1
|
Fatima G, Ashiquzzaman A, Kim SS, Kim YR, Kwon HS, Chung E. Vascular and glymphatic dysfunction as drivers of cognitive impairment in Alzheimer's disease: Insights from computational approaches. Neurobiol Dis 2025; 208:106877. [PMID: 40107629 DOI: 10.1016/j.nbd.2025.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is driven by complex interactions between vascular dysfunction, glymphatic system impairment, and neuroinflammation. Vascular aging, characterized by arterial stiffness and reduced cerebral blood flow (CBF), disrupts the pulsatile forces necessary for glymphatic clearance, exacerbating amyloid-beta (Aβ) accumulation and cognitive decline. This review synthesizes insights into the mechanistic crosstalk between these systems and explores their contributions to AD pathogenesis. Emerging machine learning (ML) tools, such as DeepLabCut and Motion sequencing (MoSeq), offer innovative solutions for analyzing multimodal data and enhancing diagnostic precision. Integrating ML with imaging and behavioral analyses bridges gaps in understanding vascular-glymphatic dysfunction. Future research must prioritize these interactions to develop early diagnostics and targeted interventions, advancing our understanding of neurovascular health in AD.
Collapse
Affiliation(s)
- Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Akm Ashiquzzaman
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| |
Collapse
|
2
|
Abstract
Senile plaques have been studied in postmortem brains for more than 120 years and the resultant knowledge has not only helped us understand the etiology and pathogenesis of Alzheimer disease (AD), but has also pointed to possible modes of prevention and treatment. Within the last 15 years, it has become possible to image plaques in living subjects. This is arguably the single greatest advance in AD research since the identification of the Aβ peptide as the major plaque constituent. The limitations and potentialities of amyloid imaging are still not completely clear but are perhaps best glimpsed through the perspective gained from the accumulated postmortem histological studies. The basic morphological classification of plaques into neuritic, cored and diffuse has been supplemented by sophisticated immunohistochemical and biochemical analyses and increasingly detailed mapping of plaque brain distribution. Changes in plaque classification and staging have in turn contributed to changes in the definition and diagnostic criteria for AD. All of this information continues to be tested by clinicopathological correlations and it is through the insights thereby gained that we will best be able to employ the powerful tool of amyloid imaging.
Collapse
Affiliation(s)
- Thomas G Beach
- From the Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
3
|
Li S, Wang C, Wang Z, Tan J. Involvement of cerebrovascular abnormalities in the pathogenesis and progression of Alzheimer's disease: an adrenergic approach. Aging (Albany NY) 2021; 13:21791-21806. [PMID: 34479211 PMCID: PMC8457611 DOI: 10.18632/aging.203482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), as the most common neurodegenerative disease in elder population, is pathologically characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles composed of highly-phosphorylated tau protein and consequently progressive neurodegeneration. However, both Aβ and tau fails to cover the whole pathological process of AD, and most of the Aβ- or tau-based therapeutic strategies are all failed. Increasing lines of evidence from both clinical and preclinical studies have indicated that age-related cerebrovascular dysfunctions, including the changes in cerebrovascular microstructure, blood-brain barrier integrity, cerebrovascular reactivity and cerebral blood flow, accompany or even precede the development of AD-like pathologies. These findings may raise the possibility that cerebrovascular changes are likely pathogenic contributors to the onset and progression of AD. In this review, we provide an appraisal of the cerebrovascular alterations in AD and the relationship to cognitive impairment and AD pathologies. Moreover, the adrenergic mechanisms leading to cerebrovascular and AD pathologies were further discussed. The contributions of early cerebrovascular factors, especially through adrenergic mechanisms, should be considered and treasured in the diagnostic, preventative, and therapeutic approaches to address AD.
Collapse
Affiliation(s)
- Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Che Wang
- Department of Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
4
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Mol Brain 2021; 14:110. [PMID: 34238312 PMCID: PMC8268468 DOI: 10.1186/s13041-021-00803-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.
Collapse
Affiliation(s)
- Joseph O Ojo
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA. .,The Open University, Milton Keynes, UK.
| | - Jon M Reed
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Gogce Crynen
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | | | - James Evans
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Benjamin Shackleton
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Maximillian Eisenbaum
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Charis Ringland
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Anastasia Edsell
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Michael Mullan
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Fiona Crawford
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA.,The Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
5
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. Molecular Pathobiology of the Cerebrovasculature in Aging and in Alzheimers Disease Cases With Cerebral Amyloid Angiopathy. Front Aging Neurosci 2021; 13:658605. [PMID: 34079449 PMCID: PMC8166206 DOI: 10.3389/fnagi.2021.658605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | | | | | - James Evans
- Roskamp Institute, Sarasota, FL, United States
| | - Benjamin Shackleton
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Maximillian Eisenbaum
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Charis Ringland
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
- Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
6
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
7
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol 2020; 140:793-810. [PMID: 32865691 PMCID: PMC7666276 DOI: 10.1007/s00401-020-02215-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Therapies targeting late events in Alzheimer's disease (AD), including aggregation of amyloid beta (Aβ) and hyperphosphorylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of promoting novel mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019; 13:546. [PMID: 31866833 PMCID: PMC6908836 DOI: 10.3389/fncel.2019.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Microvascular complications are often associated with slow and progressive damage of various organs. Pericytes are multi-functional mural cells of the microcirculation that control blood flow, vascular permeability and homeostasis. Whereas accumulating evidence suggests that these cells are also implicated in a variety of diseases, pericytes represent promising targets that can be manipulated for therapeutic gain. Here, we review the role of pericytes in angiogenesis, blood-brain barrier (BBB) function, neuroinflammation, tissue fibrosis, axon regeneration failure, and neurodegeneration. In addition, we outline strategies altering pericyte behavior to point out problems and promises for axon regeneration and central nervous system (CNS) repair following injury or disease.
Collapse
Affiliation(s)
- Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Plebanski
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
11
|
Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard-Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science 2019; 365:science.aav9518. [PMID: 31221773 DOI: 10.1126/science.aav9518] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Cerebral blood flow is reduced early in the onset of Alzheimer's disease (AD). Because most of the vascular resistance within the brain is in capillaries, this could reflect dysfunction of contractile pericytes on capillary walls. We used live and rapidly fixed biopsied human tissue to establish disease relevance, and rodent experiments to define mechanism. We found that in humans with cognitive decline, amyloid β (Aβ) constricts brain capillaries at pericyte locations. This was caused by Aβ generating reactive oxygen species, which evoked the release of endothelin-1 (ET) that activated pericyte ETA receptors. Capillary, but not arteriole, constriction also occurred in vivo in a mouse model of AD. Thus, inhibiting the capillary constriction caused by Aβ could potentially reduce energy lack and neurodegeneration in AD.
Collapse
Affiliation(s)
- Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Chanawee Hirunpattarasilp
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Vasiliki Kyrargyri
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Thomas Pfeiffer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lila Khennouf
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Christian Madry
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Hui Gong
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Angela Richard-Loendt
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, D-66421 Homburg, Germany
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Centre for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Centre for Brain Science, Wako, Saitama 351-0198, Japan
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Huma Sethi
- Division of Neurosurgery, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 2018; 136:507-523. [PMID: 30097696 PMCID: PMC6132947 DOI: 10.1007/s00401-018-1893-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Many central nervous system diseases currently lack effective treatment and are often associated with defects in microvascular function, including a failure to match the energy supplied by the blood to the energy used on neuronal computation, or a breakdown of the blood–brain barrier. Pericytes, an under-studied cell type located on capillaries, are of crucial importance in regulating diverse microvascular functions, such as angiogenesis, the blood–brain barrier, capillary blood flow and the movement of immune cells into the brain. They also form part of the “glial” scar isolating damaged parts of the CNS, and may have stem cell-like properties. Recent studies have suggested that pericytes play a crucial role in neurological diseases, and are thus a therapeutic target in disorders as diverse as stroke, traumatic brain injury, migraine, epilepsy, spinal cord injury, diabetes, Huntington’s disease, Alzheimer’s disease, diabetes, multiple sclerosis, glioma, radiation necrosis and amyotrophic lateral sclerosis. Here we report recent advances in our understanding of pericyte biology and discuss how pericytes could be targeted to develop novel therapeutic approaches to neurological disorders, by increasing blood flow, preserving blood–brain barrier function, regulating immune cell entry to the CNS, and modulating formation of blood vessels in, and the glial scar around, damaged regions.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China.
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Paris D, Ganey N, Banasiak M, Laporte V, Patel N, Mullan M, Murphy SF, Yee GT, Bachmeier C, Ganey C, Beaulieu-Abdelahad D, Mathura VS, Brem S, Mullan M. Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer's disease. J Neurosci 2010; 30:11251-8. [PMID: 20739545 PMCID: PMC2935547 DOI: 10.1523/jneurosci.2586-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the aging population and is characterized pathologically by the progressive intracerebral accumulation of beta-amyloid (Abeta) peptides and neurofibrillary tangles. The level of proangiogenic growth factors and inflammatory mediators with proangiogenic activity is known to be elevated in AD brains which has led to the supposition that the cerebrovasculature of AD patients is in a proangiogenic state. However, angiogenesis depends on the balance between proangiogenic and antiangiogenic factors and the brains of AD patients also show an accumulation of endostatin and Abeta peptides which have been shown to be antiangiogenic. To determine whether angiogenesis is compromised in the brains of two transgenic mouse models of AD overproducing Abeta peptides (Tg APPsw and Tg PS1/APPsw mice), we assessed the growth and vascularization of orthotopically implanted murine gliomas since they require a high degree of angiogenesis to sustain their growth. Our data reveal that intracranial tumor growth and angiogenesis is significantly reduced in Tg APPsw and Tg PS1/APPsw mice compared with their wild-type littermates. In addition, we show that Abeta inhibits the angiogenesis stimulated by glioma cells when cocultured with human brain microvascular cells on a Matrigel layer. Altogether our data suggest that the brain of transgenic mouse models of AD does not constitute a favorable environment to support neoangiogenesis and may explain why vascular insults synergistically precipitate the cognitive presentation of AD.
Collapse
Affiliation(s)
- Daniel Paris
- The Roskamp Institute, Sarasota, Florida 34243, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
von Gunten A, Ebbing K, Imhof A, Giannakopoulos P, Kövari E. Brain aging in the oldest-old. Curr Gerontol Geriatr Res 2010; 2010:358531. [PMID: 20706534 PMCID: PMC2913516 DOI: 10.1155/2010/358531] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/14/2010] [Indexed: 02/04/2023] Open
Abstract
Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD) decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs) and senile plaques (SPs) as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA) fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions were also significantly lower than those reported in younger AD cases. Overall, there is evidence that pathological substrates of cognitive deterioration in the oldest-old are different from those observed in the younger-old. Microvascular parameters such as mean capillary diameters may be key factors to consider for the prediction of cognitive decline in the oldest-old. Neuropathological particularities of the oldest-old may be related to "longevity-enabling" genes although little or nothing is known in this promising field of future research.
Collapse
Affiliation(s)
- A. von Gunten
- Service Universitaire de Psychiatrie de l'Age Avancé (SUPAA), Department of Psychiatry of CHUV, University of Lausanne, Route du Mont, 1008 Prilly, Switzerland
| | - K. Ebbing
- Service Universitaire de Psychiatrie de l'Age Avancé (SUPAA), Department of Psychiatry of CHUV, University of Lausanne, Route du Mont, 1008 Prilly, Switzerland
| | - A. Imhof
- Department of Psychiatry, HUG, Belle-Idée, University of Geneva School of Medicine, 1225 Geneva, Switzerland
| | - P. Giannakopoulos
- Service Universitaire de Psychiatrie de l'Age Avancé (SUPAA), Department of Psychiatry of CHUV, University of Lausanne, Route du Mont, 1008 Prilly, Switzerland
- Department of Psychiatry, HUG, Belle-Idée, University of Geneva School of Medicine, 1225 Geneva, Switzerland
| | - E. Kövari
- Unité de Psychopathologie Morphologique, Department of Psychiatry of HUG, 1225 Genève, Switzerland
| |
Collapse
|
15
|
Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer's disease. J Neurosci 2003. [PMID: 13679413 DOI: 10.1523/jneurosci.23-24-08453.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropathological changes associated with Alzheimer's disease (AD) such as amyloidplaques, cerebral amyloid angiopathy, and related pathologies are reproduced in APP23 transgenic mice overexpressing amyloid precursor protein (APP) with the Swedish mutation. Magnetic resonance angiography (MRA) was applied to probe, in vivo, the cerebral arterial hemodynamics of these mice. Flow voids were detected at the internal carotid artery of 11-month-old APP23 mice. At the age of 20 months, additional flow disturbances were observed in large arteries at the circle of Willis. Vascular corrosion casts obtained from the same mice revealed that vessel elimination, deformation, or both had taken place at the sites where flow voids were detected by MRA. The detailed three-dimensional architecture of the vasculature visible in the casts assisted the identification of smaller vessels most likely formed as substitution or anastomosis within the circle of Willis. Angiograms and corrosion casts from nontransgenic, age-matched mice manifested no major abnormalities in the cerebrovascular arterial flow pattern. Because no transgene overexpression has been found in the cerebrovasculature of APP23 mice and no deposits of amyloid-beta (Abeta) were observed in large arteries in the region of the circle of Willis, the present results suggest that soluble Abeta may exert deleterious effects on the vasculature. Our findings support the idea that cerebral circulatory abnormalities evolving progressively could contribute to AD pathogenesis. The study also shows the power of MRA to identify changes of vascular function in genetically engineered mice. MRA as a noninvasive technique could be applied to test new therapeutic concepts in animal models of AD and in humans.
Collapse
|