1
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
3
|
Hu J, Ma H, Zhu S, Li P, Xu H, Fang Y, Chen M, Han C, Fang C, Cai X, Yan K, Lu HD. Visual Motion Processing in Macaque V2. Cell Rep 2020; 25:157-167.e5. [PMID: 30282025 DOI: 10.1016/j.celrep.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
In the primate visual system, direction-selective (DS) neurons are critical for visual motion perception. While DS neurons in the dorsal visual pathway have been well characterized, the response properties of DS neurons in other major visual areas are largely unexplored. Recent optical imaging studies in monkey visual cortex area 2 (V2) revealed clusters of DS neurons. This imaging method facilitates targeted recordings from these neurons. Using optical imaging and single-cell recording, we characterized detailed response properties of DS neurons in macaque V2. Compared with DS neurons in the dorsal areas (e.g., middle temporal area [MT]), V2 DS neurons have a smaller receptive field and a stronger antagonistic surround. They do not code speed or plaid motion but are sensitive to motion contrast. Our results suggest that V2 DS neurons play an important role in figure-ground segregation. The clusters of V2 DS neurons are likely specialized functional systems for detecting motion contrast.
Collapse
Affiliation(s)
- Jiaming Hu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Heng Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shude Zhu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peichao Li
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haoran Xu
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Fang
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ming Chen
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chao Han
- Institute of Neuroscience, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chen Fang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingya Cai
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kun Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cereb Cortex 2019; 28:2085-2099. [PMID: 28472289 DOI: 10.1093/cercor/bhx114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/14/2022] Open
Abstract
We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When "shift" events were compared with "stay" events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - John T Arsenault
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.,Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| |
Collapse
|
5
|
Smith AT, Beer AL, Furlan M, Mars RB. Connectivity of the Cingulate Sulcus Visual Area (CSv) in the Human Cerebral Cortex. Cereb Cortex 2019; 28:713-725. [PMID: 28108496 DOI: 10.1093/cercor/bhx002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
The human cingulate sulcus visual area (CSv) responds selectively to visual and vestibular cues to self-motion. Although it is more selective for visual self-motion cues than any other brain region studied, it is not known whether CSv mediates perception of self-motion. An alternative hypothesis, based on its location, is that it provides sensory information to the motor system for use in guiding locomotion. To evaluate this hypothesis we studied the connectivity pattern of CSv, which is completely unknown, with a combination of diffusion MRI and resting-state functional MRI. Converging results from the 2 approaches suggest that visual drive is provided primarily by areas hV6, pVIP (putative intraparietal cortex) and PIC (posterior insular cortex). A strong connection with the medial portion of the somatosensory cortex, which represents the legs and feet, suggests that CSv may receive locomotion-relevant proprioceptive information as well as visual and vestibular signals. However, the dominant connections of CSv are with specific components of the motor system, in particular the cingulate motor areas and the supplementary motor area. We propose that CSv may provide a previously unknown link between perception and action that serves the online control of locomotion.
Collapse
Affiliation(s)
- Andrew T Smith
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Anton L Beer
- Institut für Psychologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Michele Furlan
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Rogier B Mars
- Department of Experimental Psychology and Centre for Functional fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
6
|
Navarro DM, Mender BMW, Smithson HE, Stringer SM. Self-organising coordinate transformation with peaked and monotonic gain modulation in the primate dorsal visual pathway. PLoS One 2018; 13:e0207961. [PMID: 30496225 PMCID: PMC6264903 DOI: 10.1371/journal.pone.0207961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
We study a self-organising neural network model of how visual representations in the primate dorsal visual pathway are transformed from an eye-centred to head-centred frame of reference. The model has previously been shown to robustly develop head-centred output neurons with a standard trace learning rule, but only under limited conditions. Specifically it fails when incorporating visual input neurons with monotonic gain modulation by eye-position. Since eye-centred neurons with monotonic gain modulation are so common in the dorsal visual pathway, it is an important challenge to show how efferent synaptic connections from these neurons may self-organise to produce head-centred responses in a subpopulation of postsynaptic neurons. We show for the first time how a variety of modified, yet still biologically plausible, versions of the standard trace learning rule enable the model to perform a coordinate transformation from eye-centred to head-centred reference frames when the visual input neurons have monotonic gain modulation by eye-position.
Collapse
Affiliation(s)
- Daniel M. Navarro
- Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, Oxfordshire, United Kingdom
- Oxford Perception Lab, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, Oxfordshire, United Kingdom
| | - Bedeho M. W. Mender
- Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, Oxfordshire, United Kingdom
| | - Hannah E. Smithson
- Oxford Perception Lab, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, Oxfordshire, United Kingdom
| | - Simon M. Stringer
- Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex 2018; 27:1149-1163. [PMID: 26656999 DOI: 10.1093/cercor/bhv302] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Galletti C, Fattori P. The dorsal visual stream revisited: Stable circuits or dynamic pathways? Cortex 2017; 98:203-217. [PMID: 28196647 DOI: 10.1016/j.cortex.2017.01.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
In both macaque and human brain, information regarding visual motion flows from the extrastriate area V6 along two different paths: a dorsolateral one towards areas MT/V5, MST, V3A, and a dorsomedial one towards the visuomotor areas of the superior parietal lobule (V6A, MIP, VIP). The dorsolateral visual stream is involved in many aspects of visual motion analysis, including the recognition of object motion and self motion. The dorsomedial stream uses visual motion information to continuously monitor the spatial location of objects while we are looking and/or moving around, to allow skilled reaching for and grasping of the objects in structured, dynamically changing environments. Grasping activity is present in two areas of the dorsal stream, AIP and V6A. Area AIP is more involved than V6A in object recognition, V6A in encoding vision for action. We suggest that V6A is involved in the fast control of prehension and plays a critical role in biomechanically selecting appropriate postures during reach to grasp behaviors. In everyday life, numerous functional networks, often involving the same cortical areas, are continuously in action in the dorsal visual stream, with each network dynamically activated or inhibited according to the context. The dorsolateral and dorsomedial streams represent only two examples of these networks. Many others streams have been described in the literature, but it is worthwhile noting that the same cortical area, and even the same neurons within an area, are not specific for just one functional property, being part of networks that encode multiple functional aspects. Our proposal is to conceive the cortical streams not as fixed series of interconnected cortical areas in which each area belongs univocally to one stream and is strictly involved in only one function, but as interconnected neuronal networks, often involving the same neurons, that are involved in a number of functional processes and whose activation changes dynamically according to the context.
Collapse
Affiliation(s)
- Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
9
|
Smith AT, Greenlee MW, DeAngelis GC, Angelaki D. Distributed Visual–Vestibular Processing in the Cerebral Cortex of Man and Macaque. Multisens Res 2017. [DOI: 10.1163/22134808-00002568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances in understanding the neurobiological underpinnings of visual–vestibular interactions underlying self-motion perception are reviewed with an emphasis on comparisons between the macaque and human brains. In both species, several distinct cortical regions have been identified that are active during both visual and vestibular stimulation and in some of these there is clear evidence for sensory integration. Several possible cross-species homologies between cortical regions are identified. A key feature of cortical organization is that the same information is apparently represented in multiple, anatomically diverse cortical regions, suggesting that information about self-motion is used for different purposes in different brain regions.
Collapse
Affiliation(s)
- Andrew T. Smith
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Mark W. Greenlee
- Institute of Experimental Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Gregory C. DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA
| | - Dora E. Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Sathian K. Analysis of haptic information in the cerebral cortex. J Neurophysiol 2016; 116:1795-1806. [PMID: 27440247 DOI: 10.1152/jn.00546.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level.
Collapse
Affiliation(s)
- K Sathian
- Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, Georgia; and Center for Visual and Neurocognitive Rehabilitation, Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
11
|
Abstract
The number, location, extent, and functional properties of the cortical areas that occupy the medial parieto-occipital cortex (mPOC) have been, and still is, a matter of scientific debate. The mPOC is a convoluted region of the brain that presents a high level of individual variability, and the fact that many areas of mPOC are located within very deep sulci further limits the possibility to investigate their anatomo-functional properties. In the present review, we summarize the location and extent of mPOC areas in the macaque brain as obtained by architectural, connectional, and functional data. The different approaches lead to a subdivision of mPOC that includes areas V2, V3, V6, V6Av, and V6Ad. Extrastriate areas V2 and V3 occupy the posterior wall of the parieto-occipital sulcus (POs). The fundus of POs and the ventralmost part of the anterior wall of the sulcus are occupied by a retinotopically organized visual area, called V6, which represents the contralateral part of the visual field and emphasizes its periphery. The remaining part of the anterior wall of POs is occupied by two areas, V6Av and V6Ad, which contain visual as well as arm reaching neurons. Our analyses suggest that areas V6 and V6Av, together, occupy the cortical territory previously described as area PO. Functionally, area V6 is a motion area particularly sensitive to the real motion of objects in the animal's field of view, while V6Av and V6Ad are visuomotor areas likely involved in the visual guidance of arm movement and object prehension.
Collapse
|
12
|
Price NSC, VanCuylenberg JB. Noisy decision thresholds can account for suboptimal detection of low coherence motion. Sci Rep 2016; 6:18700. [PMID: 26726736 PMCID: PMC4698657 DOI: 10.1038/srep18700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Noise in sensory signals can vary over both space and time. Moving random dot stimuli are commonly used to quantify how the visual system accounts for spatial noise. In these stimuli, a fixed proportion of "signal" dots move in the same direction and the remaining "noise" dots are randomly replotted. The spatial coherence, or proportion of signal versus noise dots, is fixed across time; however, this means that little is known about how temporally-noisy signals are integrated. Here we use a stimulus with low temporal coherence; the signal direction is only presented on a fraction of frames. Human observers are able to reliably detect and discriminate the direction of a 200 ms motion pulse, even when just 25% of frames within the pulse move in the signal direction. Using psychophysical reverse-correlation analyses, we show that observers are strongly influenced by the number of near-target directions spread throughout the pulse, and that consecutive signal frames have only a small additional influence on perception. Finally, we develop a model inspired by the leaky integration of the responses of direction-selective neurons, which reliably represents motion direction, and which can account for observers' sub-optimal detection of motion pulses by incorporating a noisy decision threshold.
Collapse
|
13
|
Raos V, Kilintari M, Savaki HE. Viewing a forelimb induces widespread cortical activations. Neuroimage 2014; 89:122-42. [DOI: 10.1016/j.neuroimage.2013.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/06/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022] Open
|
14
|
Crespo-Garcia M, Pinal D, Cantero JL, Díaz F, Zurrón M, Atienza M. Working Memory Processes Are Mediated by Local and Long-range Synchronization of Alpha Oscillations. J Cogn Neurosci 2013; 25:1343-57. [DOI: 10.1162/jocn_a_00379] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Different cortical dynamics of alpha oscillations (8–13 Hz) have been associated with increased working memory load, which have been mostly interpreted as a neural correlate of functional inhibition. This study aims at determining whether different manifestations of load-dependent amplitude and phase dynamics in the alpha band can coexist over different cortical regions. To address this question, we increased information load by manipulating the number and spatial configuration of domino spots. Time–frequency analysis of EEG source activity revealed (i) load-independent increases of both alpha power and interregional alpha-phase synchrony within task-irrelevant, posterior cortical regions and (ii) load-dependent decreases of alpha power over areas of the left pFC and bilateral posterior parietal cortex (PPC) preceded in time by load-dependent decreases of alpha-phase synchrony between the left pFC and the left PPC. The former results support the role of alpha oscillations in inhibiting irrelevant sensorimotor processing, whereas the latter likely reflect release of parietal task-relevant areas from top–down inhibition with load increase. This interpretation found further support in a significant latency shift of 15 msec from pFC to the PPC. Together, these results suggest that amplitude and phase alpha dynamics in both local and long-range cortical networks reflect different neural mechanisms of top–down control that might be crucial in mediating the different working memory processes.
Collapse
Affiliation(s)
| | - Diego Pinal
- 1University Pablo de Olavide, Seville, Spain
- 2University of Santiago de Compostela, Galicia, Spain
| | | | - Fernando Díaz
- 2University of Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
15
|
Jeffs J, Federer F, Ichida JM, Angelucci A. High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. Cereb Cortex 2013; 23:1126-47. [PMID: 22523183 PMCID: PMC3615347 DOI: 10.1093/cercor/bhs088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primate visual cortex consists of many areas. The posterior areas (V1, V2, V3, and middle temporal) are thought to be common to all primate species. However, the organization of cortex immediately anterior to area V2 (the "third tier" cortex) remains controversial, particularly in New World primates. The main point of contention has been whether the third tier cortex consists of a single area V3, representing lower and upper visual quadrants in dorsal and ventral cortex, respectively, or of 2 distinct areas (the dorsomedial [DM] area and a V3-like area). Resolving this controversy is crucial to understand the function and evolution of the third tier cortex. We have addressed this issue in marmosets, by performing high-precision mapping of corticocortical connections in cortex bordering dorsal V2. Multiple closely spaced neuroanatomical tracer injections were placed across the full width of dorsal V2 or adjacent anterior cortex, and the location of resulting labeled cells mapped throughout whole flattened visual cortex. The resulting topographic patterns of labeled connections allowed us to define areas and their boundaries. We found that a complete representation of the visual field borders dorsal V2 and that the third tier cortex consists of 2 distinct areas. These results unequivocally support the DM model.
Collapse
Affiliation(s)
- Janelle Jeffs
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
16
|
Helfrich RF, Becker HGT, Haarmeier T. Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 2012; 26:247-63. [PMID: 22526896 DOI: 10.1007/s10548-012-0226-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Recent imaging studies in human subjects have demonstrated representations of global visual motion in medial parieto-occipital cortex (area V6) and posterior parietal cortex, the latter containing at least seven topographically organized areas along the intraparietal sulcus (IPS0-IPS5, SPL1). In this fMRI study we used topographic mapping procedures to delineate a total of 18 visual areas in human cerebral cortex and tested their responsiveness to coherent visual motion under conditions of controlled attention and fixation. Preferences for coherent visual motion as compared to motion noise as well as hemispheric asymmetries were assessed for contralateral, ipsilateral, and bilateral visual motion presentations. Except for areas V1-V4 and IPS3-5, all other areas showed stronger responses to coherent motion with the most significant activations found in V6, followed by MT/MST, V3A, IPS0-2 and SPL1. Hemispheric differences were negligible altogether suggesting that asymmetries in parietal cortex observed in cognitive tasks do not reflect differences in basic visual response properties. Interestingly, areas V6, MST, V3A, and areas along the intraparietal sulcus showed specific representations of coherent visual motion not only when presented in the hemifield primarily covered by the given visual representation but also when presented in the ipsilateral visual field. This finding suggests that coherent motion induces a switch in spatial representation in specialized motion areas from contralateral to full-field coding.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | | |
Collapse
|
17
|
Smith AT, Wall MB, Thilo KV. Vestibular inputs to human motion-sensitive visual cortex. ACTA ACUST UNITED AC 2011; 22:1068-77. [PMID: 21743097 DOI: 10.1093/cercor/bhr179] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Two crucial sources of information available to an organism when moving through an environment are visual and vestibular stimuli. Macaque cortical area MSTd processes visual motion, including cues to self-motion arising from optic flow and also receives information about self-motion from the vestibular system. In humans, whether human MST (hMST) receives vestibular afferents is unknown. We have combined 2 techniques, galvanic vestibular stimulation and functional MRI (fMRI), to show that hMST is strongly activated by vestibular stimulation in darkness, whereas adjacent area MT is unaffected. The activity cannot be explained in terms of somatosensory stimulation at the electrode site. Vestibular input appears to be confined to the anterior portion of hMST, suggesting that hMST as conventionally defined may contain 2 subregions. Vestibular activity was also seen in another area previously implicated in processing visual cues to self-motion, namely the cingulate sulcus visual area (CSv), but not in visual area V6. The results suggest that cross-modal convergence of cues to self-motion occurs in both hMST and CSv.
Collapse
Affiliation(s)
- Andrew T Smith
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | | | |
Collapse
|
18
|
Adjacent visual representations of self-motion in different reference frames. Proc Natl Acad Sci U S A 2011; 108:11668-73. [PMID: 21709244 DOI: 10.1073/pnas.1102984108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent investigations indicate that retinal motion is not directly available for perception when moving around [Souman JL, et al. (2010) J Vis 10:14], possibly pointing to suppression of retinal speed sensitivity in motion areas. Here, we investigated the distribution of retinocentric and head-centric representations of self-rotation in human lower-tier visual motion areas. Functional MRI responses were measured to a set of visual self-motion stimuli with different levels of simulated gaze and simulated head rotation. A parametric generalized linear model analysis of the blood oxygen level-dependent responses revealed subregions of accessory V3 area, V6(+) area, middle temporal area, and medial superior temporal area that were specifically modulated by the speed of the rotational flow relative to the eye and head. Pursuit signals, which link the two reference frames, were also identified in these areas. To our knowledge, these results are the first demonstration of multiple visual representations of self-motion in these areas. The existence of such adjacent representations points to early transformations of the reference frame for visual self-motion signals and a topography by visual reference frame in lower-order motion-sensitive areas. This suggests that visual decisions for action and perception may take into account retinal and head-centric motion signals according to task requirements.
Collapse
|
19
|
Abstract
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.
Collapse
Affiliation(s)
- Dwight J Kravitz
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
20
|
Williams AL, Smith AT. Representation of Eye Position in the Human Parietal Cortex. J Neurophysiol 2010; 104:2169-77. [DOI: 10.1152/jn.00713.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons that signal eye position are thought to make a vital contribution to distinguishing real world motion from retinal motion caused by eye movements, but relatively little is known about such neurons in the human brain. Here we present data from functional MRI experiments that are consistent with the existence of neurons sensitive to eye position in darkness in the human posterior parietal cortex. We used the enhanced sensitivity of multivoxel pattern analysis (MVPA) techniques, combined with a searchlight paradigm, to isolate brain regions sensitive to direction of gaze. During data acquisition, participants were cued to direct their gaze to the left or right for sustained periods as part of a block-design paradigm. Following the exclusion of saccade-related activity from the data, the multivariate analysis showed sensitivity to tonic eye position in two localized posterior parietal regions, namely the dorsal precuneus and, more weakly, the posterior aspect of the intraparietal sulcus. Sensitivity to eye position was also seen in anterior portions of the occipital cortex. The observed sensitivity of visual cortical neurons to eye position, even in the total absence of visual stimulation, is possibly a result of feedback from posterior parietal regions that receive eye position signals and explicitly encode direction of gaze.
Collapse
Affiliation(s)
| | - Andrew T. Smith
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
21
|
Abstract
Visual scene interpretation depends on assumptions based on the statistical regularities of the world. People have some preference for seeing ambiguously oriented objects (Necker cubes) as if tilted down or viewed from above. This bias is a near certainty in the first instant (∼1 s) of viewing and declines over the course of many seconds. In addition, we found that there is modulation of perceived orientation that varies with position—for example objects on the left are more likely to be interpreted as viewed from the right. Therefore there is both a viewed-from-above prior and a scene position-dependent modulation of perceived 3-D orientation. These results are consistent with the idea that ambiguously oriented objects are initially assigned an orientation consistent with our experience of an asymmetric world in which objects most probably sit on surfaces below eye level.
Collapse
Affiliation(s)
- Allan C Dobbins
- Department of Biomedical Engineering & Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | |
Collapse
|
22
|
Cardin V, Smith AT. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. ACTA ACUST UNITED AC 2009; 20:1964-73. [PMID: 20034998 DOI: 10.1093/cercor/bhp268] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The analysis and representation of visual cues to self-motion (egomotion) is primarily associated with cortical areas MST, VIP, and (recently) cingulate sulcus visual area (CSv). Various other areas, including visual areas V6 and V6A, and vestibular areas parietoinsular vestibular cortex (PIVC), putative area 2v (p2v), and 3aNv, are also potentially suited to processing egomotion (in some cases based on multisensory cues), but it is not known whether they are in fact involved in this process. In a functional magnetic resonance imaging (fMRI) experiment, we presented human participants with 2 types of random dot kinematograms. Both contained coherent motion but one simulated egomotion while the other did not. An area in the parieto-occipital sulcus that may correspond to V6, PIVC, and p2v were all differentially responsive to egomotion-compatible visual stimuli, suggesting that they may be involved in encoding egomotion. More generally, we show that the use of such stimuli provides a simple and reliable fMRI localizer for human PIVC and p2v, which hitherto required galvanic or caloric stimulation to be identified.
Collapse
Affiliation(s)
- Velia Cardin
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | | |
Collapse
|
23
|
Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C. Human v6: the medial motion area. Cereb Cortex 2009; 20:411-24. [PMID: 19502476 PMCID: PMC2803738 DOI: 10.1093/cercor/bhp112] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Cortical-surface-based functional Magnetic Resonance Imaging mapping techniques and wide-field retinotopic stimulation were used to verify the presence of pattern motion sensitivity in human area V6. Area V6 is highly selective for coherently moving fields of dots, both at individual and group levels and even with a visual stimulus of standard size. This stimulus is a functional localizer for V6. The wide retinotopic stimuli used here also revealed a retinotopic map in the middle temporal cortex (area MT/V5) surrounded by several polar-angle maps that resemble the mosaic of small areas found around macaque MT/V5. Our results suggest that the MT complex (MT+) may be specialized for the analysis of motion signals, whereas area V6 may be more involved in distinguishing object and self-motion.
Collapse
Affiliation(s)
- S Pitzalis
- Department of Education in Sport and Human Movement, University of Rome Foro Italico, 00194 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 2009; 29:4548-63. [PMID: 19357280 DOI: 10.1523/jneurosci.0529-09.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dorsomedial area (DM), a subdivision of extrastriate cortex characterized by heavy myelination and relative emphasis on peripheral vision, remains the least understood of the main targets of striate cortex (V1) projections in primates. Here we placed retrograde tracer injections encompassing the full extent of this area in marmoset monkeys, and performed quantitative analyses of the numerical strengths and laminar patterns of its afferent connections. We found that feedforward projections from V1 and from the second visual area (V2) account for over half of the inputs to DM, and that the vast majority of the remaining connections come from other topographically organized visual cortices. Extrastriate projections to DM originate in approximately equal proportions from adjacent medial occipitoparietal areas, from the superior temporal motion-sensitive complex centered on the middle temporal area (MT), and from ventral stream-associated areas. Feedback from the posterior parietal cortex and other association areas accounts for <10% of the connections. These results do not support the hypothesis that DM is specifically associated with a medial subcircuit of the dorsal stream, important for visuomotor integration. Instead, they suggest an early-stage visual-processing node capable of contributing across cortical streams, much as V1 and V2 do. Thus, although DM may be important for providing visual inputs for guided body movements (which often depend on information contained in peripheral vision), this area is also likely to participate in other functions that require integration across wide expanses of visual space, such as perception of self-motion and contour completion.
Collapse
|
25
|
von Pföstl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P. Motion sensitivity of human V6: A magnetoencephalography study. Neuroimage 2009; 45:1253-63. [DOI: 10.1016/j.neuroimage.2008.12.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/09/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022] Open
|
26
|
Ino T, Doi T, Hirose S, Kimura T, Ito J, Fukuyama H. Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies. Cortex 2007; 43:248-54. [PMID: 17405670 DOI: 10.1016/s0010-9452(08)70479-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a 55-year-old right-handed man who presented with topographical disorientation following left retrosplenial hemorrhage. His directional information about familiar places, encoded by previous navigation, was severely impaired, and he could not learn the direction to new places in large-scale spaces beyond the range of visual surveillance. By contrast, he had no difficulties with directional information encoded in a tabletop manner: he could locate major cities or countries on a map, and he also could memorize the spatial relationship of objects in a room. Six months after the ictus, when he had recovered from his directional disorientation, a functional magnetic resonance imaging (fMRI) study of mental navigation demonstrated prominent activation in the retrosplenial area along the right parieto-occipital sulcus and the circumference of the injured area on the left side. The present study, together with previous investigations including clinical case reports, functional neuroimaging, and anatomical and physiological studies on monkeys, suggests that the 'sense of direction' in a large-scale locomotor environment is subserved by the visual area along the parieto-occipital sulcus, and that bilateral deterioration of this function causes directional disorientation.
Collapse
Affiliation(s)
- Tadashi Ino
- Department of Neurology, Rakuwakai-Otowa Hospital, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Castelo-Branco M, Mendes M, Silva MF, Januário C, Machado E, Pinto A, Figueiredo P, Freire A. Specific retinotopically based magnocellular impairment in a patient with medial visual dorsal stream damage. Neuropsychologia 2006; 44:238-53. [PMID: 16005479 DOI: 10.1016/j.neuropsychologia.2005.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/21/2022]
Abstract
We report here retinotopically based magnocellular deficits in a patient with a unilateral parieto-occipital lesion. We applied convergent methodologies to study his dorsal stream processing, using psychophysics as well as structural and functional imaging. Using standard perimetry we found deficits involving the periphery of the left inferior quadrant abutting the horizontal meridian, suggesting damage of dorsal retinotopic representations beyond V1. Retinotopic damage was much more extensive when probed with frequency-doubling based contrast sensitivity measurements, which isolate processing within the magnocellular pathway: sensitivity losses now encroached on the visual central representation and did not respect the horizontal meridian, suggesting further damage to dorsal stream retinotopic areas that contain full hemi-field representations, such as human V3A or V6. Functional imaging revealed normal responses of human MT+ to motion contrast. Taken together, these findings are consistent with a recent proposal of two distinct magnocellular dorsal stream pathways: a latero-dorsal pathway passing to MT+ and concerned with the processing of coherent motion, and a medio-dorsal pathway that routes information from V3A to the human homologue of V6. Anatomical evidence was consistent with sparing of the latero-dorsal pathway in our patient, and was corroborated by his normal performance in speed, direction discrimination and motion coherence tasks with 2D and 3D objects. His pattern of dysfunction suggests damage only to the medio-dorsal pathway, an inference that is consistent with structural imaging data, which revealed a lesion encompassing the right parieto-occipital sulcus.
Collapse
Affiliation(s)
- Miguel Castelo-Branco
- Department of Biophysics and Center for Ophthalmology, IBILI-Faculty of Medicine, Az. de Sta Comba, 3000-354 Coimbra, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang M, Mariola E, Stilla R, Stoesz M, Mao H, Hu X, Sathian K. Tactile discrimination of grating orientation: fMRI activation patterns. Hum Brain Mapp 2005; 25:370-7. [PMID: 15852384 PMCID: PMC6871710 DOI: 10.1002/hbm.20107] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Grating orientation discrimination is employed widely to test tactile spatial acuity. We used functional magnetic resonance imaging (fMRI) to investigate the neural circuitry underlying performance of this task. Two studies were carried out. In the first study, an extensive set of parietal and frontal cortical areas was activated during covert task performance, relative to a rest baseline. The active regions included the postcentral sulcus bilaterally and foci in the left parietal operculum, left anterior intraparietal sulcus, and bilateral premotor and prefrontal cortex. The second study examined selective recruitment of cortical areas during discrimination of grating orientation (a task with a macrospatial component) compared to discrimination of grating spacing (a purely microspatial task). The foci activated on this contrast were in the left anterior intraparietal sulcus, right postcentral sulcus and gyrus, left parieto-occipital cortex, bilateral frontal eye fields, and bilateral ventral premotor cortex. These findings not only confirm and extend previous studies of the neural processing underlying grating orientation discrimination, but also demonstrate that a distributed network of putatively multisensory areas is involved.
Collapse
Affiliation(s)
- Minming Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
- Department of Radiology, The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Erica Mariola
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Randall Stilla
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark Stoesz
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
- Present address:
MR Product Applications, Philips Medical Systems, Cleveland, Ohio
| | - Hui Mao
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaoping Hu
- Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia
| | - K. Sathian
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
29
|
Bristow D, Frith C, Rees G. Two distinct neural effects of blinking on human visual processing. Neuroimage 2005; 27:136-45. [PMID: 15893941 DOI: 10.1016/j.neuroimage.2005.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 02/07/2005] [Accepted: 03/28/2005] [Indexed: 11/23/2022] Open
Abstract
Humans blink every few seconds, yet the changes in retinal illumination during a blink are rarely noticed, perhaps because visual sensitivity is suppressed. Furthermore, despite the loss of visual input, visual experience remains continuous across blinks. The neural mechanisms in humans underlying these two phenomena of blink suppression and visual continuity are unknown. We investigated the neural basis of these two complementary behavioural effects using functional magnetic resonance imaging to measure how voluntary blinking affected cortical responses to visual stimulation. Two factors were independently manipulated in a blocked design; the presence/absence of voluntary blinking, and the presence/absence of visual stimulation. To control for the simple loss of visual input caused by eyelid closure, we created a fifth condition where external darkenings were dynamically matched to each subjects' own blinks. Areas of lateral occipital cortex, including area V5/MT, showed suppression of responses to visual stimulation during blinking, consistent with the known loss in visual sensitivity. In contrast, a medial parieto-occipital region, homologous to macaque area V6A, showed responses to blinks that increased when visual stimulation was present. Our data are consistent with a role for this region in the active maintenance of visual continuity across blinks. Moreover, both suppression in lateral occipital and activation in medial parieto-occipital cortex were greater during blinks than during matched external darkenings of the visual scene, suggesting that they result from an extra-retinal signal associated with the blink motor command. Our findings therefore suggest two distinct neural correlates of blinking on human visual processing.
Collapse
Affiliation(s)
- Davina Bristow
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
30
|
Lui LL, Bourne JA, Rosa MGP. Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). ACTA ACUST UNITED AC 2005; 16:162-77. [PMID: 15858163 DOI: 10.1093/cercor/bhi094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The dorsomedial visual area (DM), a subdivision of extrastriate cortex located near the dorsal midline, is characterized by heavy myelination and a relative emphasis on peripheral vision. To date, DM remains the least understood of the three primary targets of projections from the striate cortex (V1) in New World monkeys. Here, we characterize the responses of DM neurons in anaesthetized marmosets to drifting sine wave gratings. Most (82.4%) cells showed bidirectional sensitivity, with only 6.9% being strongly direction selective. The distribution of orientation sensitivity was bimodal, with a distinct population (corresponding to over half of the sample) formed by neurons with very narrow selectivity. When compared with a sample of V1 units representing a comparable range of eccentricities, DM cells revealed a preference for much lower spatial frequencies, and higher speeds. End inhibition was extremely rare, and the responses of many cells summated over distances as large as 30 degrees. Our results suggest clear differences between DM and the two other main targets of V1 projections, the second (V2) and middle temporal (MT) areas, with cells in DM emphasizing aspects of visual information that are likely to be relevant for motor control.
Collapse
Affiliation(s)
- Leo L Lui
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
31
|
Sathian K. Visual cortical activity during tactile perception in the sighted and the visually deprived. Dev Psychobiol 2005; 46:279-86. [PMID: 15772968 DOI: 10.1002/dev.20056] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article reviews studies demonstrating activity in visual cortex during tactile perception in sighted participants as well as in those who have experienced visual deprivation of varying duration. This field has been very active over the last few years, with the result that a number of exciting findings have emerged, but a unifying framework is still lacking. The first section of this article deals with investigations revealing that visual cortical activity is regularly associated with the neural processing of tactile inputs in normally sighted individuals. Next, the possible reasons underlying such visual cortical recruitment are considered. The focus then shifts to the effects of visual deprivation, examining the involvement of visual cortex in sensory and language processing in the early and late blind. The final section gives an account of studies suggesting that a remarkable degree of plasticity can be observed even after quite short-lasting visual deprivation. Overall, it appears that the nature of visual cortical activity during nonvisual tasks in the sighted can be influenced by late-onset blindness and even by brief interruptions of visual input; however, the relevant neural plasticity seems to considerably more exuberant if vision is lost very early in life or was never present, which suggests that there is a critical period for the maximal expression of such plasticity.
Collapse
Affiliation(s)
- K Sathian
- Departments of Neurology and Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
32
|
Vanni S, Dojat M, Warnking J, Delon-Martin C, Segebarth C, Bullier J. Timing of interactions across the visual field in the human cortex. Neuroimage 2004; 21:818-28. [PMID: 15006648 DOI: 10.1016/j.neuroimage.2003.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Revised: 10/30/2003] [Accepted: 10/31/2003] [Indexed: 11/25/2022] Open
Abstract
While it is generally believed that interactions across long distances in the visual field occur only in the higher-order cortical areas, other results suggest that such interactions are processed very early. In the preceding paper, we identified the latencies within a subset of cortical areas in the human visual system. In the present study, we test in which areas and at which latencies the responses to two visual patterns start interacting. We used functional magnetic resonance imaging directly combined with visual-evoked potential source analysis. Interactions appeared first anterolaterally to the retinotopic areas, at 80 ms for two stimuli presented in the left lower visual quadrant and at 100 ms for symmetrical stimulation of both lower quadrants. In the lateral occipital-V5 region (LOV5), two patterns presented simultaneously in one quadrant elicited a response with shorter latency and infra-linear addition of the amplitudes compared with the patterns presented separately. For bilateral stimulation, the timing of the LOV5 response coincided with the response to contralateral stimulation alone. Other visual areas showed interactions appearing later than within LOV5: starting at 150 ms in V1, at 120 ms in V3-V3a for the left visual hemifield stimulation and at 160 ms for both visual hemifields stimulation. Our data show that distinct patterns in the visual field interact first in LOV5, suggesting that this region must be the first to pool spatial information across the whole visual field.
Collapse
Affiliation(s)
- S Vanni
- Centre de Recherche Cerveau et Cognition, CNRS-Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
33
|
Roy AC, Stefanini S, Pavesi G, Gentilucci M. Early movement impairments in a patient recovering from optic ataxia. Neuropsychologia 2004; 42:847-54. [PMID: 14998700 DOI: 10.1016/j.neuropsychologia.2003.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 11/19/2022]
Abstract
Since Balint's first description, optic ataxia has been considered as a pure visuomotor impairment produced by a lesion of the posterior parietal cortex. Beyond general agreement on the parietal involvement in visually guided behaviour, the exact role of the dorsal posterior parietal cortex in the temporal aspects of visuomotor control remains unclear. Recent evidence has indicated a specific involvement of the parietal cortex in the on-line visual guidance of movement. Here, we report the motor performance of, GT, a patient recovering from an optic ataxia due to a right focal lesion of the dorsal posterior parietal cortex. When asked to reach and grasp, with his left contralesional hand, different sized objects, located at different positions from his body, GT showed an apparently complete recovery from optic ataxia. However, the early kinematic aspects of GTs prehension movement were not normally tuned either by intrinsic or extrinsic visual properties of objects. At variance with both an age-matched control group and a neurological patient with a right internal capsule lesion and no sign of optic ataxia, GTs latencies to peak wrist acceleration and peak velocity were not modulated by object location. A similar defective pattern was present in GTs grasping component where, despite the sparing of the classical scaling of grip aperture, object size did not modulate the peak velocity of grip aperture. These results constitute evidence that the posterior region of the dorsal parietal cortex, besides playing a role in the on-line control of movement execution may also be involved in the programming of early kinematics parameters.
Collapse
Affiliation(s)
- Alice C Roy
- Dipartimento di Neuroscienze, Sezione di Fisiologia e Sezione di Neurologia, Università di Parma, via Volturno 39, Parma, Italy.
| | | | | | | |
Collapse
|
34
|
Abstract
The visual system cannot rely only upon information from the retina to perceive object motion because identical retinal stimulations can be evoked by the movement of objects in the field of view as well as by the movements of retinal images self-evoked by eye movements. We clearly distinguish the two situations, perceiving object motion in the first case and stationarity in the second. The present work deals with the neuronal mechanisms that are likely involved in the detection of real motion. In monkeys, cells that are able to distinguish real from self-induced motion (real-motion cells) are distributed in several cortical areas of the dorsal visual stream. We suggest that the activity of these cells is responsible for motion perception, and hypothesize that these cells are the elements of a cortical network representing an internal map of a stable visual world. Supporting this view are the facts that: (i) the same cortical regions in humans are activated in brain imaging studies during perception of object motion; and (ii) lesions of these same regions produce selective impairments in motion detection, so that patients interpret any retinal image motion as object motion, even when they result from her/his eye movements. Among the areas of the dorsal visual stream rich in real-motion cells, V3A and V6, likely involved in the fast form and motion analyses needed for visual guidance of action, could use real-motion signals to orient the animal's attention towards moving objects, and/or to help grasping them. Areas MT/V5, MST and 7a, known to be involved in the control of pursuit eye movements and in the analysis of visual signals evoked by slow ocular movements, could use real-motion signals to give a proper evaluation of motion during pursuits.
Collapse
Affiliation(s)
- Claudio Galletti
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, I-40127 Bologna, Italy.
| | | |
Collapse
|
35
|
Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P. Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 2003; 153:158-70. [PMID: 14517595 DOI: 10.1007/s00221-003-1589-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The medial parieto-occipital cortex is a central node in the dorsomedial visual stream. Recent physiological studies in the macaque monkey have demonstrated that the medial parieto-occipital cortex contains two areas, the visual area V6 and the visuomotor area V6A. Area V6 is a retinotopically organized visual area that receives form and motion information directly from V1 and is heavily connected with the other areas of the dorsal visual stream, including V6A. Area V6A is a bimodal visual/somatosensory area that elaborates visual information such as form, motion and space suitable for the control of both reaching and grasping movements. Somatosensory and skeletomotor activities in V6A affect the upper limbs and involve both the transport phase of reaching and grasping movements. Finally, V6A is strongly and reciprocally connected with the dorsal premotor cortex controlling arm movements. The picture emerging from these data is that the medial parieto-occipital cortex is well equipped to control both proximal and distal movements in the online visuomotor guidance of prehension. In agreement with this view, selective V6A lesions in monkey produce misreaching and misgrasping with the arm contralateral to the lesion in visually guided movements. These deficits are similar to those observed in optic ataxia patients and suggest that human and monkey superior parietal lobules are homologous structures, and that optic ataxia syndrome is the result of the lesion of a 'human' area V6A.
Collapse
Affiliation(s)
- Claudio Galletti
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, 40127 Bologna, Italy.
| | | | | | | | | |
Collapse
|
36
|
Dechent P, Frahm J. Characterization of the human visual V6 complex by functional magnetic resonance imaging. Eur J Neurosci 2003; 17:2201-11. [PMID: 12786987 DOI: 10.1046/j.1460-9568.2003.02645.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnetoencephalography of a visual area along the human parieto-occipital sulcus suggested that this region represents the human homologue of the monkey visual area V6 complex (visual area V6/visuomotor area V6A) involved in the integration of visual and somatomotor information. We used functional magnetic resonance imaging at 2.0 T and 2 x 2 x 3 mm3 resolution (16 sections) to characterize visual areas along the parieto-occipital sulcus in five healthy human subjects. Paradigms comprised a full-field checkerboard stimulation, a full-field luminance flicker as well as a foveal and peripheral luminance flicker using both a direct and differential design for comparing functional states. Along the parieto-occipital sulcus, and in contrast to primary visual areas, luminance stimulation evoked much larger activation volumes than checkerboard stimulation. Moreover, based on anatomic landmarks, luminance stimulation identified two functionally distinct regions of parieto-occipital sulcus activations: an inferior part (supposedly visual area V6) and a superior portion (supposedly visuomotor area V6A). With these assignments, foveal vs. peripheral luminance stimulation revealed a weaker foveal overrepresentation in visual area V6/visuomotor area V6A than in early visual areas, and only a mild tendency for a retinotopic organization in visual area V6. Further analyses of the functional coding of the human visual area V6 complex require functional magnetic resonance imaging at even higher spatial resolution.
Collapse
Affiliation(s)
- Peter Dechent
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| | | |
Collapse
|
37
|
Kutz DF, Fattori P, Gamberini M, Breveglieri R, Galletti C. Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Exp Brain Res 2003; 149:83-95. [PMID: 12592506 DOI: 10.1007/s00221-002-1337-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Accepted: 10/29/2002] [Indexed: 10/20/2022]
Abstract
The cortical area V6A, located in the dorsal part of the anterior bank of the parieto-occipital sulcus, contains retino- and craniocentric visual neurones together with neurones sensitive to gaze direction and/or saccadic eye movements, somatosensory stimulation and arm movements. The aim of this work was to study the dynamic characteristics of V6A saccade-related activity. Extracellular recordings were carried out in six macaque monkeys performing a visually guided saccade task with the head restrained. The task was performed in the dark, in both the dark and light, and sometimes in the light only. The discharge of certain neurones during saccades is due to their responsiveness to visual stimuli. We used a statistical method to distinguish responses due to visual stimulation from those responsible for saccadic control. Out of 597 V6A neurones tested, 66 (11%) showed responses correlated with saccades; 26 of 66 responded also to visual stimulation and 31 of 66 did not; the remaining 9 were not visually tested. We calculated the response latency to saccade onset and its inter-trial variance in 24 of 66 neurones. Saccade neurones could respond before, during or after the saccade. Neurones responding before saccade-onset or during saccades had much higher latency variance than neurones responding after saccades. The early-responding cells had a mean latency (+/-SD) of -64+/-62 ms, while the late-responding cells a mean latency of +89+/-20 ms. The responses to saccadic eye movements were directionally sensitive and varied with the amplitude of the saccade. Responses of late-responding cells disappeared in complete darkness. We suggest that the activity of early-responding cells represents the intended saccadic eye movement or the shift of attention towards another part of the visual space, whereas that of late-responding cells is a visual response due to retinal stimulation during saccades.
Collapse
Affiliation(s)
- D F Kutz
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Piazza Porta San Donato 2, 40127, Bologna, Italy.
| | | | | | | | | |
Collapse
|
38
|
Sathian K, Zangaladze A. Feeling with the mind's eye: contribution of visual cortex to tactile perception. Behav Brain Res 2002; 135:127-32. [PMID: 12356442 DOI: 10.1016/s0166-4328(02)00141-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Visual imagery is implicated in the normal tactile perception of certain object properties. This is an example of cross-modal interactions that characterize normal perception. Here we review recent studies from our laboratory on cross-modal interactions between vision and touch in normally sighted humans. Positron emission tomography was used to demonstrate activation of a region of extrastriate visual cortex, near the parieto-occipital fissure, during tactile discrimination of grating orientation. Transcranial magnetic stimulation (TMS) over this region interfered with performance of this tactile task. In both studies, visual cortical involvement was found for tactile discrimination of orientation but not spatial frequency. Thus, this cortical region is not only active during but also necessary for optimal tactile sensing of orientation. Recent findings implicating visual cortex in Braille-reading in the blind should be evaluated from this perspective.
Collapse
Affiliation(s)
- K Sathian
- Department of Neurology, Emory University School of Medicine, WMRB 6000, PO Drawer V, Atlanta, GA 30322, USA.
| | | |
Collapse
|
39
|
Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett 2002; 322:182-6. [PMID: 11897168 DOI: 10.1016/s0304-3940(02)00019-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the brain regions which were activated during mental navigation; functional magnetic resonance imaging was performed in 16 right-handed male volunteers. The anterior bank of the parieto-occipital sulcus (APO) was strongly activated in all 16 subjects examined. In group study, the retrosplenial area, the bilateral angular gyrus/occipital cortex junction, the left superior premotor area, the right parahippocampal gyrus, and the right cerebellum were activated commonly across 16 subjects. The APO region activated during mental navigation appeared to be equivalent to the visual area V6A in monkeys and to subserve egocentric spatial processes.
Collapse
Affiliation(s)
- Tadashi Ino
- Department of Neurology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Matin L, Li W. Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL). Vision Res 2001; 41:2845-72. [PMID: 11701180 DOI: 10.1016/s0042-6989(01)00150-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An individual line or a combination of lines viewed in darkness has a large influence on the elevation to which an observer sets a target so that it is perceived to lie at eye level (VPEL). These influences are systematically related to the orientation of pitched-from-vertical lines on pitched plane(s) and to the lengths of the lines, as well as to the orientations of lines of 'equivalent pitch' that lie on frontoparallel planes. A three-stage model processes the visual influence: The first stage parallel processes the orientations of the lines utilizing 2 classes of orientation-sensitive neural units in each hemisphere, with the two classes sensitive to opposing ranges of orientations; the signal delivered by each class is of opposite sign in the two hemispheres. The second stage generates the total visual influence from the parallel combination of inputs delivered by the 4 groups of the first stage, and a third stage combines the total visual influence from the second stage with signals from the body-referenced mechanism that contains information about the position and orientation of the eyes, head, and body. The circuit equation describing the combined influence of n separate inputs from stage 1 on the output of the stage 2 integrating neuron is derived for n stimulus lines which possess any combination of orientations and lengths; Each of the n lines is assumed to stimulate one of the groups of orientation-sensitive units in visual cortex (stage 1) whose signals converge on to a dendrite of the integrating neuron (stage 2), and to produce changes in postsynaptic membrane conductance (g(i)) and potential (V(i)) there. The net current from the n dendrites results in a voltage change (V(A)) at the initial segment of the axon of the integrating neuron. Nerve impulse frequency proportional to this voltage change signals the total visual influence on perceived elevation of the visual field. The circuit equation corresponding to the total visual influence for n equal length inducing lines is V(A)= sum V(i)/[n+(g(A)/g(S))], where the potential change due to line i, V(i), is proportional to line orientation, g(A) is the conductance at the axon's summing point, and g(S)=g(i) for each i for the equal length case; the net conductance change due to a line is proportional to the line's length. The circuit equation is interpreted as a basis for quantitative predictions from the model that can be compared to psychophysical measurements of the elevation of VPEL. The interpretation provides the predicted relation for the visual influence on VPEL, V, by n inducing lines each with length l: thus, V=a+[k(i) sum theta(i)/n+(k(2)/l)], where theta(i) is the orientation of line i, a is the effect of the body-referenced mechanism, and k(1) and k(2) are constants. The model's output is fitted to the results of five sets of experiments in which the elevation of VPEL measured with a small target in the median plane is systematically influenced by distantly located 1-line or 2-line inducing stimuli varying in orientation and length and viewed in otherwise total darkness with gaze restricted to the median plane; each line is located at either 25 degrees eccentricity to the left or right of the median plane. The model predicts the negatively accelerated growth of VPEL with line length for each orientation and the change of slope constant of the linear combination rule among lines from 1.00 (linear summation; short lines) to 0.61 (near-averaging; long lines). Fits to the data are obtained over a range of orientations from -30 degrees to +30 degrees of pitch for 1-line visual fields from lengths of 3 degrees to 64 degrees, for parallel 2-line visual fields over the same range of lengths and orientations, for short and long 2-line combinations in which each of the two members may have any orientation (parallel or nonparallel pairs), and for the well-illuminated and fully structured pitchroom. In addition, similar experiments with 2-line stimuli of equivalent pitch in the frontoparallel plane were also fitted to the model. The model accounts for more than 98% of the variance of the results in each case.
Collapse
Affiliation(s)
- L Matin
- Clarence H. Graham Memorial Laboratory of Visual Science, Department of Psychology, Columbia University, New York, NY 1027, USA.
| | | |
Collapse
|
41
|
Fattori P, Gamberini M, Kutz DF, Galletti C. 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. Eur J Neurosci 2001; 13:2309-13. [PMID: 11454035 DOI: 10.1046/j.0953-816x.2001.01618.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous experiments we have found that several cells of area V6A in the macaque superior parietal lobule were activated by small and stereotyped movements of the arms (C. Galletti, P. Fattori, D. F. Kutz & P. P. Battaglini, Eur. J. Neurosci., 1997, 9, 410). This behaviour was not accounted for by retinal information, nor by somatosensory inputs from the arms. We now want to investigate whether V6A neurons are modulated by purposeful movements aimed at reaching visual targets or targets located outside the field of view. V6A neuronal activity was collected while monkeys performed arm movements during an instructed-delay reaching task in darkness. The task required the animal to reach out for a visual target in the peripersonal space and to bring the hand back to its body. Quantitative analysis of neuronal activity carried out on 55 V6A neurons showed that: (i) the great majority of neurons (71%) was significantly modulated during the execution of arm movements; (ii) 30% of neurons were significantly modulated during preparation of reaching; and (iii) modulations during both execution and preparation of reaching occurred in the absence of any visual feedback and were not due to eye movements. V6A reach-related neurons could be useful in guiding the hand to reach its target with or without visual feedback.
Collapse
Affiliation(s)
- P Fattori
- Dipartimento di Fisiologia umana e generale, Università di Bologna, Piazza di Porta S. Donato 2, 40127, Bologna, Italy.
| | | | | | | |
Collapse
|
42
|
Sathian K, Zangaladze A. Feeling with the mind's eye: the role of visual imagery in tactile perception. Optom Vis Sci 2001; 78:276-81. [PMID: 11384004 DOI: 10.1097/00006324-200105000-00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cross-modal interactions are characteristic of normal perception. In this article, we discuss our work on cross-modal interactions between touch and vision in normally sighted humans. A region of extrastriate visual cortex, near the parieto-occipital fissure, is not only active during but also necessary for tactile discrimination of grating orientation (but not spatial frequency). This is consistent with a role for visual imagery in certain aspects of tactile perception. These findings have implications for the interpretation of visual cortical involvement in Braille reading by the blind.
Collapse
Affiliation(s)
- K Sathian
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
43
|
Abstract
This paper describes a neural network model that directs saccades back to targets after they disappear and other saccades intervene. This is a simple example of knowing where something is after it is no longer visible and the observer has moved. These tasks require a short-term memory that can store continuous values of spatial location. The model was generated by training a neural network with a recurrently connected hidden layer to specify memory-guided saccades. The trained network maintains stored locations accurately for a few seconds. It uses a leaky integrator mechanism in which there is a slow decay of the stored value to a small number of fixed point attractors. Similar mechanisms have been used to model oculomotor integration (Cannon, S., Robinson, D., & Shamma, S. (1983). A proposed neural network for the integrator of the oculomotor system. Biological Cybernetics, 49, 127-136; Seung, H. (1998). Continuous attractors and oculomotor control. Neural Networks, 11, 1253-1258). The mechanism is robust to parameters such as the input and output format and the constraints in training. However, the receptive field properties of the hidden units do depend on these parameters. It was possible to find biologically plausible parameters that produced hidden unit behavior similar to that of real neurons involved in saccade memory. In particular, training the model to simultaneously represent the target location in both eye- and head-based reference frames produces units similar to neurons in parietal saccade areas.
Collapse
Affiliation(s)
- J Mitchell
- Cognitive Science, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0515, USA.
| | | |
Collapse
|
44
|
Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 2001; 13:1572-88. [PMID: 11328351 DOI: 10.1046/j.0953-816x.2001.01538.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to study the cortical connections of area V6 by injecting neuronal tracers into different retinotopic representations of this area. To this purpose, we first functionally recognized V6 by recording from neurons of the parieto-occipital cortex in awake macaque monkeys. Penetrations with recording syringes were performed in the behaving animals in order to inject tracers exactly at the recording sites. The tracers were injected into the central or peripheral field representation of V6 in different hemispheres. Irrespective of whether injections were made in the centre or periphery, area V6 showed reciprocal connections with areas V1, V2, V3, V3A, V4T, the middle temporal area /V5 (MT/V5), the medial superior temporal area (MST), the medial intraparietal area (MIP), the ventral intraparietal area (VIP), the ventral part of the lateral intraparietal area and the ventral part of area V6A (V6AV). No labelled cells or terminals were found in the inferior temporal, mesial and frontal cortices. The connections of V6 with V1, and with all the retinotopically organized prestriate areas, were organized retinotopically. The connection of V6 with MIP suggests a visuotopic organization for this latter. Labelling in V6A and VIP after either central or peripheral V6 injections was very similar in location and extent, as expected on the basis of the nonretinotopic organization of these areas. We suggest that V6 plays a pivotal role in the dorsal visual stream, by distributing the visual information coming from the occipital lobe to the sensorimotor areas of the parietal cortex. Given the functional characteristics of the cells of this network, we suggest that it could perform the fast form and motion analyses needed for the visual guiding of arm movements as well as their coordination with the eyes and the head.
Collapse
Affiliation(s)
- C Galletti
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, I-40127 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Battaglia-Mayer A, Ferraina S, Mitsuda T, Marconi B, Genovesio A, Onorati P, Lacquaniti F, Caminiti R. Early coding of reaching in the parietooccipital cortex. J Neurophysiol 2000; 83:2374-91. [PMID: 10758140 DOI: 10.1152/jn.2000.83.4.2374] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural activity was recorded in the parietooccipital cortex while monkeys performed different tasks aimed at investigating visuomotor interactions of retinal, eye, and arm-related signals on neural activity. The tasks were arm reaching 1) to foveated targets; 2) to extrafoveal targets, with constant eye position; 3) within an instructed-delayed paradigm, under both light and darkness; 4) saccadic eye movements toward, and static eye holding on peripheral targets; and 5) visual fixation and stimulation. The activity of many cells was modulated during arm reaction (68%) and movement time (58%), and during static holding of the arm in space (64%), when eye position was kept constant. Eye position influenced the activity of many cells during hand reaction (45%) and movement time (51%) and holding of hand static position (69%). Many cells (56%) were also modulated during preparation for hand movement, in the delayed reach task. Modulation was present also in the dark in 59% of cells during this epoch, 51% during reaction and movement time, and 48% during eye/hand holding on the target. Cells (50%) displaying light-dark differences of activity were considered as related to the sight and monitoring of hand motion and/or position in the visual field. Saccadic eye movements modulated a smaller percentage (25%) of cells than eye position (68%). Visual receptive fields were mapped in 44% of the cells studied. They were generally large and extended to the periphery of the tested (30 degrees ) visual field. Sixty-six percent of cells were motion sensitive. Therefore the activity of many neurons in this area reflects the combined influence of visual, eye, and arm movement-related signals. For most neurons, the orientation of the preferred directions computed across different epochs and tasks, therefore expression of all different eye- and hand-related activity types, clustered within a limited sector of space, the field of global tuning. These spatial fields might be an ideal frame to combine eye and hand signals, thanks to the congruence of their tuning properties. The relationships between cell activity and oculomotor and visuomanual behavior were task dependent. During saccades, most cells were recruited when the eye moved to a spatial location that was also target for hand movement, whereas during hand movement most cells fired depending on whether or not the animal had prior knowledge about the location of the visual targets.
Collapse
Affiliation(s)
- A Battaglia-Mayer
- Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma 'la Sapienza,' 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Grant AC, Thiagarajah MC, Sathian K. Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. PERCEPTION & PSYCHOPHYSICS 2000; 62:301-12. [PMID: 10723209 DOI: 10.3758/bf03205550] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is not clear whether the blind are generally superior to the sighted on measures of tactile sensitivity or whether they excel only on certain tests owing to the specifics of their tactile experience. We compared the discrimination performance of blind Braille readers and age-matched sighted subjects on three tactile tasks using precisely specified stimuli. Initially, the blind significantly outperformed the sighted at a hyperacuity task using Braille-like dot patterns, although, with practice, both groups performed equally well. On two other tasks, hyperacute discrimination of gratings that differed in ridge width and spatial-acuity-dependent discrimination of grating orientation, the performance of the blind did not differ significantly from that of sighted subjects. These results probably reflect the specificity of perceptual learning due to Braille-reading experience.
Collapse
Affiliation(s)
- A C Grant
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
47
|
Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 1999; 8:209-25. [PMID: 10619415 PMCID: PMC6873313 DOI: 10.1002/(sici)1097-0193(1999)8:4<209::aid-hbm5>3.0.co;2-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
High-field (3 Tesla) functional magnetic resonance imaging (MRI) was used to investigate the cortical circuitry subserving pursuit tracking in humans and compare it to that for saccadic eye movements. Pursuit performance, relative to visual fixation, elicited activation in three areas known to contribute to eye movements in humans and in nonhuman primates: the frontal eye field, supplementary eye field, and intraparietal sulcus. It also activated three medial regions not previously identified in human neuroimaging studies of pursuit: the precuneus and the anterior and posterior cingulate cortices. All six areas were also activated during saccades. The spatial extent of activation was similar for saccades and pursuit in all but two regions: spatial extent was greater for saccades in the superior branch of the frontal eye field and greater for pursuit in posterior cingulate cortex. This set of activations for smooth pursuit parallels the network of oculomotor areas characterized in nonhuman primates and complements recent studies showing that common cortical networks subserve oculomotor functions and spatial attention in humans.
Collapse
Affiliation(s)
- R A Berman
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Galletti C, Fattori P, Gamberini M, Kutz DF. The cortical visual area V6: brain location and visual topography. Eur J Neurosci 1999; 11:3922-36. [PMID: 10583481 DOI: 10.1046/j.1460-9568.1999.00817.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The brain location and topographical organization of the cortical visual area V6 was studied in five hemispheres of four awake macaque monkeys. Area V6 is located in the caudal aspect of the superior parietal lobule (SPL). It occupies a 'C'-shaped belt of cortex whose upper branch is in the depth of the parieto-occipital sulcus (POS) and lower one is in the depth of the medial parieto-occipital sulcus (POM), with the medial surface of the brain as a zone of junction between the two branches. Area V6 contains a topographically organized representation of the contralateral visual field up to an eccentricity of at least 80 degrees. The lower visual field representation is located dorsally, in the ventral part of POS, and the upper field ventrally, in the dorsal wall of POM. The representation of the horizontal meridian forms the posterior border of V6. It is adjacent to area V3 in POS as well as in the caudal part of POM, on the ventral convexity of the brain. The lower vertical meridian forms the anterior border of V6, adjacent to area V6A. The upper vertical meridian is in the depth of POM. The representation of the central visual field is not magnified relative to that of the periphery. The central visual field (below 20-30 degrees of eccentricity) is represented in the medial-most aspect of the annectant gyrus, in the lateral part of the posterior bank of POS. The visuotopic organization of area V6 suggests a role in the analysis of the flow field resulting from self-motion, in selecting targets during visual searching as well as in the control of arm-reaching movements towards non-foveated targets.
Collapse
Affiliation(s)
- C Galletti
- Dipartimento di Fisiologia umana e generale, Universita di Bologna, Piazza di Porta S. Donato 2, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|
49
|
Zangaladze A, Epstein CM, Grafton ST, Sathian K. Involvement of visual cortex in tactile discrimination of orientation. Nature 1999; 401:587-90. [PMID: 10524625 DOI: 10.1038/44139] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary sense modalities (vision, touch and so on) are generally thought of as distinct. However, visual imagery is implicated in the normal tactile perception of some object properties, such as orientation, shape and size. Furthermore, certain tactile tasks, such as discrimination of grating orientation and object recognition, are associated with activity in areas of visual cortex. Here we show that disrupting function of the occipital cortex using focal transcranial magnetic stimulation (TMS) interferes with the tactile discrimination of grating orientation. The specificity of this effect is illustrated by its time course and spatial restriction over the scalp, and by the failure of occipital TMS to affect either detection of an electrical stimulus applied to the fingerpad or tactile discrimination of grating texture. In contrast, TMS over the somatosensory cortex blocked discrimination of grating texture as well as orientation. We also report that, during tactile discrimination of grating orientation, an evoked potential is recorded over posterior scalp regions with a latency corresponding to the peak of the TMS interference effect (about 180 ms). The findings indicate that visual cortex is closely involved in tactile discrimination of orientation. To our knowledge, this is the first demonstration that visual cortical processing is necessary for normal tactile perception.
Collapse
Affiliation(s)
- A Zangaladze
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
50
|
Grant AC, Zangaladze A, Thiagarajah MC, Sathian K. Tactile perception in developmental dyslexia: a psychophysical study using gratings. Neuropsychologia 1999; 37:1201-11. [PMID: 10509841 DOI: 10.1016/s0028-3932(99)00013-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple sensory abnormalities have been reported in individuals with developmental dyslexia, especially in the visual and auditory systems. We used gratings of alternating ridges and grooves to investigate tactile perception in this disorder using two tasks: spatial acuity-dependent discrimination of grating orientation and discrimination of gratings varying in ridge width. Compared to age-matched normal subjects, dyslexics were significantly impaired on grating orientation discrimination, with mean thresholds that were nearly twice normal. Unlike normal subjects, their performance on this task was slightly but significantly worse on the dominant hand than on the non-dominant hand. Dyslexics also showed a substantial but non-significant trend for impairment on grating ridge width discrimination. A group of subjects with attention deficit disorder did not differ significantly from normal on any of these measures. These findings expand the range of perceptual deficits reported in developmental dyslexia. Possible explanations for the results, including difficulties with temporal processing, abnormal lateral masking or parietal lobe dysfunction are discussed.
Collapse
Affiliation(s)
- A C Grant
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|