1
|
Ali AN, Ghoneim SM, Ahmed ER, El-Farouk Abdel Salam LO, Anis Saleh SM. Cadherin switching in oral squamous cell carcinoma: A clinicopathological study. J Oral Biol Craniofac Res 2023; 13:486-494. [PMID: 37293580 PMCID: PMC10245331 DOI: 10.1016/j.jobcr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 06/10/2023] Open
Abstract
Background and aim Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide as it represents the sixth most common cancer. Numerous molecular mechanisms have been explained to regulate OSCC progression, including epithelial-mesenchymal transition (EMT). Cadherin switching is the pivotal process that controls EMT in which E-cadherin reduces while N-cadherin elevates. This work aimed to clarify the role of cadherin switching in OSCC. Material and methods Thirty paraffin-embedded tissue blocks of OSCC including six cases with lymph node metastasis were subjected to immunohistochemical staining using antibodies against E&N-cadherins. Cell cultures were performed using OSCC cell lines (SCC-15/SCC-25) from the human tongue. F-12K medium (Kaighn's Modification of Ham's F12 Medium) was added as EMT inducing media. E&N-cadherin mRNA gene expression levels were detected by real time-polymerase chain reaction (RT-PCR). Results Cadherin switching through N-cadherin elevation and E-cadherin reduction was evaluated at the histopathologic level in primary and metastatic OSCC as well as at the genetic level within OSCC cell culture. Cadherin switching showed a significant correlation between E&N-cadherins at different histopathological grades of OSCC and in metastatic OSCC. Moreover, the level of mRNA gene expression of E&N-cadherins in human 15 SCC and 25 SCC cell lines with EMT-inducing media exhibited a significant correlation. Conclusions Cadherin switching is a crucial event in the EMT process. It may be used as a significant tool in the study of OSCC progression. Cadherin switching plays a significant role in the invasion and metastasis of OSCC.
Collapse
Affiliation(s)
- Ahmed Noaman Ali
- Oral Pathology, Oral Pathology Department, Faculty of Dentistry, Tanta University, Egypt
| | | | | | | | | |
Collapse
|
2
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
3
|
Adhesion of Gastric Cancer Cells to the Enteric Nervous System: Comparison between the Intestinal Type and Diffuse Type of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14143296. [PMID: 35884357 PMCID: PMC9313246 DOI: 10.3390/cancers14143296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. The enteric nervous system (ENS) has been suggested to be involved in cancer development and spread. Objective: To analyze the GC cell adhesion to the ENS in a model of co-culture of gastric ENS with GC cells. Methods: Primary culture of gastric ENS (pcgENS), derived from a rat embryo stomach, was developed. The adhesion of GC cells to pcgENS was studied using a co-culture model. The role of N-Cadherin, a cell-adhesion protein, was evaluated. Results: Compared to intestinal-type GC cells, the diffuse-type GC cancer cells showed higher adhesion to pcgENS (55.9% ± 1.075 vs. 38.9% ± 0.6611, respectively, p < 0.001). The number of diffuse-type GC cells adherent to pcgENS was significantly lower in neuron-free pcgENS compared to neuron-containing pcgENS (p = 0.0261 and 0.0329 for AGS and MKN45, respectively). Confocal microscopy showed that GC cells adhere preferentially to the neurons of the pcgENS. N-Cadherin blockage resulted in significantly decreased adhesion of the GC cells to the pcgENS (p < 0.01). Conclusion: These results suggest a potential role of enteric neurons in the dissemination of GC cells, especially of the diffuse-type, partly through N-Cadherin.
Collapse
|
4
|
Bernegger S, Jarzab M, Wessler S, Posselt G. Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int J Mol Sci 2022; 23:2419. [PMID: 35269560 PMCID: PMC8910283 DOI: 10.3390/ijms23052419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Miroslaw Jarzab
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
- Cancer Cluster Salzburg and Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria; (S.B.); (M.J.); (S.W.)
| |
Collapse
|
5
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Zhong X, Yu X, Wen X, Chen L, Gu N. Activation of the LINC00242/miR-141/FOXC1 axis underpins the development of gastric cancer. Cancer Cell Int 2020; 20:272. [PMID: 32587479 PMCID: PMC7313095 DOI: 10.1186/s12935-020-01369-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (LncRNAs) are a class of newly identified transcripts recognized as critical governors of gene expression during human carcinogenesis, whereas their tumor-suppressive or tumor-promoting effects on gastric cancer (GC) are required for further investigation. In the study, we identify the expression pattern of a novel lncRNA LINC00242 in GC and its possible permissive role in the development of GC. Methods The study included 68 pairs of GC and adjacent normal gastric tissue samples. The viability, migration, and invasion of cultured human GC cells HGC27 were evaluated by CCK-8 and Transwell chamber assays. In vitro tube formation of human brain microvascular endothelial cells (HBMVECs) in HGC27 cell coculture was detected. The regulatory network of LINC00242/miR-141/FOXC1 was verified using dual luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Subcutaneous xenografts of HGC27 cells were performed in nude mice. Results LINC00242 was highly expressed in GC tissues and cells and contributed to poor prognosis. LINC00242 knockdown inhibited HGC27 cell viability, migration and invasion, and tube formation of HBMVECs. LINC00242 interacted with miR-141 and positively regulated FOXC1, a target gene of miR-141. LINC00242 knockdown was partially lost in HGC27 cells upon miR-141 inhibition or FOXC1 overexpression. The tumor-promoting effect of LINC00242 on GC was demonstrated in nude mice. Conclusion Taken together, the present study demonstrates the oncogenic role of the LINC00242/miR-141/FOXC1 axis in GC, highlighting a theoretical basis for GC treatment.
Collapse
Affiliation(s)
- Xiongdong Zhong
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), No.79 Kangning Road, Xiangzhou District, Zhuhai, 519000 Guangdong China
| | - Xianchang Yu
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), No.79 Kangning Road, Xiangzhou District, Zhuhai, 519000 Guangdong China
| | - Xiaoyan Wen
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), No.79 Kangning Road, Xiangzhou District, Zhuhai, 519000 Guangdong China
| | - Lei Chen
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), No.79 Kangning Road, Xiangzhou District, Zhuhai, 519000 Guangdong China
| | - Ni Gu
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), No.79 Kangning Road, Xiangzhou District, Zhuhai, 519000 Guangdong China
| |
Collapse
|
7
|
Hussein UK, Ha SH, Ahmed AG, Kim KM, Park SH, Kim CY, Kwon KS, Zhang Z, Lee SA, Park HS, Park BH, Lee H, Chung MJ, Moon WS, Kang MJ, Jang KY. FAM83H and SCRIB stabilize β-catenin and stimulate progression of gastric carcinoma. Aging (Albany NY) 2020; 12:11812-11834. [PMID: 32564009 PMCID: PMC7343515 DOI: 10.18632/aging.103351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
FAM83H primarily is known for its function in tooth development. Recently, a role for FAM83H in tumorigenesis, conjunction with MYC and β-catenin, has been suggested. Analysis of public data indicates that FAM83H expression is closely associated with SCRIB expression in human gastric cancers. Therefore, this study investigated the roles of FAM83H and SCRIB in 200 human gastric cancers and gastric cancer cells. In human gastric carcinomas, both the individual and combined expression patterns of the nuclear FAM83H and SCRIB were independent indicators of shorter survival of gastric carcinoma patients. In MKN-45 and NCI-N87 gastric cancer cells, the expression of FAM83H and SCRIB were associated with proliferation and invasiveness of cells. FAM83H-mediated in vivo tumor growth was attenuated with knock-down of SCRIB. Moreover, immunoprecipitation indicates that FAM83H, SCRIB, and β-catenin, form a complex, and knock-down of either FAM83H or SCRIB accelerated proteasomal degradation of β-catenin. In conclusion, this study has found that the individual and combined expression patterns of nuclear FAM83H and SCRIB are prognostic indicators of gastric carcinomas and further suggests that FAM83H and SCRIB are involved in the progression of gastric carcinomas by stabilizing β-catenin.
Collapse
Affiliation(s)
- Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sang Hoon Ha
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Chan Young Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.,Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-A Lee
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Jang NR, Choi JH, Gu MJ. Aberrant Expression of E-cadherin, N-cadherin, and P-cadherin in Clear Cell Renal Cell Carcinoma: Association With Adverse Clinicopathologic Factors and Poor Prognosis. Appl Immunohistochem Mol Morphol 2020; 29:223-230. [PMID: 32341236 DOI: 10.1097/pai.0000000000000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/29/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Aberrant expression of cadherins is known to be associated with tumor aggression. However, their role in clear cell renal cell carcinoma (CCRCC) is not well elucidated. This study investigated the expression of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), and placental cadherin (P-cadherin) in CCRCC, and assessed their prognostic significance and clinicopathologic association. MATERIALS AND METHODS We enrolled 254 patients with CCRCC who underwent radical or partial nephrectomy. E-cadherin, N-cadherin, and P-cadherin expression was evaluated by immunohistochemistry in a tissue microarray. RESULTS Low E-cadherin expression was associated with larger tumor size, lymphovascular invasion, higher pT stage, lymph node and distant metastasis, and higher stage. High N-cadherin expression was significantly associated with larger tumor size, higher nuclear grade, and tumor necrosis. P-cadherin expression was found to be significantly associated with higher nuclear grade, distant metastasis, and higher stage. Univariate analysis revealed that aberrant expression of the 3 cadherins was significantly related to shorter overall survival (OS). Loss of E-cadherin, high P-cadherin expression, and higher stage were independent prognostic factors for OS. For recurrence-free survival, lymphovascular invasion, high P-cadherin expression, and higher stage were independent prognostic factors. Cadherin switch was significantly associated with aggressive clinicopathologic factors and poor outcomes. CONCLUSIONS Aberrant expression of E-cadherin, N-cadherin, and P-cadherin was associated with adverse clinicopathologic factors and worse OS. Low E-cadherin and high P-cadherin expression were significantly associated with distant metastasis and independent prognostic factors. Therefore, cadherin expression may be used as a prognostic marker and therapeutic target, and cadherin switch plays an important role in CCRCC progression.
Collapse
Affiliation(s)
- Nu-Ri Jang
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | | | | |
Collapse
|
9
|
Xiao T, Jie Z. MiR-21 Promotes the Invasion and Metastasis of Gastric Cancer Cells by Activating Epithelial-Mesenchymal Transition. Eur Surg Res 2019; 60:208-218. [PMID: 31722341 DOI: 10.1159/000504133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors. It is likely to occur in lymph nodes and is prone to distant metastasis in its early stages, which portends a poor prognosis. Previous studies have shown that miRNA-21 was abnormally highly expressed and associated with early metastasis in GC, but the mechanism by which it regulates the invasion and metastasis of GC has not been elucidated. METHODS Epithelial-mesenchymal transition (EMT) is an important pathologic basis of tumor invasion and metastasis, and in this study, the relationship between miRNA-21 and EMT in GC invasion and metastasis was investigated using RT-qPCR, Western blot, and wound scratch and transwell assays. RESULTS We found that miRNA-21 expression in GC cell lines was higher than in a gastric mucosal epithelial cell line. After transfection with an miRNA-21 mimic, the upregulation of EMT was found to promote migration and invasion of MGC-803 cells. However, the downregulation of EMT was found to accompany the inhibition of invasion and migration of GC cells after downregulation of miRNA-21 expression due to the transfection of an miRNA-21 inhibitor. CONCLUSIONS These findings suggest that miRNA-21 might promote the invasion and metastasis of GC by upregulating EMT.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, China,
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Wang K, Zhao XH, Liu J, Zhang R, Li JP. Nervous system and gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188313. [PMID: 31647986 DOI: 10.1016/j.bbcan.2019.188313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The nervous system has been recently shown to exert impact on gastric cancer directly and indirectly. Gastric cancer cells invade nerve fibers to induce outgrowth and branching of neural cells, and nerve fibers in turn infiltrate into tumor microenvironment to promote progression of gastric cancer. Additionally, the neuro-immune interaction also plays an important role in gastric cancer development. The interplay of nerves and gastric cancer is mediated by many nervous system-associated factors, which can not only be synthesized and released by both cancer cells and nerve terminals, but also participate in regulation of many aspects of gastric cancer such as cell proliferation, angiogenesis, metastasis and recurrence. Furthermore, clinical researches indicate that some of these factors are significant diagnosis and prognosis biomarkers for gastric cancer. Herein, we reviewed recent advances and future prospects of the interaction between nervous system and gastric cancer.
Collapse
Affiliation(s)
- Ke Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin-Hui Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Ji-Peng Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
11
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
12
|
Tang L, Wen JB, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int 2019; 19:94. [PMID: 31007611 PMCID: PMC6458728 DOI: 10.1186/s12935-019-0799-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, gastric cancer (GC) has become a major cause of mortality among various malignancies worldwide with high incidence rates. Long non-coding RNA (lncRNAs) may serve as oncogenes and tumor suppressors in cancers. Therefore, we investigated the effect of LINC01314 on the development of GC cells in relation to the Wnt/β-catenin signaling pathway. Methods Microarray data analysis was conducted to screen GC-related differentially expressed lncRNAs, followed by determination of the binding interaction between LINC01314 and kallikrein 4 (KLK4). Human GC cell line SGC-7901 was treated with over-expressed or silenced LINC01314 or KLK4 to investigate the mechanism LINC01314 affecting GC cellular activities. The levels of KLK4, Wnt-1, β-catenin, cyclin D1, N-cadherin and E-cadherin were measured, and cell invasion and migration were evaluated. Next, the tumor weight, micro-vessel density (MVD) and the expression of VEGF-C and VEGFR-3 in transplanted tumors were measured. Results LINC01314 was poorly expressed in GC cells and KLK4 was revealed to be a direct target gene of LINC01314. Overexpressed LINC01314 or silencing of KLK4 led to inhibited GC cell migration and invasion, corresponding to decreased Wnt-1, β-catenin, cyclin D1 and N-cadherin while increased E-cadherin. Also, in response to over-expression of LINC01314 or silencing of KLK4, tumor weight and the MVD of transplanted tumors were reduced and angiogenesis was suppressed, which was indicated by down-regulated positive expression of VEGF-C and VEGFR-3. Conclusion The findings indicated that over-expression of LINC01314 down-regulated KLK4 to inhibit the activation of the Wnt/β-catenin signaling pathway, thus suppressing migration, invasion, and angiogenesis in GC cells, which provides new insight for the treatment of GC.
Collapse
Affiliation(s)
- Lin Tang
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Jian-Bo Wen
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Ping Wen
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Xing Li
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Min Gong
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| | - Qiang Li
- Department of Gastroenterology, Jiangxi Pingxiang People's Hospital, No. 8, Wugongshan Middle Road, Pingxiang, 337000 Jiangxi People's Republic of China
| |
Collapse
|
13
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
14
|
Cai T, Zhang C, Zhao Z, Li S, Cai H, Chen X, Cai D, Liu W, Yan Y, Xie K, Pan H, Zeng X. The gastric mucosal protective effects of astragaloside IV in mnng-induced GPL rats. Biomed Pharmacother 2018; 104:291-299. [PMID: 29775897 DOI: 10.1016/j.biopha.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric Cancer is one of the most common types of cancer. And the occurrence of gastric carcinoma is an evolutionary histopathological stage. As a result, further research of GPL, which is a borderline of gastric cancer, is indispensable for preventing the formation and development of gastric carcinoma. Several studies have demonstrated a correlation between the expression of autophagy, apoptosis and Gastric cancer (GC). However, the effects of autophagy and apoptosis on human gastric cancer progression, particularly on gastric precancerous lesions (GPL), have not totally been investigated. At present, Astragaloside IV(AS-IV) is a saponin purified from Astragalus membranaceous Bge, a traditional Chinese herb that has been widely used for more than 2000 y in the treatment of cancer, cardiovascular and immune disorders. This study was designed to investigate the mechanism of AS-IV protecting gastric mucosa in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL rats. The lesions of GIM and GED were significantly ameliorated compared with the model rats, especially crowded tubular glandular and back-to-back tubular structure, which were the dangerous borderline between GPL and GC. Western Blot analysis showed that the ratio of Bcl-2/Bax and the protein expression of Bcl-XL, p53, Beclin1, p62, ATG5 and ATG12 were decreased and the level of Caspase3 was increased in the group of AS-IV compared with the model group; RT-PCR analysis showed that the gene expression Ambra1, Beclin1, ATG5, LC3 and p62 were decreased in the group of AS-IV compared with the model group. This research manifested that the occurrence of gastric cancer was preceded by a prolonged precancerous stage, which could be ameliorated by the AS-IV. Meanwhile, the mild and moderate stage of precancerous lesions is similar with gastric adenocarcinoma in critical biological processes, including inflammation, cell proliferation, differentiation. But this lesion is very different from cancer, because it does not appear obvious invasion and malignant lesions in this pathologic stag. Further, AS-IV could regulate p53 expression to activate the Ambra1/Beclin1 complex in GPL, and it will protect the gastric mucosal injury, prevent and cure gastric mucosal atrophy, intestinal metaplasia and atypical hyperplastic lesions. It provided a potential therapeutic strategy in reversing intestinal metaplasia and dysplasia of gastric precancerous lesions and protecting the gastric mucosa in GPL rats.
Collapse
Affiliation(s)
- Tiantian Cai
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chengzhe Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Siyi Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haobin Cai
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Xiaodong Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Wei Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kaifeng Xie
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
15
|
Zhong C, Zhuang M, Wang X, Li J, Chen Z, Huang Y, Chen F. 12-Lipoxygenase promotes invasion and metastasis of human gastric cancer cells via epithelial-mesenchymal transition. Oncol Lett 2018; 16:1455-1462. [PMID: 30008824 PMCID: PMC6036329 DOI: 10.3892/ol.2018.8808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
The role of 12-lipoxygenase (12-LOX) in tumorigenesis has been well established in several types of human cancer, including gastric cancer. It was reported that epithelial-mesenchymal transition (EMT) contributes to tumor invasion and metastasis. However, whether 12-LOX promotes the invasion and metastasis of human gastric cancer cells via EMT remains to be elucidated. In the present study, the expression of 12-LOX and EMT markers, N-cadherin and E-cadherin, was evaluated in gastric cancer and adjacent normal mucosa samples by immunohistochemical analysis. 12-LOX-overexpressing gastric cancer cells were established via lentiviral transfection of SCG-7901 cells. Wound-healing and Transwell assays were performed to examine the regulation of cell metastasis and invasion by 12-LOX. Furthermore, the regulation of N-cadherin expression by 12-LOX was evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that the expression of 12-LOX and N-cadherin was significantly higher in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). By contrast, the expression of E-cadherin was significantly decreased in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). Furthermore, the expression of 12-LOX was positively associated with N-cadherin expression in gastric cancer tissues. 12-LOX-overexpressing gastric cancer cells exhibited significantly increased invasion and migration abilities compared with the empty vector and control groups. The expression of N-cadherin in 12-LOX-overexpressing gastric cancer cells was increased compared with that in the empty vector and control groups. The present study suggests that EMT may be involved in the promotion of the invasion and metastasis of human gastric cancer cells by 12-LOX.
Collapse
Affiliation(s)
- Canmei Zhong
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Mingkai Zhuang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiazhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianying Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yuehong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
16
|
Luo Y, Yu T, Zhang Q, Fu Q, Hu Y, Xiang M, Peng H, Zheng T, Lu L, Shi H. Upregulated N-cadherin expression is associated with poor prognosis in epithelial-derived solid tumours: A meta-analysis. Eur J Clin Invest 2018; 48:e12903. [PMID: 29405291 PMCID: PMC5887888 DOI: 10.1111/eci.12903] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/28/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND N-cadherin is an important molecular in epithelial-mesenchymal transition (EMT) and has been reported to be associated with aggressive behaviours of tumours. However, prognostic value of N-cadherin in solid malignancies remains controversially. MATERIALS AND METHODS The Pubmed/MELINE and EMBASE databases were used for a comprehensive literature searching. Pooled risk ratio (RR) and hazard ratio (HR) with their corresponding 95% confidence intervals (CIs) were employed to quantify the prognostic role. RESULTS Involving 36 studies with 5705 patients were performed to investigate relationships between N-cadherin upregulation and clinicopathological features, survival. Results suggested upregulated N-cadherin was associated with lymph node metastasis (RR = 1.16, 95% CI [1.00, 1.35]), higher histological grade (RR = 1.36, 95%CI [1.14, 1.62]), angiolymphatic invasion (RR = 1.19, 95% CI [1.06, 1.34]) and advanced clinical stage (RR = 1.32, 95% CI [1.06, 1.64]), while upregulated N-cadherin was apt to be associated with distant metastasis (RR = 1.43, 95% CI [0.99, 2.05]). Moreover, N-cadherin was correlated with poor prognosis of 3-year survival (HR = 1.78, 95% CI [1.51, 2.10]), 5-year survival (HR = 1.57, 95% CI [1.17, 2.10]) and overall survival (OS) (HR = 1.32, 95% CI [1.20, 1.44]). Subgroup analyses according to cancer types were also conducted for applying these conclusions to some tumours more properly. No publication bias was found except subgroup analysis of distant metastasis (P = .652 for Begg's test and 0.023 for Egger's test). CONCLUSIONS Taken together, upregulation of N-cadherin is associated with more aggressive behaviours of epithelial-derived solid malignancies and can be regarded as a predictor of poor survival.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Ting Yu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Qiongwen Zhang
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Qingyu Fu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Yuzhu Hu
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mengmeng Xiang
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Haoning Peng
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Tianying Zheng
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Li Lu
- College of Computer ScienceSichuan UniversityChengduSichuanChina
| | - Huashan Shi
- State Key Laboratory of Biotherapy and Department of Head and Neck OncologyWest China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
- West China HospitalWest China School of MedicineSichuan UniversityChengduSichuanChina
| |
Collapse
|
17
|
Ciołczyk-Wierzbicka D, Laidler P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med Oncol 2018; 35:42. [PMID: 29492694 PMCID: PMC5830464 DOI: 10.1007/s12032-018-1104-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
Abstract
N-cadherin seems to promote cell migration and invasion in many types of cancers. The object of this study is recognition of the possible role of N-cadherin and selected downstream protein kinases: PI3K, ERK1/2, and mTOR in cell invasion in malignant melanoma. Melanoma cells were transfected with the small interfering RNA (siRNA) that targets human N-cadherin gene (CDH2). Inhibitors LY294002 (PI3K), U0126 (ERK1/2), and everolimus (mTOR) were used to inhibit selected kinases of signalling pathways. In vitro cell invasion was studied using Matrigel and an analysis of matrix metalloproteinases MMP-2 and MMP-9 activity by gelatinase zymogram assay. Treatment of melanoma cell with either siRNA against N-cadherin or protein kinase inhibitors led to significantly decreased MMPs expression and activity, as well as diminished invasion. Both the current and the former results suggest that activation of PI3/AKT, mTOR, and ERK kinase, following N-cadherin expression, contributes not only to increased proliferation but also invasive potential of melanoma cells. The results also indicate that N-cadherin, as well as the studied kinases, should be considered as a potential target in melanoma therapy.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
18
|
Yamasaki Y, Ishigami S, Arigami T, Kita Y, Uchikado Y, Kurahara H, Kijima Y, Maemura K, Natsugoe S. Expression of gremlin1 in gastric cancer and its clinical significance. Med Oncol 2018; 35:30. [PMID: 29396725 PMCID: PMC5797189 DOI: 10.1007/s12032-017-1073-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
As an antagonist of bone morphogenetic proteins (BMPs), 2, 4 and 7, gremlin1 plays a role in regulating organogenesis, tissue differentiation and angiogenesis. However, there is little information regarding gremlin1 in gastrointestinal cancer. We attempted to clarify how gremlin1 expression affects the clinical features and biological properties of gastric cancer. A total of 232 gastric cancer patients who received R0 gastrectomy at Kagoshima University Hospital were enrolled. Gremlin1 expression in gastric cancer was detected by immunohistochemical and western blotting methods. Correlations between clinicopathological parameters and gremlin1 expression were analyzed. Gremlin1 was identified in the cytoplasm and nucleus of all gastric cancer cell lines and some regions of surgical specimens of gastric cancer. One hundred and seventeen of the 232 patients (50.4%) were classified as gremlin1-positive based on gremlin1 expression. Gremlin1 positivity was correlated with shallower tumor depth, smaller tumor size, less nodal involvement and vessel invasion (p < 0.05). The 5-year survival rate of the gremlin1-positive group was 81%, which was significantly higher than the gremlin1-negative group (p < 0.01). Multivariate analysis revealed that gremlin1 was not selected as an independent prognostic marker. Gremlin1 expression in gastric cancer may be a useful prognostic marker that is involved with the BMP signaling pathway. Furthermore, gremlin1 may have clinical use as a diagnostic and treatment tool.
Collapse
Affiliation(s)
- Yoichi Yamasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Sumiya Ishigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
19
|
Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 2018; 7:34356-70. [PMID: 27102302 PMCID: PMC5085161 DOI: 10.18632/oncotarget.8879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Asparaginyl endopeptidase (AEP) is a lysosomal protease often overexpressed in gastric cancer. AEP was expressed higher in peritoneal metastatic loci than in primary gastric cancer. Then we overexpressed AEP or knocked it down with a lentiviral vector in gastric cancer cell lines and detected the cell cycle arrest and the changes of the invasive and metastatic ability in vitro and in vivo. When AEP was knocked-down, the proliferative, invasive and metastatic capacity of gastric cancer cells were inhibited, and the population of sub-G1 cells increased. AEP knockdown led to significant decrease of expression of transcription factor Twist and the mesenchymal markers N-cadherin, ß-catenin and Vimentin and to increased expression of epithelial marker E-cadherin. These results showed that AEP could promote invasion and metastasis by modulating EMT. We used phosphorylation-specific antibody microarrays to investigate the mechanism how AEP promotes gastric cancer invasion and metastasis, and found that the phosphorylation level of AKT and MAPK signaling pathways was decreased significantly if AEP was knocked-down. Therefore, AKT and MAPK signaling pathways took part in the modulation.
Collapse
|
20
|
Clinical significance of altering epithelial-mesenchymal transition in metastatic lymph nodes of gastric cancer. Gastric Cancer 2017; 20:802-810. [PMID: 28247164 DOI: 10.1007/s10120-017-0705-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The E-cadherin, N-cadherin, and Snail genes are epithelial-mesenchymal transition (EMT)-inducible genes. Previous studies demonstrated that the expression of EMT markers in the primary tumor sites of gastric cancer correlates with tumor progression and prognosis. However, the clinical significance of the expression of these EMT markers in metastatic lymph nodes remains unclear. In the present study, we investigated the expression of these EMT markers in the primary tumor sites and metastatic lymph nodes. METHODS Immunohistochemistry was used to investigate the expression of E-cadherin, N-cadherin, and Snail in 89 primary tumors and 511 metastatic lymph nodes obtained from patients with gastric cancer. RESULTS The weak expression of E-cadherin in tumors and lymph nodes increased with more lymph node metastasis and in more undifferentiated tumors. The strong expression of N-cadherin in lymph nodes correlated with more lymph nodes metastasis, an advanced stage, and poor prognosis. The weak expression of Snail in tumors correlated with lymphatic invasion. The strong expression of Snail in lymph nodes correlated with more lymph node metastasis and an advanced stage. The strong expression of Snail in tumors and its weak expression in lymph nodes correlated with more lymph node metastasis, an advanced stage, and poor prognosis. CONCLUSIONS The expression of N-cadherin in metastatic lymph nodes is useful for predicting the prognosis of patients with gastric cancer. The Snail switch-namely, the positive-to-negative conversion of the Snail status-between primary tumors and lymph node metastasis may be important for confirming EMT and mesenchymal-epithelial transition.
Collapse
|
21
|
Angadi PV, Patil PV, Angadi V, Mane D, Shekar S, Hallikerimath S, Kale AD, Kardesai SG. Immunoexpression of Epithelial Mesenchymal Transition Proteins E-Cadherin, β-Catenin, and N-Cadherin in Oral Squamous Cell Carcinoma. Int J Surg Pathol 2016; 24:696-703. [PMID: 27312520 DOI: 10.1177/1066896916654763] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims Epithelial mesenchymal transition (EMT) is a crucial process for acquisition of malignant phenotype, aggressiveness, and metastatic capacity in neoplasms. It is characterized by loss of epithelial markers and gain of mesenchymal markers. Studies on EMT and its potential association with the histological grading are sparse in oral squamous cell carcinoma (OSCC). This study aims to evaluate the expression of EMT-associated proteins-E-cadherin, β-catenin, and N-cadherin-in different grades of OSCC. Methodology In all, 60 cases of OSCC further subdivided into 20 cases each of well-, moderately, and poorly differentiated OSCCs were stained immunohistochemically with E-cadherin, β-catenin, and N-cadherin antibodies. The differences in the expression were evaluated using χ2 and Fisher exact tests, whereas Spearman's correlation was used to analyze the correlation between the markers. Results A reduced E-cadherin expression noted in 40% of the OSCCs was associated with reduced β-catenin expression in 66.6% of the cases and increase in the expression of mesenchymal N-cadherin seen in 80% of cases. This expression pattern demonstrated a significant association with histological grades. A membrane to cytoplasmic shift of E-cadherin (73.3%) and β-catenin (78.3%) increased with histological grade. A negative correlation was observed with the E-cadherin and N-cadherin localization, though it did not reach statistical significance. Conclusion OSCC tissues had high levels of EMT phenotype as compared with the normal oral mucosa. This phenotype was characterized by reduced E-cadherin and β-catenin expression and overexpression of N-cadherin. Aberrant localization of the studied proteins was a hallmark for depicting EMT.
Collapse
Affiliation(s)
- Punnya V Angadi
- KLE University's VK Institute of Dental Sciences, Belgaum, Karnataka, India
| | | | - Vidya Angadi
- KLE University's VK Institute of Dental Sciences, Belgaum, Karnataka, India
| | - Deepa Mane
- KLE University's VK Institute of Dental Sciences, Belgaum, Karnataka, India
| | - Saurabh Shekar
- KLE University's VK Institute of Dental Sciences, Belgaum, Karnataka, India
| | | | - Alka D Kale
- KLE University's VK Institute of Dental Sciences, Belgaum, Karnataka, India
| | - S G Kardesai
- KLE University's JN Medical College, Belgaum, Karnataka, India
| |
Collapse
|
22
|
Jiang SB, He XJ, Xia YJ, Hu WJ, Luo JG, Zhang J, Tao HQ. MicroRNA-145-5p inhibits gastric cancer invasiveness through targeting N-cadherin and ZEB2 to suppress epithelial-mesenchymal transition. Onco Targets Ther 2016; 9:2305-15. [PMID: 27143926 PMCID: PMC4846054 DOI: 10.2147/ott.s101853] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MicroRNA (miR)-145-5p has been reported to function as a suppressor of cancer and plays an important role in cancer invasiveness. Epithelial-mesenchymal transition (EMT) is an important process in cancer invasion and migration. However, the involvement of miR-145-5p in EMT in human gastric cancer (GC) remains unclear. In this study, we aimed to investigate the molecular mechanisms by which miR-145-5p regulates EMT in GC invasiveness. We used quantitative real-time polymerase chain reaction to investigate the miR-145-5p expression level in GC and matched normal tissues. The effects of miR-145-5p on GC cell invasion and migration abilities were evaluated using Transwell models. The relationships among miR-145-5p and zinc-finger E-box binding homeobox 2 (ZEB2), E-cadherin, and N-cadherin were analyzed by quantitative real-time polymerase chain reaction and Western blot analyses. miR-145-5p levels in primary GC tissues obtained from 60 patients were significantly downregulated, compared to those in paired normal tissues. Lauren classification, depth of tumor invasion, lymph node metastasis, lymphatic invasion, and tumor-node-metastasis stage were associated with miR-145-5p expression. miR-145-5p inhibits the expression of the candidate target gene ZEB2 to delay the invasion and migration of GC cells. ZEB2 acts as transcriptional repressor of E-cadherin, while miR-145-5p is known to suppress N-cadherin directly to regulate EMT. Therefore, we concluded that miR-145-5p may target N-cadherin and ZEB2 directly to influence EMT.
Collapse
Affiliation(s)
- Shi-Bin Jiang
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu-Jun He
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying-Jie Xia
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei-Jian Hu
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jun-Gang Luo
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jun Zhang
- Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Hou-Quan Tao
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R, Zou X. Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol 2016; 48:2236-46. [PMID: 27082441 DOI: 10.3892/ijo.2016.3480] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the third primary cause of cancer-related mortality and one of the most common type of malignant diseases worldwide. Despite remarkable progress in multimodality therapy, advanced GC with high aggressiveness always ends in treatment failure. Epithelial-mesenchymal transition (EMT) has been widely recognized to be a key process associating with GC evolution, during which cancer cells go through phenotypic variations and acquire the capability of migration and invasion. Wnt/β-catenin pathway has established itself as an EMT regulative signaling due to its maintenance of epithelial integrity as well as tight adherens junctions while mutations of its components will lead to GC initiation and diffusion. The E-cadherin/β-catenin complex plays an important role in stabilizing β-catenin at cell membrane while disruption of this compound gives rise to nuclear translocation of β-catenin, which accounts for upregulation of EMT biomarkers and unfavorable prognosis. Additionally, several microRNAs positively or negatively modify EMT by reciprocally acting with certain target genes of Wnt/β-catenin pathway in GC. Thus, this review centers on the strong associations between Wnt/β-catenin pathway and microRNAs during alteration of EMT in GC, which may induce advantageous therapeutic strategies for human gastric cancer.
Collapse
Affiliation(s)
- Cunen Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwen Zhuang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shan Jiang
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shenlin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jinyong Zhou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuhao Teng
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Baomei Xia
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ruiping Wang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
24
|
|
25
|
Jun KH, Lee JE, Kim SH, Jung JH, Choi HJ, Kim YI, Chin HM, Yang SH. Clinicopathological significance of N-cadherin and VEGF in advanced gastric cancer brain metastasis and the effects of metformin in preclinical models. Oncol Rep 2015; 34:2047-53. [PMID: 26260219 DOI: 10.3892/or.2015.4191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer-related death worldwide. Although brain metastasis is a rare complication of gastric cancer, no standard therapy for gastric cancer brain metastasis has been established. We attempted to identify biological markers that predict brain metastasis, and investigated how to modulate such markers. A case-control study of patients newly diagnosed with gastric cancer who had developed brain metastasis during follow-up, was conducted. These patients were compared with patients who had advanced gastric cancer but no evidence of brain metastasis. Immunohistochemistry was used to analyze the expression of E-cadherin, N-cadherin, MSS1, claudin-3, claudin-4, Glut1, clusterin, ITGB4, vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR) and p53. The expression of VEGF tended to be higher in the case group (33.3 vs. 0%, p=0.055). Median survival was significantly correlated with vascular invasion (12 vs. 33 months, p=0.008) and N-cadherin expression (36 vs. 12 months, p=0.027). We also investigated the effects of metformin in tumor-bearing mouse models. VEGF expression was decreased and E-cadherin increased in the metformin‑treated group when compared with the control group. The expression of the mesenchymal marker MMP9 was decreased in the metformin-treated group. Brain metastasis of advanced gastric cancer was associated with the expression of VEGF. Metformin treatment may be useful for modulating the metastatic capacity by reducing VEGF expression and blocking epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Kyong-Hwa Jun
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University of College of Medicine, Seoul, Republic of Korea
| | - Ji-Han Jung
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyun-Joo Choi
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Young Il Kim
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyung-Min Chin
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seung-Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| |
Collapse
|
26
|
Chen JJ, Cai WY, Liu XW, Luo QC, Chen G, Huang WF, Li N, Cai JC. Reverse Correlation between MicroRNA-145 and FSCN1 Affecting Gastric Cancer Migration and Invasion. PLoS One 2015; 10:e0126890. [PMID: 26010149 PMCID: PMC4444015 DOI: 10.1371/journal.pone.0126890] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) play important roles in modulating gene expression during the processes of tumorigenesis and tumor development. Previous studies have found that miR-145 is down-regulated in the stomach neoplasm and is related to tumor migration and invasion. However, both the molecular mechanism and function of miR-145 in gastric cancer remain unclear. The present study is the first demonstration of the significant down-regulation of miR-145 expression in infiltrative gastric cancer compared to expanding gastric cancer. Additionally, correlation analyses revealed strong inverse correlations between miR-145 and FSCN1 expression levels in infiltrative gastric cancer. Furthermore, we demonstrated that miR-145 directly targets FSCN1 and suppresses cell migration and invasion in gastric cancer. Knocking down the expression of FSCN1 led to the suppression of migration and invasion in gastric cancer cells, and re-expressing FSCN1 in miR-145-overexpressing cells reversed their migration and invasion defects. Thus, we concluded that miR-145 regulates cell migration and invasion in gastric cancer primarily by directly targeting FSCN1.
Collapse
Affiliation(s)
- Jia-jia Chen
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Wang-yu Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (J-CC); (W-yC)
| | - Xue-wen Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Qi-cong Luo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Gang Chen
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Wei-feng Huang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Na Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jian-chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (J-CC); (W-yC)
| |
Collapse
|
27
|
Xu W, Hu X, Chen Z, Zheng X, Zhang C, Wang G, Chen Y, Zhou X, Tang X, Luo L, Xu X, Pan W. Normal fibroblasts induce E-cadherin loss and increase lymph node metastasis in gastric cancer. PLoS One 2014; 9:e97306. [PMID: 24845259 PMCID: PMC4028202 DOI: 10.1371/journal.pone.0097306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/16/2014] [Indexed: 12/15/2022] Open
Abstract
Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis.
Collapse
Affiliation(s)
- Wen Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinlei Hu
- Department of Orthopedics, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongting Chen
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoping Zheng
- Department of Pathology, Qujiang People’s Hospital, Quzhou, China
| | - Chenjing Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gang Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yu Chen
- Zhejiang Academy of Traditional Chinese Medicine, Experimental Animal Research Center, Hangzhou, China
| | - Xinglu Zhou
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoxiao Tang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Laisheng Luo
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiang Xu
- Department of Pharmacy, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wensheng Pan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
28
|
JIAO FENG, JIN ZILIANG, WANG LEI, WANG LIWEI. Research and clinical applications of molecular biomarkers in gastrointestinal carcinoma (Review). Biomed Rep 2013; 1:819-827. [PMID: 24649035 PMCID: PMC3917016 DOI: 10.3892/br.2013.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) carcinoma is a common malignant disease worldwide. Its development and progression is a multistage process involving a multifactorial etiology. Although the detailed mechanisms of the development of GI carcinoma remain controversial, the elucidation of its molecular biology over the last few years has resulted in a better perspective on its epidemiology, carcinogenesis and pathogenesis. More significantly, it is currently possible to use biological indicators or biomarkers in differential diagnosis, prognostic evaluation and specific clinical interventions. In this review, we aimed to describe the biomarkers of pathogenesis, invasion, metastasis and prognosis of GI carcinoma and discuss their potential clinical applications. The majority of these biomarkers, such as tumor-associated antigens, oncogenes and tumor suppressor genes, metastasis-associated genes, cell adhesion molecules, cytokines, growth factors and microRNAs, are currently broadly applicable.
Collapse
Affiliation(s)
- FENG JIAO
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - ZILIANG JIN
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - LEI WANG
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - LIWEI WANG
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| |
Collapse
|
29
|
Zhuang MK, Chen FL. Biomarkers of epithelial-mesenchymal transition in gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:3204-3210. [DOI: 10.11569/wcjd.v21.i30.3204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In gastric cancer, metastases are the major cause of death. Understanding the mechanism by which tumor cells invade and metastasize is essential to develop novel treatments for gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is a multistage process in which epithelial cells develop into mesenchymal-like cells with a large number of distinct genetic and epigenetic alterations. EMT also occurs in cancer, which endows invasive and metastatic properties upon cancer cells that favor successful colonization of distal target organs. Here, we summarize studies of known EMT biomarkers in the context of GC progression. The biomarkers discussed include cell-surface proteins (E-cadherin and N-cadherin), cytoskeletal proteins (β-catenin and Vimentin), and transcription factors (Snail, Twist, ZEB1 and ZEB2).
Collapse
|
30
|
Wang ZS, Shen Y, Li X, Zhou CZ, Wen YG, Jin YB, Li JK. Significance and prognostic value of Gli-1 and Snail/E-cadherin expression in progressive gastric cancer. Tumour Biol 2013; 35:1357-63. [PMID: 24081672 DOI: 10.1007/s13277-013-1185-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022] Open
Abstract
Abnormal activation of the hedgehog (Hh) signaling pathway has been found to be involved in the occurrence, invasion, and metastasis of cancers. Epithelial-mesenchymal transition (EMT) also plays an important role in the invasion and metastasis of cancers. However, the significance of the Hh signaling pathway and EMT in the invasion and metastasis of gastric cancer is still unclear. This study aimed to investigate the significance and prognostic value of the Hh signaling pathway and EMT in progressive gastric cancer. Immunohistochemistry was performed to detect the expression of the Hh-induced transcriptional factor Gli-1 and the EMT-related molecules Snail and E-cadherin in 121 patients with progressive gastric cancer. Histological type, depth of invasion, lymph node metastasis, and pTNM stage were also recorded. In progressive gastric cancer, Gli-1 expression increased markedly, and was closely associated with increased Snail expression and decreased E-cadherin expression. Diffuse type cancer, lymph node metastasis, and abnormal expression of E-cadherin were independent factors influencing the prognosis of patients with progressive gastric cancer. These findings suggest that abnormal activation of the Hh signaling pathway is closely related to the presence of EMT and is an important factor influencing the prognosis of patients with diffuse progressive gastric cancer.
Collapse
Affiliation(s)
- Zhan-shan Wang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|