1
|
Khazdair MR, Rezaeetalab F, Rafatpanah H, Boskabady MH. The effect of Zataria multiflora on inflammatory cytokine and respiratory symptoms in veterans exposed to sulfur mustard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22451-22460. [PMID: 32314290 DOI: 10.1007/s11356-020-08855-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The effect of Zataria multiflora (Z. multiflora) on serum cytokine, chemokines, and respiratory symptoms in the veterans exposed to sulfur mustard (SM) more than two decades (27-30 years) ago was conducted in 2018. Thirty-four patients were randomly assigned to the placebo group (P, mean age (54.40 ± 5.51)) and two treated groups with Z. multiflora extract 5 and 10 mg/kg/day (Z5 and 10; mean age, 58.50 ± 3.60 and 55.18 ± 4.11, respectively). Serum levels of tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), forced expiratory volume-one second (FEV1), and respiratory symptoms including chest wheeze (CW), night wheeze (NW), night cough (NC), and cough and wheeze during exercise (ECW) were assessed at the baseline (phase 0), 1 and 2 months after starting treatment (phase I and II, respectively). The value of FEV1 was significantly increased in Z10 in phase I and II compared with that in phase 0 (p < 0.01 for both) and in Z5 in phase II compared with phase I and 0 (p < 0.001for both). All respiratory symptoms significantly decreased in Z5 and 10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). Serum levels of TNF-α and VEGF were decreased in Z5 and 10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). Serum levels of MCP-1 and EGF were decreased in Z10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). The percent change of respiratory symptoms, serum levels of cytokines during the treatment period, was significantly improved in the treated groups compared with that in the placebo group. Two months' of treatment with Z. multiflora improved cytokine levels, respiratory symptom, and FEV1 values in SM-exposed patients.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Rezaeetalab
- COPD Research Center, Department of Internal Medicine, Imam-Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
2
|
The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial. Respir Med 2019; 150:21-29. [DOI: 10.1016/j.rmed.2019.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 01/22/2023]
|
3
|
Khazdair MR, Boskabady MH. Long term effect of sulfur mustard exposure on hematologic and respiratory status, a case control study. Drug Chem Toxicol 2018; 42:295-299. [DOI: 10.1080/01480545.2018.1463239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammad Reza Khazdair
- Pharmaceutical Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol 2017; 13:1173-1188. [PMID: 28994328 DOI: 10.1080/1744666x.2017.1389646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4+T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.
Collapse
Affiliation(s)
- Maryam Iman
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ramazan Rezaei
- b Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Parvin Shariati
- c Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Farrah Kheradmand
- d Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, & Department of Medicine , Pulmonary and Critical Care, Baylor College of Medicine , Houston , TX , USA
| | - Jafar Salimian
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
5
|
Yu D, Bei YY, Li Y, Han W, Zhong YX, Liu F, Zhao YL, Zhu XJ, Zhao J. In vitro the differences of inflammatory and oxidative reactions due to sulfur mustard induced acute pulmonary injury underlying intraperitoneal injection and intratracheal instillation in rats. Int Immunopharmacol 2017; 47:78-87. [DOI: 10.1016/j.intimp.2017.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/06/2023]
|
6
|
Nourani MR, Mahmoodzadeh Hosseini H, Azimzadeh Jamalkandi S, Imani Fooladi AA. Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review. J Recept Signal Transduct Res 2016; 37:200-216. [DOI: 10.1080/10799893.2016.1212374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad Reza Nourani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gholamnezhad Z, Boskabady MH, Amery S, Vahedi N, Tabatabaei A, Boskabady M, Shahriary A. The effect of vitamin E on lung pathology in sulfur mustard-exposed guinea pigs. Toxicol Ind Health 2016; 32:1971-1977. [DOI: 10.1177/0748233715600986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary complications of exposure to sulfur mustard (SM) gas range from no effect or mild symptoms to severe bronchial stenosis. In the present study, the protective effect of vitamin E on the lung inflammation of SM-exposed guinea pigs was examined. Guinea pigs ( n = 5 for each group) were exposed to ethanol (control group), 40 mg/m3 inhaled SM (SME group), SME treated with vitamin E (SME + E), SME treated with dexamethasone (SME + D), and SME treated with both treatments (SME + E + D). Pathological evaluation of the lung was done 14 days postexposure. The epithelial desquamation of trachea and other pathologic changes in the lung of the SME group were significantly higher than those in the control group. Furthermore, the pathological changes of trachea and lung in the SME + E and SME + E + D groups were significantly improved compared with those of SME group. In addition, the pathological changes of trachea and lung of SME + E and SME + E + D animals were significantly less than those of SME + D group.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Sediqa Amery
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Nassim Vahedi
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Abass Tabatabaei
- Department of Pathology, Ghaem Medical Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Morteza Boskabady
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
8
|
Akbarzadeh A, Abasi E, Ghanei M, Hasanzadeh A, Panahi Y. The effects of various chemicals on lung, skin and eye: a review. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1187174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Khazdair MR, Boskabady MH, Ghorani V. Respiratory effects of sulfur mustard exposure, similarities and differences with asthma and COPD. Inhal Toxicol 2015; 27:731-44. [PMID: 26635274 DOI: 10.3109/08958378.2015.1114056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Previous research has found relationships between sulfur mustard (SM) toxicity and its adverse effects. OBJECTIVE SM is highly toxic to the respiratory system, leading to hacking cough, rhinorrheachest tightness, acute pharyngitis and laryngitis, chronic bronchitis and lung fibrosis. In this review, based on the scientific literature, we provide an updated summary of information on SM exposures and their differences with asthma and COPD. METHOD Information of this review was obtained by searching Medline/PubMed, ScienceDirect, Scopus, Google Scholar, ISI Web of Knowledge and Chemical Abstracts. RESULTS SM exposure can decrease pulmonary function tests (PFTs) values. In addition, inflammatory cell accumulation in the respiratory tract and increased expression of some pro-inflammatory cytokines including tumor necrosis factor-α (TNFα), IL-1a, IL-1β, and reactive oxygen radicals due to SM exposure have been shown. Matrix metalloproteinase (MMP) which degrade extracellular matrix proteins, contributing to inflammatory cell recruitment, tissue injury and fibrosis are also up-regulated in the lung after SM exposure. In the lung, SM exposure also can cause serious pathological changes including airway inflammation, parenchymal tissue destruction and airway obstruction which can lead to asthma or chronic obstructive pulmonary disease (COPD). Following SM poisoning, DNA damage, apoptosis and autophagy are observed in the lung along with the increased expression of activated caspases and DNA repair enzymes. CONCLUSION In the present article, respiratory symptoms, changes in PFTs, lung pathology and lung inflammation due to SM exposure and the similarities and differences between them and those observed in asthma and COPD were reviewed.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine .,b Student Research Committee , and
| | - Mohammad Hossein Boskabady
- c Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Vahideh Ghorani
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine
| |
Collapse
|
10
|
Ghasemi H, Owlia P, Jalali-Nadoushan MR, Pourfarzam S, Azimi G, Yarmohammadi ME, Shams J, Fallahi F, Moaiedmohseni S, Moin A, Yaraee R, Vaez-Mahdavi MR, Faghihzadeh S, Mohammad Hassan Z, Soroush MR, Naghizadeh MM, Ardestani SK, Ghazanfari T. A clinicopathological approach to sulfur mustard-induced organ complications: a major review. Cutan Ocul Toxicol 2013; 32:304-24. [PMID: 23590683 DOI: 10.3109/15569527.2013.781615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM), with an old manufacturing history still remains as potential threat due to easy production and extensive effects. OBJECTIVES Increasing studies on SM indicates the interest of researchers to this subject. Almost all human body organs are at risk for complications of SM. This study offers organ-by-organ information on the effects of SM in animals and humans. METHODS The data sources were literature reviews since 1919 as well as our studies during the Iraq-Iran war. The search items were SM and its all other nomenclatures in relation to, in vivo, in vitro, humans, animals, eye, ocular, ophthalmic, lungs, pulmonary, skin, cutaneous, organs and systemic. Amongst more than 1890 SM-related articles, 257 more relevant clinicopathologic papers were selected for this review. RESULTS SM induces a vast range of damages in nearly all organs. Acute SM intoxication warrants immediate approach. Among chronic lesions, delayed keratitis and blindness, bronchiolitis obliterans and respiratory distress, skin pruritus, dryness and cancers are the most commonly observed clinical sequelae. CONCLUSION Ocular involvements in a number of patients progress toward a severe, rapid onset form of keratitis. Progressive deterioration of respiratory tract leads to "mustard lung". Skin problems continue as chronic frustrating pruritus on old scars with susceptibility to skin cancers. Due to the multiple acute and chronic morbidities created by SM exposure, uses of multiple drugs by several routes of administrations are warranted.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boskabady M, Boskabady MH, Zabihi NA, Boskabady M. The effect of chemical warfare on respiratory symptoms, pulmonary function tests and their reversibility 23–25 years after exposure. Toxicol Ind Health 2012; 31:79-84. [DOI: 10.1177/0748233712468025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary complications due to mustard gas exposure range from no effect to severe bronchial stenosis. Pulmonary function tests (PFTs) and respiratory symptoms in chemical war victims were studied 23–25 years after exposure to sulfur mustard (SM). Respiratory symptoms were evaluated in a sample of 142 chemical war victims and 120 control subjects with similar age from the general population using a questionnaire including questions on respiratory symptoms in the past year. PFT values were also measured in chemical war victims before and 15 min after the inhalation of 200 µg salbutamol and baseline PFT in controls. All chemical war victims (100%) reported respiratory symptoms. Wheezing (66.19%), cough (64.78%), and chest tightness (54.4%) were the most common symptoms and only 15.5% of chemical war victims reported sputum ( p < 0.01 for sputum and p < 0.001 for other symptoms compared with control group). In addition, 49.3% of chemical war victims had wheeze in chest examination, which were significantly higher than control group ( p < 0.001). The severity of respiratory symptoms was also significantly higher than control subjects ( p < 0.05 for sputum and p < 0.001 for other symptoms). All the PFT values were also significantly lower in chemical war victims than that in control subjects ( p < 0.001 for all cases). In addition, all the PFT values improved significantly after the inhalation of 200 µg salbutamol ( p < 0.05– p < 0.001). These results showed that chemical war victims, 23–25 years after exposure to chemical warfare have higher frequencies and severity of respiratory symptoms. PFT values were also significantly reduced among chemical war victims, which showed reversibility due to the inhalation of 200 µg salbutamol.
Collapse
Affiliation(s)
- Mrteza Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
- Applied Physiology Recearch Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Narges Amel Zabihi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Marzie Boskabady
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
12
|
Poursaleh Z, Harandi AA, Vahedi E, Ghanei M. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase. ACTA ACUST UNITED AC 2012; 20:27. [PMID: 23351279 PMCID: PMC3555747 DOI: 10.1186/2008-2231-20-27] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 11/10/2022]
Abstract
Objective Sulfur mustard (SM) is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980–1988). It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries. Method This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment. Results Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments.
Collapse
Affiliation(s)
- Zohreh Poursaleh
- Chemical Injuries Research Center, Baqiyatallah University of medical sciences, Mollasadra Street, 19945-546, Tehran, Iran.
| | | | | | | |
Collapse
|
13
|
Boskabady MH, Vahedi N, Amery S, Khakzad MR. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1028-34. [PMID: 21801826 DOI: 10.1016/j.jep.2011.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 05/12/2023]
Abstract
UNLABELLED ETHNOMEDICAL RELEVANCE: The anti-inflammatory activity of both systemic and local administrations of essential oil from Nigella sativa L. has been shown. AIM OF THE STUDY Therefore, the effect of Nigella sativa on tracheal responsiveness (TR) and lung inflammation of sulfur mustard (SM) exposed guinea pigs was examined. MATERIALS AND METHODS Guinea pigs were exposed to diluent solution (control group), inhaled SM (SME group), SME treated with Nigella sativa (SME+N), SME treated with dexamethasone (SME+D) and SME treated with both drugs (SME+N+D), (n=7 for each group). TR to methacholine, total white blood cell (WBC) and differential WBC count of lung lavage, and serum cytokines were measured 14 days post-exposure. RESULTS The values of TR, eosinophil, monocyte, lymphocyte, interleukine-4 (IL-4) and interferon gamma (IFN-γ) of SME group were significantly higher than those of controls (p<0.05 to p<0.001). The TR in SME+N, SME+D and SME+N+D was significantly lower compared to that of SME group (p<0.01 for all cases). The percentage of eosinophil in SME+D, and the percentage of monocyte in SME+N+D (p<0.05 to p<0.01) were significantly lower than those in SME group. The neutrophil number was decreased in SME+N and SME+N+D groups compared to SME animals (p<0.05 to p<0.01). IL-4 levels in serum of SME+N (p<0.01), SME+D (p<0.05), SME+N+D (p<0.01) and IFN-γ in SME+N (p<0.05) were greater than those in SME animals. CONCLUSIONS These results showed a preventive effect of Nigella sativa on TR and lung inflammation of SM exposed guinea pigs.
Collapse
Affiliation(s)
- Mohammad Hossein Boskabady
- Department of Physiology and Pharmaceutical Research Centre, School of Medicine, Mashhad University of Medical Sciences, Postal Code 9177948564, Mashhad, Iran.
| | | | | | | |
Collapse
|
14
|
Boskabady MH, Amery S, Vahedi N, Khakzad MR. The effect of vitamin E on tracheal responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. Inhal Toxicol 2011; 23:157-65. [DOI: 10.3109/08958378.2011.558934] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther 2010; 24:92-9. [PMID: 20851203 DOI: 10.1016/j.pupt.2010.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including upper and lower obstructive disease, airway inflammation, and acute respiratory distress syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants. Studies in animals and in cell culture models have identified key mechanistic pathways mediating their toxicity, which may be relevant targets for the development of countermeasures. For example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical markers of these activities. This is associated with inflammatory cell accumulation in the respiratory tract and increased expression of tumor necrosis factor-α and other proinflammatory cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also upregulated in the lung after SM exposure, which are thought to contribute to the detachment of epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier. Findings that production of inflammatory mediators correlates directly with altered lung function suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g., tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors (e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective treatments may depend on the extent of lung injury and require a multi-faceted pharmacological approach.
Collapse
|