1
|
Okujima Y, Watanabe T, Ito T, Inoue Y, Kasai Y, Imai Y, Nakamura Y, Koizumi M, Yoshida O, Tokumoto Y, Hirooka M, Abe M, Kawakami R, Saitou T, Imamura T, Murakami Y, Hiasa Y. PKR associates with 4.1R to promote anchorage-independent growth of hepatocellular carcinoma and lead to poor prognosis. Sci Rep 2024; 14:27768. [PMID: 39532917 PMCID: PMC11557841 DOI: 10.1038/s41598-024-75142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-dependent protein kinase (PKR) may have a positive regulatory role in controlling tumor growth and progression in hepatocellular carcinoma (HCC). However, the downstream substrates and the molecular mechanism of PKR in the growth and progression of HCC have not been clarified. In this study, mass spectrometry analysis was performed with immunoprecipitated samples, and 4.1R was identified as a protein that binds to PKR. In transfected COS7 cells, an immunoprecipitation experiment showed that 4.1R binds to wild-type PKR, but not to a kinase-deficient mutant PKR, suggesting that PKR binds to 4.1R in a kinase activity-dependent manner. In HCC cell lines, HuH7 and HepG2, the expression level of 4.1R protein was shown to be regulated by protein expression and activation of PKR. Interestingly, high expression of 4.1R, as well as PKR, is associated with a worse prognosis in HCC. PKR increased HCC cell growth in both anchorage-dependent and anchorage-independent manners, whereas 4.1R was involved in HCC cell growth only in an anchorage-independent manner, not in an anchorage-dependent manner. The rescue experiment indicated that increased anchorage-independent growth of HCC cells by PKR might be caused by 4.1R. In conclusion, PKR associates with 4.1R and promotes anchorage-independent growth of HCC. The PKR-4.1R axis might be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Yusuke Okujima
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yutaka Kasai
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Hashimoto Y, Tokumoto Y, Watanabe T, Ogi Y, Sugishita H, Akita S, Niida K, Hayashi M, Okada M, Shiraishi K, Tange K, Tomida H, Yamamoto Y, Takeshita E, Ikeda Y, Oshikiri T, Hiasa Y. C16, a PKR inhibitor, suppresses cell proliferation by regulating the cell cycle via p21 in colorectal cancer. Sci Rep 2024; 14:9029. [PMID: 38641657 PMCID: PMC11031597 DOI: 10.1038/s41598-024-59671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
Double-stranded RNA-activated protein kinase R (PKR) is highly expressed in colorectal cancer (CRC). However, the role of PKR in CRC remains unclear. The aim of this study was to clarify whether C16 (a PKR inhibitor) exhibits antitumor effects and to identify its target pathway in CRC. We evaluated the effects of C16 on CRC cell lines using the MTS assay. Enrichment analysis was performed to identify the target pathway of C16. The cell cycle was analyzed using flow cytometry. Finally, we used immunohistochemistry to examine human CRC specimens. C16 suppressed the proliferation of CRC cells. Gene Ontology (GO) analysis revealed that the cell cycle-related GO category was substantially enriched in CRC cells treated with C16. C16 treatment resulted in G1 arrest and increased p21 protein and mRNA expression. Moreover, p21 expression was associated with CRC development as observed using immunohistochemical analysis of human CRC tissues. C16 upregulates p21 expression in CRC cells to regulate cell cycle and suppress tumor growth. Thus, PKR inhibitors may serve as a new treatment option for patients with CRC.
Collapse
Affiliation(s)
- Yu Hashimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Ogi
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Hiroki Sugishita
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Satoshi Akita
- Department of Minimally Invasive Gastroenterology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Niida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mirai Hayashi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masaya Okada
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kana Shiraishi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuhiro Tange
- Department of Inflammatory Bowel Diseases and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideomi Tomida
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasunori Yamamoto
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Eiji Takeshita
- Department of Inflammatory Bowel Diseases and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Ikeda
- Endoscopy Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Taro Oshikiri
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
3
|
Du HX, Wang H, Ma XP, Chen H, Dai AB, Zhu KX. Eukaryotic translation initiation factor 2α kinase 2 in pancreatic cancer: An approach towards managing clinical prognosis and molecular immunological characterization. Oncol Lett 2023; 26:478. [PMID: 37818134 PMCID: PMC10561166 DOI: 10.3892/ol.2023.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 10/12/2023] Open
Abstract
Most patients with pancreatic cancer are already in the late stages of the disease when they are diagnosed, and pancreatic cancer is a deadly disease with a poor prognosis. With the advancement of research, immunotherapy has become a new focus in the treatment of tumors. To the best of our knowledge, there is currently no reliable diagnostic or prognostic marker for pancreatic cancer; therefore, the present study investigated the potential of eukaryotic translation initiation factor 2α kinase 2 (EIF2AK2) as a predictive and diagnostic marker for pancreatic cancer. Immunohistochemical staining of clinical samples independently verified that EIF2AK2 expression was significantly higher in clinically operated pancreatic cancer tissues than in adjacent pancreatic tissues., and EIF2AK2 expression and differentially expressed genes (DEGs) were identified using downloadable RNA sequencing data from The Cancer Genome Atlas and Genomic Tumor Expression Atlas. In addition, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and immune cell infiltration were used for functional enrichment analysis of EIF2AK2-associated DEGs. The clinical importance of EIF2AK2 was also determined using Kaplan-Meier survival, Cox regression and time-dependent survival receiver operating characteristic curve analyses, and a predictive nomogram model was generated. Finally, the functional role of EIF2AK2 was assessed in PANC-1 cells using a short hairpin RNA-EIF2AK2 knockdown approach, including CCK-8, wound healing assay, cell cycle and apoptosis assays. The findings suggested that EIF2AK2 may have potential as a diagnostic and prognostic biomarker for patients with pancreatic cancer. Furthermore, EIF2AK2 may provide a new therapeutic target for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hao-Xuan Du
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hu Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Peng Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hao Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ai-Bin Dai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ke-Xiang Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
4
|
Ma B, Luo Y, Xu W, Han L, Liu W, Liao T, Yang Y, Wang Y. LINC00886 Negatively Regulates Malignancy in Anaplastic Thyroid Cancer. Endocrinology 2023; 164:7023373. [PMID: 36726346 DOI: 10.1210/endocr/bqac204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 02/03/2023]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer. This study aimed to identify specific long noncoding RNAs (lncRNAs) associated with ATC, and further investigated their biological functions and molecular mechanism underlying regulation of malignancy in ATC. We searched for lncRNAs associated with dedifferentiation and screened out specific lncRNAs significantly deregulated in ATC by using transcriptome data of dedifferentiation cancers from Fudan University Shanghai Cancer Center (FUSCC) and the Gene Expression Omnibus (GEO) database. The above lncRNAs were analyzed to identify a potential biomarker in thyroid cancer patients from the FUSCC, GEO, and The Cancer Genome Atlas, which was then investigated for its functional roles and molecular mechanism in ATC in vitro. The clinicopathological association analyses revealed that LINC00886 expression was significantly correlated with dedifferentiation and suppressed in ATC. In vitro, LINC00886 was confirmed to negatively regulate cell proliferation, and cell migration and invasion of ATC. LINC00886 physically interacted with protein kinase R (PKR) and affected its stability through the ubiquitin/proteasome-dependent degradation pathway in the ATC cell. Decreased PKR caused by downregulation of LINC00886 enhanced the activity of eukaryotic initiation factor 2α (eIF2α) via reducing phosphorylation of eIF2α and thus promoted protein synthesis to maintain ATC malignancy. Our findings identify LINC00886 as a novel biomarker of thyroid cancer and suggest that LINC00886/PKR/eIF2α signaling is a potential therapeutic target in ATC.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Litao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
A Renaissance for Oncolytic Adenoviruses? Viruses 2023; 15:v15020358. [PMID: 36851572 PMCID: PMC9964350 DOI: 10.3390/v15020358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
In the 1990s, adenovirus became one of the first virus types to be genetically engineered to selectively destroy cancer cells. In the intervening years, the field of "oncolytic viruses" has slowly progressed and culminated in 2015 with the FDA approval of Talimogene laherparepvec, a genetically engineered herpesvirus, for the treatment of metastatic melanoma. Despite the slower progress in translating oncolytic adenovirus to the clinic, interest in the virus remains strong. Among all the clinical trials currently using viral oncolytic agents, the largest proportion of these are using recombinant adenovirus. Many trials are currently underway to use oncolytic virus in combination with immune checkpoint inhibitors (ICIs), and early results using oncolytic adenovirus in this manner are starting to show promise. Many of the existing strategies to engineer adenoviruses were designed to enhance selective tumor cell replication without much regard to interactions with the immune system. Adenovirus possesses a wide range of viral factors to attenuate both innate anti-viral pathways and immune cell killing. In this review, we summarize the strategies of oncolytic adenoviruses currently in clinical trials, and speculate how the mutational backgrounds of these viruses may impact upon the efficacy of these agents in oncolytic and immunotherapy. Despite decades of research on human adenoviruses, the interactions that these viruses have with the immune system remains one of the most understudied aspects of the virus and needs to be improved to rationally design the next generation of engineered viruses.
Collapse
|
6
|
Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, Wei F. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Am J Cancer Res 2022; 12:5086-5102. [PMID: 35836797 PMCID: PMC9274738 DOI: 10.7150/thno.74989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The up-regulation of PD-L1 is recognized as an adaption of cancer cells to evade immune surveillance and attack. However, the intrinsic mechanisms of the induction of PD-L1 by interferon-γ (IFN-γ) in tumor microenvironment remain incompletely characterized. Ubiquitin ligase E3 component N-recognition protein 5 (UBR5) has a critical role in tumorigenesis of triple negative breast cancer (TNBC) by triggering specific immune responses to the tumor. Dual targeting of UBR5 and PD-L1 exhibited superior therapeutic benefits in a preclinical TNBC model in short term. Methods: The regulation of UBR5 to PD-L1 upon IFN-γ stimulation was evaluated through in UBR5 deficiency, reconstitution or overexpression cell line models by quantitative PCR, immunohistochemistry and RNA-seq. The effects of PD-L1 regulation by UBR5 and double blockade of both genes were evaluated in mouse TNBC model. Luciferase reporter assay, chromatin immunoprecipitation-qPCR and bioinformatics analysis were performed to explore the transcription factors involved in the regulation of UBR5 to PD-L1. Results: E3 ubiquitin ligase UBR5 plays a key role in IFN-γ-induced PDL1 transcription in TNBC in an E3 ubiquitination activity-independent manner. RNA-seq-based transcriptomic analyses reveal that UBR5 globally affects the genes in the IFN-γ-induced signaling pathway. Through its poly adenylate binding (PABC) domain, UBR5 enhances the transactivation of PDL1 by upregulating protein kinase RNA-activated (PKR), and PKR's downstream factors including signal transducers and activators of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1). Restoration of PD-L1 expression in UBR5-deficient tumor cells recoups their malignancy in vivo, whereas CRISPR/Cas9-mediated simultaneous abrogation of UBR5 and PD-L1 expression yields synergistic therapeutic benefits than either blockade alone, with a strong impact on the tumor microenvironment. Conclusions: This study identifies a novel regulator of PDL1 transcription, elucidates the underlying molecular mechanisms and provides a strong rationale for combination cancer immunotherapies targeting UBR5 and PD-L1.
Collapse
Affiliation(s)
- Bingbing Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xiang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| |
Collapse
|
7
|
Yin L, Zeng Y, Zeng R, Chen Y, Wang TL, Rodabaugh KJ, Yu F, Natarajan A, Karpf AR, Dong J. Protein kinase RNA-activated controls mitotic progression and determines paclitaxel chemosensitivity through B-cell lymphoma 2 in ovarian cancer. Oncogene 2021; 40:6772-6785. [PMID: 34799660 PMCID: PMC8688329 DOI: 10.1038/s41388-021-02117-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
Anti-tubulin agents, such as paclitaxel, have been used extensively for treatment of several types of cancer, including ovarian, lung, breast, and pancreatic cancers. Despite their wide use in cancer treatment, however, patient response is highly variable and drug resistance remains a major clinical issue. Protein kinase RNA-activated (PKR) plays a critical role in immune response to viral infection. We identified PKR as a phospho-protein in response to anti-tubulin agents and this phosphorylation occurs independent of its own kinase activity. PKR is phosphorylated by cyclin-dependent kinase 1 (CDK1) during anti-tubulin treatment and unperturbed mitosis and that PKR regulates mitotic progression in a phosphorylation-dependent manner. Furthermore, inactivation of PKR confers resistance to paclitaxel in ovarian and breast cancer cells in vitro and in vivo. PKR expression levels and activity are decreased in chemotherapeutic recurrent ovarian cancer patients. Mechanistically, our findings suggest that PKR controls paclitaxel chemosensitivity through repressing Bcl2 expression. Pharmacological inhibition of Bcl2 with FDA-approved agent venetoclax overcomes paclitaxel resistance in preclinical animal models of ovarian cancer. Our results suggest that PKR is a critical determinant of paclitaxel cytotoxicity and that PKR-Bcl2 axis as a potential therapeutic target for the treatment of recurrent drug-resistant ovarian tumors.
Collapse
Affiliation(s)
- Ling Yin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yongji Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tian-Li Wang
- Department of Pathology and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Kerry J Rodabaugh
- Department of Gynecologic Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Hossian AKMN, Zahra FT, Poudel S, Abshire CF, Polk P, Garai J, Zabaleta J, Mikelis CM, Mattheolabakis G. Advanced bioinformatic analysis and pathway prediction of NSCLC cells upon cisplatin resistance. Sci Rep 2021; 11:6520. [PMID: 33753779 PMCID: PMC7985311 DOI: 10.1038/s41598-021-85930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
This study aims to identify pathway involvement in the development of cisplatin (cis-diamminedichloroplatinum (II); CDDP) resistance in A549 lung cancer (LC) cells by utilizing advanced bioinformatics software. We developed CDDP-resistant A549 (A549/DDP) cells through prolonged incubation with the drug and performed RNA-seq on RNA extracts to determine differential mRNA and miRNA expression between A549/DDP and A549 cells. We analyzed the gene dysregulation with Ingenuity Pathway Analysis (IPA; QIAGEN) software. In contrast to prior research, which relied on the clustering of dysregulated genes to pathways as an indication of pathway activity, we utilized the IPA software for the dynamic evaluation of pathway activity depending on the gene dysregulation levels. We predicted 15 pathways significantly contributing to the chemoresistance, with several of them to have not been previously reported or analyzed in detail. Among them, the PKR signaling, cholesterol biosynthesis, and TEC signaling pathways are included, as well as genes, such as PIK3R3, miR-34c-5p, and MDM2, among others. We also provide a preliminary analysis of SNPs and indels, present exclusively in A549/DDP cells. This study's results provide novel potential mechanisms and molecular targets that can be explored in future studies and assist in improving the understanding of the chemoresistance phenotype.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Camille F Abshire
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paula Polk
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA.
| |
Collapse
|
9
|
Therapeutic effects of the PKR inhibitor C16 suppressing tumor proliferation and angiogenesis in hepatocellular carcinoma in vitro and in vivo. Sci Rep 2020; 10:5133. [PMID: 32198380 PMCID: PMC7083831 DOI: 10.1038/s41598-020-61579-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 11/12/2022] Open
Abstract
The therapeutic effects of C16, which is an inhibitor of RNA-dependent protein kinase (PKR), on growth of hepatocellular carcinoma (HCC) cells and tumor progression in vitro and in vivo were evaluated. Huh7 cells, a human HCC cell line, were used. The effects of C16 on cell viability were evaluated with the MTT assay, and real-time RT-PCR was performed. Huh7 cells were grafted into immunodeficient mice, and the in vivo effects of C16 on tumorigenesis were examined. C16 suppressed proliferation of HCC cells in a dose-dependent manner in vitro. Mouse models with xenograft transplantation showed that the inhibitor suppressed the growth of HCC cells in vivo. Moreover, C16 decreased angiogenesis in HCC tissue in the xenograft model. Consistent with these results in mice, transcript levels of vascular endothelial growth factor-A and factor-B, platelet-derived growth factor-A and factor-B, fibroblast growth factor-2, epidermal growth factor, and hepatocyte growth factor, which are angiogenesis-related growth factors, were significantly decreased by C16 in vitro. In conclusion, the PKR inhibitor C16 blocked tumor cell growth and angiogenesis via a decrease in mRNA levels of several growth factors. C16 may be useful in the treatment of HCC.
Collapse
|
10
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
11
|
Watanabe T, Imamura T, Hiasa Y. Roles of protein kinase R in cancer: Potential as a therapeutic target. Cancer Sci 2018; 109:919-925. [PMID: 29478262 PMCID: PMC5891186 DOI: 10.1111/cas.13551] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 01/13/2023] Open
Abstract
Double‐stranded (ds) RNA‐dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen‐activated protein kinase (MAPK) and nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Toon, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
12
|
Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev Mol Med 2017; 19:e9. [PMID: 28724458 DOI: 10.1017/erm.2017.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase R (PKR, also called EIF2AK2) is an interferon-inducible double-stranded RNA protein kinase with multiple effects on cells that plays an active part in the cellular response to numerous types of stress. PKR has been extensively studied and documented for its relevance as an antiviral agent and a cell growth regulator. Recently, the role of PKR related to metabolism, inflammatory processes, cancer and neurodegenerative diseases has gained interest. In this review, we summarise and discuss the involvement of PKR in several cancer signalling pathways and the dual role that this kinase plays in cancer disease. We emphasise the importance of PKR as a molecular target for both conventional chemotherapeutics and emerging treatments based on novel drugs, and its potential as a biomarker and therapeutic target for several pathologies. Finally, we discuss the impact that the recent knowledge regarding PKR involvement in metabolism has in our understanding of the complex processes of cancer and metabolism pathologies, highlighting the translational research establishing the clinical and therapeutic potential of this pleiotropic kinase.
Collapse
|
13
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|
14
|
PKR inhibits the DNA damage response, and is associated with poor survival in AML and accelerated leukemia in NHD13 mice. Blood 2015. [PMID: 26202421 DOI: 10.1182/blood-2015-03-635227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increased expression of the interferon-inducible double-stranded RNA-activated protein kinase (PKR) has been reported in acute leukemia and solid tumors, but the role of PKR has been unclear. Now, our results indicate that high PKR expression in CD34(+) cells of acute myeloid leukemia (AML) patients correlates with worse survival and shortened remission duration. Significantly, we find that PKR has a novel and previously unrecognized nuclear function to inhibit DNA damage response signaling and double-strand break repair. Nuclear PKR antagonizes ataxia-telangiectasia mutated (ATM) activation by a mechanism dependent on protein phosphatase 2A activity. Thus, inhibition of PKR expression or activity promotes ATM activation, γ-H2AX formation, and phosphorylation of NBS1 following ionizing irradiation. PKR transgenic but not PKR null mice demonstrate a mutator phenotype characterized by radiation-induced and age-associated genomic instability that was partially reversed by short-term pharmacologic PKR inhibition. Furthermore, the age-associated accumulation of somatic mutations that occurs in the Nup98-HOXD13 (NHD13) mouse model of leukemia progression was significantly elevated by co-expression of a PKR transgene, whereas knockout of PKR expression or pharmacologic inhibition of PKR activity reduced the frequency of spontaneous mutations in vivo. Thus, PKR cooperated with the NHD13 transgene to accelerate leukemia progression and shorten survival. Taken together, these results indicate that increased nuclear PKR has an oncogenic function that promotes the accumulation of potentially deleterious mutations. Thus, PKR inhibition may be a therapeutically useful strategy to prevent leukemia progression or relapse, and improve clinical outcomes.
Collapse
|
15
|
Du MJ, Zhang HK, He AJ, Chang YS, Yang Y, Wang Y, Zhang CZ, Cao Y. Selection of peptide inhibitors for double-stranded RNA-dependent protein kinase PKR. BIOCHEMISTRY (MOSCOW) 2014; 78:1254-62. [PMID: 24460939 DOI: 10.1134/s0006297913110059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase inhibitors have been developed and applied as antitumor drugs. The majority of these inhibitors are derived from ATP analogs with limited specificity towards the kinase target. Here we present our proof-of-principle study on peptide inhibitors for kinases. Two peptides were selected by phage display against double-stranded RNA-dependent protein kinase (PKR). In vitro assay revealed that these peptides exhibit an inhibitory effect on PKR-catalyzed phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). The peptides also interrupt PKR activity in cells infected by viruses, as PKR activation is one of the hallmarks of host response to viral infection. Kinetic study revealed that one of the peptides, named P1, is a competitive inhibitor for PKR, while the other, named P2, exhibits a more complicated pattern of inhibition on PKR activity. Fragment-based docking of the PKR-peptide complex suggests that P1 occupies the substrate pocket of PKR and thus inhibits the binding between PKR and eIF2α, whereas P2 sits near the substrate pocket. The computational model of PKR-peptide complex agrees with their kinetic behavior. We surmise that peptide inhibitors for kinases have higher specificity than ATP analogs, and that they provide promising leads for the optimization of kinase inhibitors.
Collapse
Affiliation(s)
- M-J Du
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Marchal JA, Lopez GJ, Peran M, Comino A, Delgado JR, García-García JA, Conde V, Aranda FM, Rivas C, Esteban M, Garcia MA. The impact of PKR activation: from neurodegeneration to cancer. FASEB J 2014; 28:1965-74. [PMID: 24522206 DOI: 10.1096/fj.13-248294] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An inverse association between cancer and neurodegeneration is plausible because these biological processes share several genes and signaling pathways. Whereas uncontrolled cell proliferation and decreased apoptotic cell death governs cancer, excessive apoptosis contributes to neurodegeneration. Protein kinase R (PKR), an interferon-inducible double-stranded RNA protein kinase, is involved in both diseases. PKR activation blocks global protein synthesis through eIF2α phosphorylation, leading to cell death in response to a variety of cellular stresses. However, PKR also has the dual role of activating the nuclear factor κ-B pathway, promoting cell proliferation. Whereas PKR is recognized for its negative effects on neurodegenerative diseases, in part, inducing high level of apoptosis, the role of PKR activation in cancer remains controversial. In general, PKR is considered to have a tumor suppressor function, and some clinical data show a correlation between suppressed or inactivated PKR and a poor prognosis for several cancers. However, other studies show high PKR expression and activation levels in various cancers, suggesting that PKR might contribute to neoplastic progression. Understanding the cellular factors and signals involved in the regulation of PKR in these age-related diseases is relevant and may have important clinical implications. The present review highlights the current knowledge on the role of PKR in neurodegeneration and cancer, with special emphasis on its regulation and clinical implications.
Collapse
Affiliation(s)
- Juan A Marchal
- 1University Hospital Virgen de las Nieves, Azpitarte sn., Granada E-18012, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Caramuta S, Lee L, Ozata DM, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C, Lui WO. Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer 2013; 20:551-64. [PMID: 23671264 PMCID: PMC3709642 DOI: 10.1530/erc-13-0098] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Deregulation of microRNA (miRNA) expression in adrenocortical carcinomas (ACCs) has been documented to have diagnostic, prognostic, as well as functional implications. Here, we evaluated the mRNA expression of DROSHA, DGCR8, DICER (DICER1), TARBP2, and PRKRA, the core components in the miRNA biogenesis pathway, in a cohort of 73 adrenocortical tumors (including 43 adenomas and 30 carcinomas) and nine normal adrenal cortices using a RT-qPCR approach. Our results show a significant over-expression of TARBP2, DICER, and DROSHA in the carcinomas compared with adenomas or adrenal cortices (P<0.001 for all comparisons). Using western blot and immunohistochemistry analyses, we confirmed the higher expression of TARBP2, DICER, and DROSHA at the protein level in carcinoma cases. Furthermore, we demonstrate that mRNA expression of TARBP2, but not DICER or DROSHA, is a strong molecular predictor to discriminate between adenomas and carcinomas. Functionally, we showed that inhibition of TARBP2 expression in human NCI-H295R ACC cells resulted in a decreased cell proliferation and induction of apoptosis. TARBP2 over-expression was not related to gene mutations; however, copy number gain of the TARBP2 gene was observed in 57% of the carcinomas analyzed. In addition, we identified that miR-195 and miR-497 could directly regulate TARBP2 and DICER expression in ACC cells. This is the first study to demonstrate the deregulation of miRNA-processing factors in adrenocortical tumors and to show the clinical and biological impact of TARBP2 over-expression in this tumor type.
Collapse
Affiliation(s)
- Stefano Caramuta
- Departments of Oncology-Pathology Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang YN, Cao PP, Zhang XH, Lu X, Liu Z. Expression of MicroRNA machinery proteins in different types of chronic rhinosinusitis. Laryngoscope 2012; 122:2621-2627. [DOI: 10.1002/lary.23517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Mohamed AA, Nada OH, El Desouky MA. Implication of protein kinase R gene quantification in hepatitis C virus genotype 4 induced hepatocarcinogenesis. Diagn Pathol 2012; 7:103. [PMID: 22894766 PMCID: PMC3487824 DOI: 10.1186/1746-1596-7-103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein kinase RNA (PKR-regulated) is a double-stranded RNA activated protein kinase whose expression is induced by interferon. The role of PKR in cell growth regulation is controversial, with some studies supporting a tumour suppressor function and others suggesting a growth-promoting role. However, it is possible that the function of PKR varies with the type of cancer in question. METHODS We report here a detailed study to evaluate the function of PKR in hepatitis C virus genotype 4 (HCV-4) infected patients. PKR gene was quantitated in HCV related malignant and non-malignant liver tissue by RT-PCR technique and the association of HCV core and PKR was assessed. RESULTS If PKR functions as a tumour suppressor in this system, its expression would be higher in chronic hepatitis tissues. On the contrary our study demonstrated the specific association of HCV-4 with PKR expressed in hepatocellular carcinoma (HCC) tissues, leading to an increased gene expression of the kinase in comparison to chronic hepatitis tissues. This calls into question its role as a tumour suppressor and suggests a positive regulatory role of PKR in growth control of liver cancer cells. One limitation of most of other studies is that they measure the levels rather than the quantitation of PKR gene. CONCLUSION The findings suggest that PKR exerts a positive role in cell growth control of HCV-4 related HCC, obtaining a cut-off value for PKR expression in liver tissue provides the first evidence for existence of a viral activator of PKR. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1267826959682402.
Collapse
Affiliation(s)
- Amal A Mohamed
- Department of Biochemistry, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | | | | |
Collapse
|
20
|
The dominant-negative inhibition of double-stranded RNA-dependent protein kinase PKR increases the efficacy of Rift Valley fever virus MP-12 vaccine. J Virol 2012; 86:7650-61. [PMID: 22573861 DOI: 10.1128/jvi.00778-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV), belonging to the genus Phlebovirus, family Bunyaviridae, is endemic to sub-Saharan Africa and causes a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. MP-12 is the only RVFV strain excluded from the select-agent rule and handled at a biosafety level 2 (BSL2) laboratory. MP-12 encodes a functional major virulence factor, the NSs protein, which contributes to its residual virulence in pregnant ewes. We found that 100% of mice subcutaneously vaccinated with recombinant MP-12 (rMP12)-murine PKRN167 (mPKRN167), which encodes a dominant-negative form of mouse double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in place of NSs, were protected from wild-type (wt) RVFV challenge, while 72% of mice vaccinated with MP-12 were protected after challenge. rMP12-mPKRN167 induced alpha interferon (IFN-α) in sera, accumulated RVFV antigens in dendritic cells at the local draining lymph nodes, and developed high levels of neutralizing antibodies, while parental MP-12 induced neither IFN-α nor viral-antigen accumulation at the draining lymph node yet induced a high level of neutralizing antibodies. The present study suggests that the expression of a dominant-negative PKR increases the immunogenicity and efficacy of live-attenuated RVFV vaccine, which will lead to rational design of safe and highly immunogenic RVFV vaccines for livestock and humans.
Collapse
|
21
|
Pataer A, Raso MG, Correa AM, Behrens C, Tsuta K, Solis L, Fang B, Roth JA, Wistuba II, Swisher SG. Prognostic significance of RNA-dependent protein kinase on non-small cell lung cancer patients. Clin Cancer Res 2010; 16:5522-8. [PMID: 20930042 PMCID: PMC3070287 DOI: 10.1158/1078-0432.ccr-10-0753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The role of RNA-dependent protein kinase (PKR) in antiviral defense mechanisms and in cellular differentiation, growth, and apoptosis is well known, but the role of PKR in human lung cancer remains poorly understood. To explore the role of PKR in human lung cancer, we evaluated the expression of PKR in tissue microarray (TMA) specimens from both non-small cell lung cancer (NSCLC) and normal human bronchial epithelium tissue. EXPERIMENTAL DESIGN TMA samples (TMA-1) from 231 lung cancers were stained with PKR antibody and validated on TMA-2 from 224 lung cancers. Immunohistochemical expression score was quantified by three pathologists independently. Survival probability was computed by the Kaplan-Meier method. RESULTS The NSCLC cells showed lower levels of PKR expression than normal bronchial epithelium cells did. We also found a significant association between lower levels of PKR expression and lymph node metastasis. We found that loss of PKR expression is correlated with a more aggressive behavior, and that a high PKR expression predicts a subgroup of patients with a favorable outcome. Univariate and multivariate Cox proportional hazards regression models showed that a lower level of PKR expression was significantly associated with shorter survival in NSCLC patients. We further validated and confirmed PKR to be a powerful prognostic factor in TMA-2 lung cancer (hazard ratio, 0.22; P < 0.0001). CONCLUSIONS Our findings first indicate that PKR expression is an independent prognostic variable in NSCLC patients.
Collapse
Affiliation(s)
- Abujiang Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pataer A, Swisher SG, Roth JA, Logothetis CJ, Corn PG. Inhibition of RNA-dependent protein kinase (PKR) leads to cancer cell death and increases chemosensitivity. Cancer Biol Ther 2009; 8:245-52. [PMID: 19106640 PMCID: PMC2854203 DOI: 10.4161/cbt.8.3.7386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA-dependent protein kinase is an interferon-induced, double-stranded (ds), RNA-activated serine/threonine protein kinase involved in the eukaryotic response to viral infection. While PKR also functions in cellular differentiation, growth control and apoptosis, its role in human cancer remains poorly understood. To explore a role for PKR in human cancer, we evaluated PKR expression and function in a series of cancer cell lines from different tumor types. We observed that PKR protein expression is high in various cancer cells and low in normal cells. Knockdown of PKR protein expression by PKR siRNA induced cell death, indicating a PKR-dependent survival pathway under normal growth conditions. Inhibition of PKR signaling using a dominant negative adenoviral PKR mutant (Ad-Delta6PKR) also induced cancer cell apoptosis via a mechanism that blocks activation of AKT-mediated survival while simultaneously inducing ER stress. ER stress-mediated apoptosis was evidenced by unregulated expression of phosphorylated JNK (p-JNK), phosphorylated cJun (p-cJun), and caspase-4 and was significantly reduced in cancer cells treated with JNK and caspase-4 inhibitors. We further demonstrated that inhibition of PKR signaling via either siRNA or Ad-Delta6PKR sensitizes cancer cells to etoposide or cisplatin-mediated cell death. Our results suggest a rationale to develop therapeutic strategies that target PKR signaling in human cancer cells.
Collapse
Affiliation(s)
- Abujiang Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 , USA.
| | | | | | | | | |
Collapse
|
23
|
Armstrong ME, Gantier M, Li L, Chung WY, McCann A, Baugh JA, Donnelly SC. Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cells via a double-stranded RNA-dependent protein kinase-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2008; 180:7125-33. [PMID: 18490711 DOI: 10.4049/jimmunol.180.11.7125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small interfering RNAs (siRNAs) represent a novel tool to induce gene silencing in mammalian cells and clinical trials are currently ongoing to assess the therapeutic efficacy of siRNAs in various human diseases, including age-related macular degeneration and respiratory syncytial virus infection. However, previously reported off-target, nonspecific effects of siRNAs, including activation of type I IFNs and proinflammatory cytokines, remain an outstanding concern regarding use of these agents in vivo. Macrophage-migration inhibitory factor (MIF) is a pleiotropic cytokine with well-described roles in cell proliferation, tumorigenesis, and angiogenesis and represents a target gene for siRNA-based therapy in the treatment of breast cancer. However, in this study we describe an increase in MIF production from mammary adenocarcinoma (MCF-7) cells following transfection with MIF siRNA and various control siRNAs. This effect was shown to be dose-dependent and was attenuated in the presence of a double-stranded RNA-dependent protein kinase inhibitor, 2-aminopurine. Furthermore, treatment of MCF-7 cells with poly(I:C) also stimulated a PKR-dependent increase in MIF production from MCF-7 cells. The biological consequence of the siRNA-induced increase in MIF production from MCF-7 cells was a PKR-dependent increase in proliferation of breast cancer cells. Furthermore, in cDNAs prepared from a primary human breast cancer cohort, we demonstrated a significant correlation (Spearman rank correlation coefficient, r = 0.50, p < 0.0001, n = 63) between PKR- and MIF-mRNA expression. In conclusion, this study highlights the potential biological consequences of off-target, nonspecific effects of siRNAs and underlines the safety concerns regarding the use of siRNAs in the treatment of human diseases, such as cancer.
Collapse
Affiliation(s)
- Michelle E Armstrong
- School of Medicine and Medical Science, College of Life Sciences, University College Dublin Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
24
|
Delgado André N, De Lucca FL. Knockdown of PKR expression by RNAi reduces pulmonary metastatic potential of B16-F10 melanoma cells in mice: possible role of NF-kappaB. Cancer Lett 2008; 258:118-25. [PMID: 17936498 DOI: 10.1016/j.canlet.2007.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/22/2007] [Accepted: 08/31/2007] [Indexed: 11/30/2022]
Abstract
It was suggested that PKR may act as a tumor suppressor. However, the results are still controversial. Here, we investigate the effect of PKR-specific short hairpin RNA (shRNA) expressing plasmids on pulmonary metastatic potential of B16-F10 melanoma cells in mice. Levels of both PKR mRNA and PKR protein were only significantly reduced in tumor cells transfected with plasmid-based PKR-specific shRNA. Injection of tumor cells transfected with PKR-specific shRNA expressing plasmid resulted in inhibition (85%) of metastatic nodules compared with control. Our results suggest that this effect is mediated by the transcription factor NF-kappaB. This study does not support the concept of PKR as a tumor suppressor.
Collapse
Affiliation(s)
- Nayara Delgado André
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
25
|
Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW, Dacic S. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 2007; 67:2345-50. [PMID: 17332367 DOI: 10.1158/0008-5472.can-06-3533] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Differential microRNA (miR) expression is described in non-small cell lung carcinoma. miR biogenesis requires a set of proteins collectively referred to as the miR machinery. In the proposed multistep carcinogenesis model, peripheral adenocarcinoma of the lung develops from noninvasive precursor lesions known as atypical adenomatous hyperplasia (AAH) and bronchioloalveolar carcinoma (BAC). The gene array analysis of BAC and adenocarcinoma showed a transient up-regulation of Dicer (a key effector protein for small interfering RNA and miR function) and PACT along with down-regulation of most genes encoding miR machinery proteins. Immunohistochemically, Dicer was up-regulated in AAH and BAC and down-regulated in areas of invasion and in advanced adenocarcinoma. A fraction of adenocarcinomas lose Dicer as a result of deletions at the Dicer locus. Expanded immunohistochemical and Western blot analysis showed higher Dicer level in squamous cell carcinoma (SCC) of the lung when compared with adenocarcinoma. Other proteins of the RNA-induced silencing complex (RISC; SND1, PACT, and FXR1) were also present at higher levels in a SCC cell line when compared with an adenocarcinoma cell line. In conclusion, the stoichiometry of miR machinery and RISC depends on histologic subtype of lung carcinoma, varies along the AAH-BAC-adenocarcinoma sequence, and might explain the observed abnormal miR profile in lung cancer. The status of the endogenous miR machinery in various histologic subtypes and stages of lung cancer may help to predict the toxicity of and susceptibility to future RNA interference-based therapy.
Collapse
Affiliation(s)
- Simion Chiosea
- Department of Pathology, University of Pittsburgh Medical Center Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, Dhir R. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1812-20. [PMID: 17071602 PMCID: PMC1780192 DOI: 10.2353/ajpath.2006.060480] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small noncoding 18- to 24-nt RNAs that are predicted to regulate expression of as many as 30% of protein-encoding genes. In prostate adenocarcinoma, 39 microRNAs are up-regulated, and six microRNAs are down-regulated. Production and function of microRNA requires coordinated processing by proteins of the microRNA machinery. Dicer, an RNase III endonuclease, is an essential component of the microRNA machinery. From a gene array analysis of 16 normal prostate tissue samples, 64 organ-confined, and four metastatic prostate adenocarcinomas, we identified an up-regulation of major components of the microRNA machinery, including Dicer, in metastatic prostate adenocarcinoma. Immunohistochemical studies on a tissue microarray consisting of 232 prostate specimens confirmed up-regulation of Dicer in prostatic intraepithelial neoplasia and in 81% of prostate adenocarcinoma. The increased Dicer level in prostate adenocarcinoma correlated with clinical stage, lymph node status, and Gleason score. Western blot analysis of benign and neoplastic prostate cell lines further confirmed Dicer up-regulation in prostate adenocarcinoma. Dicer up-regulation may explain an almost global increase of microRNA expression in prostate adenocarcinoma. The presence of up-regulated microRNA machinery may predict the susceptibility of prostate adenocarcinoma to RNA interference-based therapy.
Collapse
Affiliation(s)
- Simion Chiosea
- Department of Pathology, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian, C920.1, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 620] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|