for induction of protoporphyrin IX (PpIX) accumulation in malignant glioma tissue, enabling improved tumor visualization during fluorescence-guided resection (FGR). We investigated whether PpIX can also serve as a serum HGG marker to monitor relapse. Patients (HGG: n = 23 primary, pHGG; n = 5 recurrent, rHGG) undergoing FGR received 5-ALA following standard clinical procedure. The control group of eight healthy volunteers (HCTR) also received 5-ALA. Serum was collected before and repeatedly up to 72 h after drug administration. Significant PpIX accumulation in HGG was observed after 5-ALA administration (ANOVA: p = 0.005, post-hoc: HCTR vs. pHGG p = 0.029, HCTR vs. rHGG p = 0.006). Separation of HCTR from pHGG was possible when maximum serum PpIX levels were reached (CI95% of tMax). ROC analysis of serum PpIX within CI95% of tMax showed successful classification of HCTR and pHGG (AUCROC 0.943, CI95% 0.884-1.000, p < 0.001); the optimal cut-off for diagnosis was 1275 pmol PpIX/ml serum, reaching 87.0% accuracy, 90.5% positive predictive and 84.0% negative predictive value. Baseline PpIX level was similar in patient and control groups. Thus, 5-ALA is required for PpIX induction, which is safe at the standard clinical dosage. PpIX is a new target for liquid biopsy in glioma. More extensive clinical studies are required to characterize its full potential.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany.
| | - Christopher Krone
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
5
|
Croce AC, Ferrigno A, Palladini G, Mannucci B, Vairetti M, Di Pasqua LG. Fatty Acids and Bilirubin as Intrinsic Autofluorescence Serum Biomarkers of Drug Action in a Rat Model of Liver Ischemia and Reperfusion. Molecules 2023; 28:molecules28093818. [PMID: 37175228 PMCID: PMC10180479 DOI: 10.3390/molecules28093818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The autofluorescence of specific fatty acids, retinoids, and bilirubin in crude serum can reflect changes in liver functional engagement in maintaining systemic metabolic homeostasis. The role of these fluorophores as intrinsic biomarkers of pharmacological actions has been investigated here in rats administered with obeticholic acid (OCA), a Farnesoid-X Receptor (FXR) agonist, proven to counteract the increase of serum bilirubin in hepatic ischemia/reperfusion (I/R) injury. Fluorescence spectroscopy has been applied to an assay serum collected from rats submitted to liver I/R (60/60 min ± OCA administration). The I/R group showed changes in the amplitude and profiles of emission spectra excited at 310 or 366 nm, indicating remarkable alterations in the retinoid and fluorescing fatty acid balance, with a particular increase in arachidonic acid. The I/R group also showed an increase in bilirubin AF, detected in the excitation spectra recorded at 570 nm. OCA greatly reversed the effects observed in the I/R group, confirmed by the biochemical analysis of bilirubin and fatty acids. These results are consistent with a relationship between OCA anti-inflammatory effects and the acknowledged roles of fatty acids as precursors of signaling agents mediating damaging responses to harmful stimuli, supporting serum autofluorescence analysis as a possible direct, real-time, cost-effective tool for pharmacological investigations.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Internal Medicine, Fondazione, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
6
|
Li C, Yin Z, Xiao R, Huang B, Cui Y, Wang H, Xiang Y, Wang L, Lei L, Ye J, Li T, Zhong Y, Guo F, Xia Y, Fang P, Liang K. G-quadruplexes sense natural porphyrin metabolites for regulation of gene transcription and chromatin landscapes. Genome Biol 2022; 23:259. [PMID: 36522639 PMCID: PMC9753424 DOI: 10.1186/s13059-022-02830-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND G-quadruplexes (G4s) are unique noncanonical nucleic acid secondary structures, which have been proposed to physically interact with transcription factors and chromatin remodelers to regulate cell type-specific transcriptome and shape chromatin landscapes. RESULTS Based on the direct interaction between G4 and natural porphyrins, we establish genome-wide approaches to profile where the iron-liganded porphyrin hemin can bind in the chromatin. Hemin promotes genome-wide G4 formation, impairs transcription initiation, and alters chromatin landscapes, including decreased H3K27ac and H3K4me3 modifications at promoters. Interestingly, G4 status is not involved in the canonical hemin-BACH1-NRF2-mediated enhancer activation process, highlighting an unprecedented G4-dependent mechanism for metabolic regulation of transcription. Furthermore, hemin treatment induces specific gene expression profiles in hepatocytes, underscoring the in vivo potential for metabolic control of gene transcription by porphyrins. CONCLUSIONS These studies demonstrate that G4 functions as a sensor for natural porphyrin metabolites in cells, revealing a G4-dependent mechanism for metabolic regulation of gene transcription and chromatin landscapes, which will deepen our knowledge of G4 biology and the contribution of cellular metabolites to gene regulation.
Collapse
Affiliation(s)
- Conghui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhinang Yin
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ruijing Xiao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Beili Huang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yali Cui
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Honghong Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Xiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lingrui Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lingyu Lei
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaqin Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tianyu Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Youquan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fangteng Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuchen Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Pingping Fang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Kaiwei Liang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Medriano CA, Bae S. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114125. [PMID: 36183426 DOI: 10.1016/j.ecoenv.2022.114125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
There is limited knowledge of the ecotoxicological impacts of MPs at the environmentally relevant concentration on freshwater animals, even though numerous studies have demonstrated the toxic effects of MPs on living organisms. In this study, zebrafish (Danio rerio) was used as a model organism to investigate the ecotoxicological effects of acute exposure of virgin MPs on changes in metabolome and gut microbiota. High-throughput untargeted metabolomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS) provided comprehensive insights into the metabolic responses of zebrafish exposed to PE (polyethylene) and PES (polyester) MPs. Statistical analysis of metabolomics data indicated that 39 and 27 metabolites, such as lysophosphatidylcholine, phosphocholine, phosphatidylserine, triglyceride, glycosphingolipid, psychosine, 8-amino-7-oxononanoate, cholesterol fatty acid ester, phosphatidylinositol, n-Triacontanol, were significantly altered in PE- and PES-exposed zebrafish, respectively. Furthermore, the enrichment pathway analysis unveiled the synthesis of the structural and functional lipids, signaling molecules, fatty alcohol metabolism, and amino acid metabolism, which was considerably perturbated in MPs-exposed zebrafish. In addition, high-throughput DNA sequencing was conducted to examine changes in gut microbiota in the MPs-treated zebrafish. The MPs exposure increased in the relative abundance of Fusobacteria and Proteobacteria, while the relative abundance of Firmicutes declined in MPs-treated zebrafish. Also, microbial diversity and linear discriminant analyses indicated microbiota dysbiosis, metabolomic dysregulation, and oxidative stress. Taken together, the acute exposure of MPs at environmentally relevant concentrations could disrupt the metabolic interaction via the microbiota-gut-liver-brain relationship, implying gastrointestinal and neurological/immune disorders in zebrafish.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Murbach TS, Glávits R, Maragheh NM, Endres JR, Hirka G, Goodman RE, Lu G, Vértesi A, Béres E, Szakonyiné IP. Evaluation of the genotoxic potential of protoporphyrin IX and the safety of a protoporphyrin IX-rich algal biomass. J Appl Toxicol 2022; 42:1253-1275. [PMID: 35104912 DOI: 10.1002/jat.4293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chlamydomonas reinhardtii is a nonpathogenic, nontoxigenic green algae used as a sustainable source of protein in foods. In order to mimic meat-like qualities, a strain rich in protoporphyrin IX (PPIX), an endogenous heme/chlorophyll precursor, was developed using an evolution and selection strategy, and investigations were carried out to evaluate the safety of the novel strain, C. reinhardtii (red), strain TAI114 (TAI114). Digestibly and proteomic evaluations were conducted to determine whether any potentially allergenic or toxic proteins occurred as the result of the mutation process. The genotoxic potential of pure PPIX was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test. Finally, the novel TAI114 biomass was evaluated for general toxicity and identification of target organs in a 90-day repeated-dose oral toxicity study in rats. All proteins were rapidly degraded in pepsin at pH 2.0 suggesting low allergenic potential. The proteomic evaluation indicated that TAI114 biomass contains typical C. reinhardtii proteins. PPIX was unequivocally negative for genotoxic potential and no target organs or adverse effects were observed in rats up to the maximum feasible dose of 4000 mg/kg bw/day TAI114 biomass, which was determined to be the no-observed-adverse-effect-level (NOAEL). These results support the further development and risk characterization of TAI114 biomass as a novel ingredient for use in the meat analogue category of food.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary
| | - Niloofar Moghadam Maragheh
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Richard E Goodman
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - Guihua Lu
- Triton Algae Innovations, 11760 Sorrento Valley Road, Suite R, San Diego, California, USA
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
9
|
Bogomolov A, Sakharova T, Usenov I, Mizaikoff C, Belikova V, Perevoschikov S, Artyushenko V, Bibikova O. Fiber Probe for Simultaneous Mid-Infrared and Fluorescence Spectroscopic Analysis. Anal Chem 2021; 93:6013-6018. [PMID: 33821623 DOI: 10.1021/acs.analchem.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multispectral fiber optic probe has been developed that enables simultaneous analysis of various liquid and solid samples using attenuated total reflection mid-infrared spectroscopy and fluorimetry. The probe design was optimized using ray-tracing simulation of the light propagation. Technical evaluation of the probe has confirmed its output signal quality that was comparable to that of respective probes for single methods. The capability of the probe to deliver complementary chemical information from the same measurement point has been illustrated using model samples of biological tissue. Qualitative analysis of the biological tissue is one of the most important applications of the developed multispectral probe.
Collapse
Affiliation(s)
- Andrey Bogomolov
- Samara State Technical University, Molodogvardeyskaya 244, 443100 Samara, Russia
| | | | - Iskander Usenov
- art photonics GmbH, Rudower Chaussee 46, Berlin 12489, Germany.,Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin, Germany
| | | | - Valeria Belikova
- Samara State Technical University, Molodogvardeyskaya 244, 443100 Samara, Russia
| | - Stanislav Perevoschikov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | | | - Olga Bibikova
- art photonics GmbH, Rudower Chaussee 46, Berlin 12489, Germany
| |
Collapse
|
10
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
11
|
Serum and Hepatic Autofluorescence as a Real-Time Diagnostic Tool for Early Cholestasis Assessment. Int J Mol Sci 2018; 19:ijms19092634. [PMID: 30189659 PMCID: PMC6165295 DOI: 10.3390/ijms19092634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.
Collapse
|
12
|
Shi R, Lin X, Zhang J, Jin H, Wang A, Wei J. Safety evaluation of repeated intravenous infusion of sinoporphyrin with and without PDT in rats. Photochem Photobiol Sci 2018; 15:1366-1376. [PMID: 27714312 DOI: 10.1039/c6pp00276e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is a promising antineoplastic modality in the oncology field. We assessed the safety of repeated intravenous administrations of sinoporphyrin, a porphyrin derivative, with and without illumination in rats. Toxicokinetic studies of single and multiple administrations of sinoporphyrin were also carried out. Sprague-Dawley rats were randomly assigned to the dark-toxicity and PDT groups. Animals in the dark toxicity group received an i.v. infusion of sinoporphyrin at 3 doses: 2 mg kg-1, 6 mg kg-1, and 18 mg kg-1. The PDT group included 2 doses of sinoporphyrin (2 mg kg-1 and 18 mg kg-1), and the rats received 60 J of 630 nm laser illumination 24 h after photosensitizer infusion. The treatments were repeated every 7 days for 5 cycles and were followed by a 14-day recovery period. Systematic analyses were conducted at the end of treatment and recovery periods. Blood samples were obtained 5 min, 30 min, 2 h, 8 h, 24 h, 48 h, 72 h, and 96 h after the first and fifth treatments for toxicokinetic studies. Sinoporphyrin-PDT led to the death of one out of 270 rats; the dead animal had been treated with 18 mg kg-1 sinoporphyrin and died at the end of the fifth PDT treatment. Liver injury, the primary toxicity observed in the study, was identified using biochemical tests, necropsy, and histopathology. Elevated white blood cell and neutrophil counts were found in the rats in both the dark toxicity and PDT groups. Skin lesions at the illumination site were obvious in the PDT group. Pigment deposits were detected in multiple organs such as the liver, spleen, lymph nodes, and ovaries in the 6 mg kg-1 and 18 mg kg-1 groups. No other abnormalities were observed. The toxicokinetic parameters of single and multiple sinoporphyrin administrations were calculated and compared. Repeated sinoporphyrin administrations both alone and in combination with laser illumination were tolerable, and all toxicities were transient. The no observed adverse effect level (NOAEL) for repeated sinoporphyrin administration and sinoporphyrin-PDT was 6 mg kg-1 and 2 mg kg-1, respectively. Further studies are warranted.
Collapse
Affiliation(s)
- Rui Shi
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xiaoqi Lin
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Jingxuan Zhang
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Aiping Wang
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China and Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| | - Jinfeng Wei
- New Drug Safety Evaluation Centre, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China and Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd, Beijing, China.
| |
Collapse
|
13
|
Rajora MA, Ding L, Valic M, Jiang W, Overchuk M, Chen J, Zheng G. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem Sci 2017; 8:5371-5384. [PMID: 28970916 PMCID: PMC5609152 DOI: 10.1039/c7sc00732a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Size-controlled discoidal and cholesteryl oleated-loaded spherical, intrinsically multimodal porphyrin-lipid nanoparticles targeted glioblastoma via apoE3 and LDLR.
The development of curative glioblastoma treatments and tumour-specific contrast agents that can overcome the blood–brain barrier (BBB) and infiltrative tumour morphology remains a challenge. Apolipoprotein E3 (apoE3) is a high density lipoprotein apolipoprotein that chaperones the transcytosis of nanoparticles across the BBB, and displays high-affinity binding with the low density lipoprotein receptor (LDLR), a cell-surface receptor overexpressed by glioblastoma cells. This LDLR overexpression and apoE3 binding capacity was exploited for the development of glioblastoma-targeted porphyrin-lipid apoE3 lipid nanoparticles (pyE-LNs) with intrinsic theranostic properties. Size-controlled discoidal and cholesteryl oleate (CO)-loaded spherical pyE-LNs were synthesized through the systematic variation of particle composition, which dictated nanoparticle size and morphology. Composition optimization yielded 30 nm pyE-LNs with stable loading of apoE3 and porphyrin-lipid that simultaneously conferred the nanoparticles with glioblastoma targeting and activatable near-infrared fluorescence imaging functionalities. A 4-fold higher uptake of pyE-LNs by LDLR-expressing U87 glioblastomas cells relative to minimally expressing ldlA7 cells was observed in vitro. This uptake was a result of receptor-mediated endocytosis, which could be inhibited through LDL competition and acetylation of particle apoE3 moieties. ApoE3-dependent delivery of pyE-LN to glioblastomas was also demonstrated in orthotopic U87-GFP tumour-bearing animals. Quantification of CO-loaded pyE-LN biodistribution demonstrated successful selective uptake of porphyrin by malignant tissue, with a 4 : 1 tumour : healthy tissue particle specificity. This allowed for the detection of strong, tumour-localized porphyrin fluorescence, which was diminished when apoE3-devoid py-LN particles were administered. Furthermore, this selective uptake yielded cell-specific potent PDT sensitization in vitro, resulting in an 83% reduction in glioblastoma cell viability. These results highlight the promising capacity of pyE-LNs to target porphyrin delivery to glioblastoma tumours for theranostic applications.
Collapse
Affiliation(s)
- M A Rajora
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - L Ding
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - M Valic
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - W Jiang
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - M Overchuk
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - J Chen
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada .
| | - G Zheng
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada . .,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada.,Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| |
Collapse
|
14
|
Greijdanus-van der Putten SWM, van Esch E, Kamerman J, Ballering LAP, van den Dobbelsteen DJ, T de Rijk EPC. Drug-Induced Protoporphyria in Beagle Dogs. Toxicol Pathol 2017; 33:720-5. [PMID: 16263697 DOI: 10.1080/01926230500351392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As part of regulatory safety testing program, a 13-week oral toxicity study with a new antipsychotic drug candidate was performed in beagle dogs. During this study, dark red/brown feces were recorded in treated dogs and increases in liver parameters (alanine aminotransferase, alkaline phosphatase, bilirubin) were measured biochemically. At the end of the study, livers of high-dose (50 mg/kg) animals were (mottled) dark brown, sometimes with pale foci. Histopathological examination of these livers showed dark globular pigment deposits in the hepatocellular cytoplasm and within the bile canaliculi. Varying numbers of inflammatory cell infiltrates were additionally present in association with the deposits. These pigment deposits showed birefringency with characteristic “Maltese Cross”-like structures under polarized light. Electronmicroscopy revealed the typical, so-called “sunburst” pattern with radiating double-lined crystalline structures. These morphologic characteristics strongly indicated at the presence of porphyrins, which was definitely confirmed biochemically. Published reports of drug-induced hepatic porphyria in dogs are rare. The possible underlying mechanism in the dog and man is discussed.
Collapse
|
15
|
Maitra D, Elenbaas JS, Whitesall SE, Basrur V, D'Alecy LG, Omary MB. Ambient Light Promotes Selective Subcellular Proteotoxicity after Endogenous and Exogenous Porphyrinogenic Stress. J Biol Chem 2015. [PMID: 26205816 DOI: 10.1074/jbc.m114.636001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic accumulation of protoporphyrin-IX (PP-IX) in erythropoietic protoporphyria (EPP) or X-linked-dominant protoporphyria (XLP) cause liver damage. Hepatocyte nuclear lamin aggregation is a sensitive marker for PP-IX-mediated liver injury. We tested the hypothesis that extracellular or intracellular protoporphyria cause damage to different subcellular compartments, in a light-triggered manner. Three hepatoma cell lines (HepG2, Hepa-1, and Huh-7) were treated with exogenous PP-IX (mimicking XLP extrahepatic protoporphyria) or with the iron chelator deferoxamine and the porphyrin precursor 5-aminolevulinic acid (ALA) (mimicking intracellular protoporphyrin accumulation in EPP). Exogenous PP-IX accumulated predominantly in the nuclear fraction and caused nuclear shape deformation and cytoplasmic vacuoles containing electron-dense particles, whereas ALA+deferoxamine treatment resulted in higher PP-IX in the cytoplasmic fraction. Protein aggregation in the nuclear and cytoplasmic fractions paralleled PP-IX levels and, in cell culture, the effects were exclusively ambient light-mediated. PP-IX and ALA caused proteasomal inhibition, whereas endoplasmic reticulum protein aggregation was more prominent in ALA-treated cells. The enhanced ALA-related toxicity is likely due to generation of additional porphyrin intermediates including uroporphyrin and coproporphyrin, based on HPLC analysis of cell lysates and the culture medium, as well as cell-free experiments with uroporphyrin/coproporphyrin. Mouse livers from drug-induced porphyria phenocopied the in vitro findings, and mass spectrometry of liver proteins isolated in light/dark conditions showed diminished (as compared with light-harvested) but detectable aggregation under dark-harvested conditions. Therefore, PP-IX leads to endoplasmic reticulum stress and proteasome inhibition in a manner that depends on the source of porphyrin buildup and light exposure. Porphyrin-mediated selective protein aggregation provides a potential mechanism for porphyria-associated tissue injury.
Collapse
Affiliation(s)
- Dhiman Maitra
- From the Departments of Molecular and Integrative Physiology,
| | | | | | | | - Louis G D'Alecy
- From the Departments of Molecular and Integrative Physiology
| | - M Bishr Omary
- From the Departments of Molecular and Integrative Physiology, Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109 and the Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| |
Collapse
|
16
|
Croce AC, Ferrigno A, Santin G, Vairetti M, Bottiroli G. Bilirubin: an autofluorescence bile biomarker for liver functionality monitoring. JOURNAL OF BIOPHOTONICS 2014; 7:810-817. [PMID: 23616471 DOI: 10.1002/jbio.201300039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/27/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Excitation at 366-465 nm of bilirubin in aqueous solution with solubilizing agents results in emission spectra composed by two main bands. The variation of their relative contributions as shown by changes in the spectral shape are consistent with the bilirubin bichromophore nature. This latter accounts for an exciton-coupling phenomenon, intramolecular interchromophore energy transfer efficiency being affected by microenvironment. Excitation at 366 nm, despite the poor absorption of bilirubin, gives rise to appreciable emission signals from both pure compounds and bile - collected from functionally altered rat livers - favouring the spectral shape response to environment and molecular conformation changes. As compared to the merely bile flow estimation, real-time detection of fluorescence, revealing composition variations, improves near-UV optical-biopsy diagnostic potential in hepatology.
Collapse
Affiliation(s)
- Anna C Croce
- Histochemistry and Cytometry Unit, IGM-CNR, Biology and Biotechnology Department, University of Pavia, Via Ferrata 9, Palazzo Botta 2, 27100, Italy.
| | | | | | | | | |
Collapse
|
17
|
Nicolas JM, Chanteux H, Mancel V, Dubin GM, Gerin B, Staelens L, Depelchin O, Kervyn S. N-alkylprotoporphyrin formation and hepatic porphyria in dogs after administration of a new antiepileptic drug candidate: mechanism and species specificity. Toxicol Sci 2014; 141:353-64. [PMID: 24973095 DOI: 10.1093/toxsci/kfu131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new antiepileptic synaptic vesicle 2a (SV2a) ligand drug candidate was tested in 4-week oral toxicity studies in rat and dog. Brown pigment inclusions were found in the liver of high-dose dogs. The morphology of the deposits and the accompanying liver changes (increased plasma liver enzymes, increased total hepatic porphyrin level, decreased liver ferrochelatase activity, combined induction, and inactivation of cytochrome P-450 CYP2B11) suggested disruption of the heme biosynthetic cascade. None of these changes was seen in rat although this species was exposed to higher parent drug levels. Toxicokinetic analysis and in vitro metabolism assays in hepatocytes showed that dog is more prone to oxidize the drug candidate than rat. Mass spectrometry analysis of liver samples from treated dogs revealed an N-alkylprotoporphyrin adduct. The elucidation of its chemical structure suggested that the drug transforms into a reactive metabolite which is structurally related to a known reference porphyrogenic agent allylisopropylacetamide. That particular metabolite, primarily produced in dog but neither in rat nor in human, has the potential to alkylate the prosthetic heme of CYP. Overall, the data suggested that the drug candidate should not be porphyrogenic in human. This case study further exemplifies the species variability in the susceptibility to drug-induced porphyria.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | - Hugues Chanteux
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | - Valérie Mancel
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | | | - Brigitte Gerin
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | - Ludovicus Staelens
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | - Olympe Depelchin
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| | - Sophie Kervyn
- UCB Pharma S.A., Non-Clinical Development, B-1420 Braine l'Alleud, Belgium
| |
Collapse
|
18
|
Croce AC, Ferrigno A, Santin G, Piccolini VM, Bottiroli G, Vairetti M. Autofluorescence of liver tissue and bile: organ functionality monitoring during ischemia and reoxygenation. Lasers Surg Med 2014; 46:412-21. [PMID: 24619664 DOI: 10.1002/lsm.22241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Autofluorescence (AF) based optical biopsy of liver tissue is a powerful approach for the real-time diagnosis of its functionality. Since increasing attention is given to the bile production and composition to monitor the liver metabolic engagement in surgery and transplantation, we have investigated the bile AF properties as a potential, additional diagnostic parameter. STUDY DESIGN/MATERIALS AND METHODS Spectrofluorometric analysis has been performed in real time on a rat liver model of warm ischemia and reperfusion-60 minutes partial portal vein and hepatic artery clamping and subsequent restoration of blood circulation-in comparison with sham operated rats. The AF spectra have been recorded through a single fiber optic probe (366 nm excitation) from both liver tissue and bile, collected from the cannulated bile duct, and analyzed by means of curve fitting procedures. Bile composition has been also analyzed through biochemical assays of bilirubin, total bile acids (TBA) and proteins. RESULTS Both liver and bile AF signal amplitude and spectral shape undergo changes during induction of ischemia and subsequent reperfusion. The liver tissue response is mainly ascribable to changes in NAD(P)H and flavins and their redox state, largely dependent on oxygen supply, and to the decrease of both vitamin A and fatty acid AF contributions. During comparable times, sham operated rat livers undergo smaller alterations in AF spectral shape, indicating a continuous, slight increase in the oxidized state. Bile AF emission shows a region in the 510-600 nm range ascribable to bilirubin, and resulting from the contribution of two bands, centered at about 515-523 and 570 nm, consistently with its bichromophore nature. Variations in the balance between these two bands depend on the influence of microenvironment on bilirubin intramolecular interchromophore energy transfer efficiency and are likely indicating alteration in a bile composition. This event is supported also by changes observed in the 400-500 nm emission region, ascribable to other bile components. CONCLUSIONS In parallel with the intratissue AF properties, mainly reflecting redox metabolic activities, the bile AF analysis can provide additional information to assess alterations and recovery in the balance of liver metabolic activities.
Collapse
Affiliation(s)
- Anna C Croce
- Histochemistry and Cytometry Unit, IGM-CNR, Biology and Biotechnology Department, University of Pavia, 27100, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Sauvage VR, Levene AP, Nguyen HT, Wood TC, Kudo H, Concas D, Thomas HC, Thursz MR, Goldin RD, Anstee QM, Elson DS. Multi-excitation fluorescence spectroscopy for analysis of non-alcoholic fatty liver disease. Lasers Surg Med 2012; 43:392-400. [PMID: 21674544 DOI: 10.1002/lsm.21064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES The increasing incidence of non-alcoholic fatty liver diseases (NAFLD) and the consequent progression to cirrhosis is expected to become a major cause of liver transplantation. This will exacerbate the organ donor shortage and mean that 'marginal' fatty liver grafts are more frequently used. Autofluorescence spectroscopy is a fast, objective, and non-destructive method to detect change in the endogenous fluorophores distribution and could prove to be a valuable tool for NAFLD diagnosis and transplant graft assessment. MATERIALS AND METHODS A system was constructed consisting of a fibre probe with two laser diodes that provided excitation light at 375 and 405 nm, and an imaging spectrograph system. This was used to distinguish fluorescence spectra acquired from the harvested livers from mice with NAFLD of differing severity (healthy, mild steatotic and steatohepatitic). The fluorescence data were entered into a sparse multiclass probabilistic algorithm for disease classification. Histopathology, thiobarbituric acid reactive substances (TBARS) and alanine transaminase (ALT) assays were conducted in addition to the fluorescence measurements RESULTS TBARS and ALT assays enabled differentiation of the steatohepatitic group from the mild steatosis and control groups (P ≤ 0.028) but failed to separate the mild steatotic group from the control group. The three groups were all clearly differentiated from each other using fluorescence spectroscopy, and classification accuracy was found to be 95%. CONCLUSION Fluorescence spectroscopy appears to be a promising approach for the analysis of diseased liver tissue.
Collapse
Affiliation(s)
- Vincent R Sauvage
- Department of Surgery and Cancer, Imperial College London, London SW72AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
S. Thunell, P. Harper, A. Brun. Porphyrins, porphyrin metabolism and porphyrias. IV. Pathophysiology of erythyropoietic protoporphyria - diagnosis, care and monitoring of the patient. Scandinavian Journal of Clinical and Laboratory Investigation 2009. [DOI: 10.1080/003655100448347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Vo-Dinh T, Stokes DL, Wabuyele MB, Martin ME, Song JM, Jagannathan R, Michaud E, Lee RJ, Pan X. A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest. ACTA ACUST UNITED AC 2005; 23:40-9. [PMID: 15565798 DOI: 10.1109/memb.2004.1360407] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tuan Vo-Dinh
- Center for Advanced Biomedical Photonics, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
OBJECTIVES Protoporphyrin is the immediate precursor of the heme molecule. Due to a spillover from hemaotopoietic tissue it is regularly found in small amounts in erythrocytes and excreted into the bile. In hereditary erythropoietic protoporphyria excess protoporphyrin accumulates and can cause severe liver damage both by crystallization and induction of oxidative stress. The aim of this investigation was to study protoporphyrin concentrations in other liver disorders. DESIGN AND METHODS Erythrocyte protoporphyrin and zinc protoporphyrin concentrations were studied in 50 patients with chronic hepatitis C infection and various degrees of liver damage. High-performance liquid chromatographic analysis with fluorescence detection was used. RESULTS Erythrocyte protoporphyrin was increased in 32% of the patients studied; in 12 patients up to two-fold higher than the maximum of the reference range, in 4 up to three-fold higher (median concentration 98 nmol/L, interquartile range 68-142; maximum 379 nmol/L (reference range: <125 nmol/L)). In 6 of the 10 patients in the subgroup with signs of severe liver dysfunction (decreased serum albumin and prolonged thromboplastin time, elevated serum bilirubin), protoporphyrin was elevated. Erythrocyte zinc protoporphyrin was increased in 7 cases out of all 50 studied; in these seven cases, erythrocyte protoporphyrin was also elevated (median concentration of zinc protoporphyrin in the whole study group: 232 nmol/L, interquartile range 182-342; maximum 827 nmol/L (reference range <464 nmol/L). CONCLUSIONS Elevated erythrocyte protoporphrin levels are frequently found in patients with advanced chronic hepatitis C infection. Because protoporphyrin is well known to be hepatotoxic, these findings warrant further investigation.
Collapse
Affiliation(s)
- M Vogeser
- Institute of Clinical Chemistry, Ludwig-Maximilians-Universität Munich, Klinikum Grosshadern, 81366 Munich, Germany.
| | | | | |
Collapse
|