1
|
Yuan Y, Kan H, Fang Q, Chen F, Finkel MS. CXCR4 Receptor Antagonist Blocks Cardiac Myocyte P38 MAP Kinase Phosphorylation by HIV gp120. Cardiovasc Toxicol 2008; 8:173-80. [DOI: 10.1007/s12012-008-9026-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/23/2008] [Indexed: 11/28/2022]
|
2
|
Abstract
Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated macrophages/microglia, the very cells that are prominent in the pathogenesis of ADC. This review examines QUIN's involvement in the features of ADC and its role in pathogenesis. We then synthesize these findings into a hypothetical model for the role played by QUIN in ADC, and discuss the implications of this model for ADC and other inflammatory brain diseases.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | | | | |
Collapse
|
3
|
Kan H, Xie Z, Finkel MS. p38 MAP kinase-mediated negative inotropic effect of HIV gp120 on cardiac myocytes. Am J Physiol Cell Physiol 2004; 286:C1-7. [PMID: 14660488 DOI: 10.1152/ajpcell.00059.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial dysfunction leading to dilated cardiomyopathy has been documented with surprisingly high frequency in human immunodeficiency virus (HIV)-infected individuals. p38 MAP kinase has been implicated as a mediator of myocardial dysfunction. We previously reported p38 MAP kinase activation by the HIV coat protein gp120 in neonatal rat cardiac myocytes. We now report the direct inotropic effects of HIV gp120 on adult rat ventricular myocytes (ARVM). ARVM were continuously superfused with gp120, and percent fractional shortening (FS) was determined by automated border detection and simultaneous intracellular ionized free Ca2+concentration ([Ca2+]i) measured by fura 2-AM fluorescence: gp120 alone increased FS and increased [Ca2+]iwithin 5 min and then depressed FS without a decrease in [Ca2+]iby 20–60 min, which persisted for at least 2 h. Exposure of ARVM to gp120 also resulted in the phosphorylation of the upstream regulator of p38 MAP kinase MKK3/6, p38 MAP kinase itself, and its downstream effector, ATF-2, over a similar time course. ERK (p44/42) and JNK stress signaling pathways were not similarly activated. The effects of the p38 MAP kinase inhibitor were concentration dependent. SB-203580 (10 μM) blocked both p38 MAP kinase phosphorylation and the delayed negative inotropic effect of gp120. SB-203580 (5 μM) selectively blocked phosphorylation of ATF-2 without blocking the phosphorylation of MKK3/6 or p38 MAP kinase itself. SB-203580 (5 μM) administered before, with, or after gp120 blocked the negative inotropic effect of gp120 in ARVM. p38 MAP kinase activation may be a common stress-response mechanism contributing to myocardial dysfunction in HIV and other nonischemic as well as ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Hong Kan
- Department of Medicine, WVU Cardiology, West Virginia University School of Medicine, Medical Center Drive, Morgantown, WV 26506-9157, USA
| | | | | |
Collapse
|
4
|
Abstract
A variety of seemingly unrelated clinical conditions manifest the same effects on the heart. These effects include: (1) reversible myocardial dysfunction, (2) beta-adrenergic desensitization, and (3) activation of inflammatory mediators. We provide evidence supporting a role for cytokines, mitogen activated protein kinases (MAP kinases), and nitric oxide (NO) as common mediators of reversible myocardial dysfunction and beta-adrenergic desensitization. Data from animal models and human studies support a pathogenic role for these inflammatory mediators in ischemic as well as non-ischemic myocardial dysfunction. It is suggested that compensatory cellular programs are activated to provide short-term protection from brief periods of ischemia and infection. Continuous activation of these compensatory pathways leads to cardiomyopathy and chronic (congestive) heart failure. Elucidating the signaling pathways involved has the potential to provide the opportunity to exploit the cardioprotective advantages of these agents without bearing the burden of excessive stimulation.
Collapse
Affiliation(s)
- Hong Kan
- Department of Medicine (Cardiology), Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | |
Collapse
|
5
|
Abstract
This review examines the interaction of steroid hormones, glucocorticoids and estrogen, and gp120, a possible causal agent of acquired immune deficiency syndrome-related dementia complex. The first part of the review examines the data and mechanisms by which gp120 may cause neurotoxicity and by which these steroid hormones effect cell death in general. The second part of the review summarizes recent experiments that show how these steroid hormones can modulate the toxic effects of gp120 and glucocorticoids exacerbating toxicity, and estrogen decreasing it. We then examine the limited in vivo and clinical data relating acquired immune deficiency syndrome-related dementia complex and steroid hormones and speculate on the possible clinical significance of these findings with respect to acquired immune deficiency syndrome-related dementia complex.
Collapse
Affiliation(s)
- S M Brooke
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
6
|
Gemignani A, Paudice P, Pittaluga A, Raiteri M. The HIV-1 coat protein gp120 and some of its fragments potently activate native cerebral NMDA receptors mediating neuropeptide release. Eur J Neurosci 2000; 12:2839-46. [PMID: 10971626 DOI: 10.1046/j.1460-9568.2000.00172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate the effects of the HIV-1 envelope protein gp120 and its peptide fragments on the function of N-methyl-D-aspartate (NMDA) receptors mediating release of cholecystokinin (CCK) and somatostatin (SRIF). These are nonconventional NMDA receptors recently found to be activated by glycine or D-serine 'only'. The release of cholecystokinin-like immunoreactivity (CCK-LI) and of somatostatin-like immunoreactivity (SRIF-LI) elicited by 12 mM K+ from superfused rat neocortex synaptosomes was potently increased by gp120, its cyclic V3 loop and the linear V3 sequence BRU-C-34-A, but not by RP-135 (a central portion of BRU-C-34-A). The EC50 values of gp120 were 0.02 nM (CCK-LI release) and 0.01 nM (SRIF-LI release). The releasing effect of gp120 was prevented by blocking the glycine site or the ion channel of NMDA receptors, but not the glutamate recognition site; in addition, the gp120 effect was strongly inhibited by nanomolar concentrations of Zn2+ ions and by low micromolar concentrations of ifenprodil. It is concluded that gp120 acts as a very potent agonist at the glycine site of NMDA receptors sited on CCK- and SRIF-releasing nerve endings; the protein is able to activate the receptor channel in the absence of glutamate. Gp120 activates the receptors through its V3 loop as peptide fragments related to V3 retain near-maximal activity. The sensitivity of the gp120 effect to both Zn2+ and ifenprodil would not be incompatible with the idea that these NMDA receptors contain the triple subunit combination NR1/NR2A/NR2B.
Collapse
Affiliation(s)
- A Gemignani
- Department of Experimental Medicine, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148 Genova, Italy
| | | | | | | |
Collapse
|
7
|
Wittekindt B, Betz H, Laube B. Subunit-dependent inhibition of recombinant rodent N-methyl-D-aspartate receptors by a HIV-1 glycoprotein 120 derived peptide. Neurosci Lett 2000; 280:151-4. [PMID: 10686400 DOI: 10.1016/s0304-3940(00)00775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Considerable evidence suggests that low (picomolar) concentrations of the HIV-1 envelope glycoprotein gp120 induce neuronal cell death by stimulating the release of microglial toxins, which in turn activate N-methyl-D-aspartate (NMDA) receptors. Conversely, high (micromolar) concentrations of gp120 have been reported to directly inhibit NMDA receptor-mediated currents and do not induce neurotoxicity. Here we show that micromolar concentrations of a synthetic peptide corresponding to the V3-loop of gp120 (V3-pep) inhibited agonist responses of recombinant heteromeric rodent NMDA receptors expressed in Xenopus laevis oocytes by decreasing their apparent glycine affinity. Different combinations of NMDA receptor subunits displayed differential sensitivities to inhibition by V3-pep, with a potency rank order of NR1/2B > NR1/2D > NR1/2C > or = NR1/2A. Our observations may provide an explanation for the reduced neurotoxicity of high doses of gp120 in cell cultures and may be useful for the pharmacological discrimination of NMDA receptor subtypes.
Collapse
Affiliation(s)
- B Wittekindt
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528, Frankfurt, Germany
| | | | | |
Collapse
|
8
|
Xin KQ, Hamajima K, Hattori S, Cao XR, Kawamoto S, Okuda K. Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system. AIDS Res Hum Retroviruses 1999; 15:1461-7. [PMID: 10555109 DOI: 10.1089/088922299309973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Activation of the N-methyl-D-aspartate (NMDA) receptor by HIV-1 envelope glycoprotein 120 (gp120) is thought to represent at least one of the pathways causing neuronal damage in AIDS patients. In the present study, recombinant gp120 binding to NMDA receptor subunits expressed in a baculovirus system was examined by immunocytochemistry and a binding assay, using horseradish peroxidase (HRP)-conjugated and 125I-labeled recombinant gp120, respectively. We found that recombinant gp120 binds to Sf21 cells expressing epsilon1/zeta1 or epsilon2/zeta1 combined NMDA receptor subunits, but not to Sf21 cells infected with mock virus or Sf21 cells expressing a single epsilon1, epsilon2, or zeta1 NMDA receptor subunit. The binding was strongly blocked by unlabeled recombinant gp120, monoclonal anti-HIV-1 gp160 antibody, and a mixture of anti-epsilon1/epsilon2 and anti-zeta1 antibodies. The same results were obtained by flow cytometric analysis. These data suggest that HIV-1 gp120 may directly bind to the NMDA receptor. This evidence enhances our understanding of the mechanism of HIV-1-induced neuronal damage in AIDS patients.
Collapse
Affiliation(s)
- K Q Xin
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Köller H, Siebler M, Hartung HP. Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 1997; 52:1-26. [PMID: 9185232 DOI: 10.1016/s0301-0082(96)00065-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During inflammation of the central or peripheral nervous system, a high number of immunologically active molecules, including bacterial or viral products as well as host-derived cytokines, are released. Patients suffering from inflammatory CNS or PNS diseases often develop transient symptoms with a rapid recovery, which obviously cannot be accounted for by immunologically induced tissue damage. These observations led to the hypothesis that immunologically active molecules can affect directly the electrophysiological functions of neurons and glial cells. Evidence for this hypothesis came from in vitro studies showing that cytokines, such as interleukins or tumor necrosis factors, arachidonic acid and its metabolites, interfere with electrophysiological properties of neurons or glial cells. These molecules affect ion currents, intracellular Ca2+ homeostasis, membrane potentials, and suppress or enhance the induction and maintenance of long-term potentiation. Similarly, virus proteins from human immunodeficiency virus type I were found to alter intracellular Ca2+ concentrations of neurons and astrocytes by modulating either transmitter receptors and channels or membrane transporters. Cerebrospinal fluid from MS patients contains factors which increase Na+ current inactivation and thereby reduce neuronal excitability. Immunoglobulins in sera of patients suffering from multifocal motor neuropathy and from acquired neuromyotonia interfere with nerve fibers, inducing alterations of conduction. Increased knowledge of these mechanisms will help to explain the pathogenesis of neurological symptoms and may provide a rationale for new therapeutic strategies.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
10
|
Abstract
The envelope protein (gp52) of the mouse mammary tumor virus (MMTV) can stimulate RNA synthesis via binding to its cellular receptor on mammary epithelium. This effect was mimicked by either nitric oxide (NO) or 8-bromo-cGMP and was blocked by an NO inhibitor. Furthermore, the effects of gp52 and 8-bromo-cGMP were not additive at maximal concentrations, suggesting that they were using the same signaling route. Finally, gp52 elevated cGMP levels in mammary epithelium. These data suggest that gp52 activates the following transduction pathway in this tissue: gp52-->NO synthase-->NO-->soluble guanylate cyclase cGMP RNA synthesis. In contrast to the mammary gland, gp52 inhibited RNA synthesis in the diaphragm. However, the effect was again mimicked by NO, blocked by an NO inhibitor, and the effects of gp52 and NO were not additive. Therefore, it appears that gp52 is using the NO-cGMP pathway in both tissues, but that muscle tissue may be more susceptible to the toxic effects of NO.
Collapse
Affiliation(s)
- F F Bolander
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA.
| |
Collapse
|
11
|
Bagetta G, Corasaniti MT, Aloe L, Berliocchi L, Costa N, Finazzi-Agrò A, Nisticò G. Intracerebral injection of human immunodeficiency virus type 1 coat protein gp120 differentially affects the expression of nerve growth factor and nitric oxide synthase in the hippocampus of rat. Proc Natl Acad Sci U S A 1996; 93:928-33. [PMID: 8570662 PMCID: PMC40161 DOI: 10.1073/pnas.93.2.928] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have studied the neuropathological characteristics of the brain of rats receiving daily intracerebroventricular administration of freshly dissolved human immunodeficiency virus type 1 recombinant protein gp120 (100 ng per rat per day) given for up to 14 days. Histological examination of serial brain sections revealed no apparent gross damage to the cortex or hippocampus, nor did cell counting yield significant neuronal cell loss. However, the viral protein caused after 7 and 14 days of treatment DNA fragmentation in 10% of brain cortical neurons. Interestingly, reduced neuronal nitric oxide synthase (NOS) expression along with significant increases in nerve growth factor (NGF) were observed in the hippocampus, where gp120 did not cause neuronal damage. No changes in NGF and NOS expression were seen in the cortex, where cell death is likely to be of the apoptotic type. The present data demonstrate that gp120-induced cortical cell death is associated with the lack of increase of NGF in the cerebral cortex and suggest that the latter may be important for the expression of neuropathology in the rat brain. By contrast, enhanced levels of NGF may prevent or delay neuronal death in the hippocampus, where reduced NOS expression may be a reflection of a subcellular insult inflicted by the viral protein.
Collapse
Affiliation(s)
- G Bagetta
- Department of Biology, Mondino-Tor Vergata Center for Experimental Neurobiology, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Berrada F, Ma D, Michaud J, Doucet G, Giroux L, Kessous-Elbaz A. Neuronal expression of human immunodeficiency virus type 1 env proteins in transgenic mice: distribution in the central nervous system and pathological alterations. J Virol 1995; 69:6770-8. [PMID: 7474088 PMCID: PMC189588 DOI: 10.1128/jvi.69.11.6770-6778.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It is now well documented that human immunodeficiency virus type 1 (HIV-1) induces encephalopathy in patients with AIDS. In vitro studies have implicated the envelope protein (gp120) as a factor which causes neuronal death. To better evaluate the role and elucidate the mechanisms of gp120 neurotoxicity, we have developed transgenic mice carrying a segment of the HIV-1 genome that expresses the viral gp160 protein under the control of the human neurofilament light gene promoter. In two separate lines of transgenic mice, the Env protein was found to be expressed in several nuclei of the brain stem and in the anterior horns of the spinal cord. The two lines showed identical patterns of Env expression. Neuropathological evaluation revealed numerous abnormal dendritic swellings in the immunostained motor neuron structures. Large and numerous neuritic swellings were also prominent in the nucleus gracilis and in the gracilis and cuneate fascicles. In addition, reactive astrocytosis was observed in several immunoreactive areas of the central nervous system. These transgenic mice offer a unique model to further investigate the role of HIV-1 Env protein in neuronal toxicity and to help elucidate the mechanisms that are involved.
Collapse
Affiliation(s)
- F Berrada
- Department of Pathology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Dubois-Dalcq M, Altmeyer R, Chiron M, Wilt S. HIV interactions with cells of the nervous system. Curr Opin Neurobiol 1995; 5:647-55. [PMID: 8580717 DOI: 10.1016/0959-4388(95)80071-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV can invade the CNS, where it replicates principally in macrophages. Yet, neurological disease is more often correlated with levels of neurotoxins or tumor necrosis factor alpha than with viral replication or specific viral determinants in brain. In experimental systems, HIV glycoprotein affects functions of uninfected microglia and astrocytes to eventually cause neuronal death. While the cellular basis of cognitive and neurological dysfunction are unravelled in the simian immunodeficiency virus model, the molecular mechanisms of HIV neurotoxicity are being studied in newly developed mouse models.
Collapse
Affiliation(s)
- M Dubois-Dalcq
- Département de Virologie, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
14
|
Nath A, Padua RA, Geiger JD. HIV-1 coat protein gp120-induced increases in levels of intrasynaptosomal calcium. Brain Res 1995; 678:200-6. [PMID: 7620888 DOI: 10.1016/0006-8993(95)00185-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of human immunodeficiency virus type-1 (HIV-1) coat protein gp120 on levels of intrasynaptosomal calcium ([Ca2+]i) were determined in rat cortical synaptosomes. gp120 at concentrations of > or = 400 pM, significantly (P < 0.05) increased levels of [Ca2+]i. Treatment with 20 mM KCl, reduced the concentrations of gp120 necessary to produce significant (P < 0.001) increases in [Ca2+]i. gp120-evoked increases in [Ca2+]i were prevented either by treatment with dantrolene or by removal of extracellular calcium with BAPTA. The peak levels of gp120-induced increases in [Ca2+]i were not affected by calcium channel blockers lanthanum and nicardipine, by glutamate receptor antagonists MK-801 and NBQX, or by removal of endogenous glutamate with glutamate dehydrogenase. gp120-induced [Ca2+]i increases in presynaptic terminals may play a role in HIV-mediated effects in the central nervous system.
Collapse
Affiliation(s)
- A Nath
- Department of Medical Microbiology, University of Manitoba Faculty of Medicine, Winnipeg, Canada
| | | | | |
Collapse
|
15
|
Mucke L, Masliah E, Campbell IL. Transgenic models to assess the neuropathogenic potential of HIV-1 proteins and cytokines. Curr Top Microbiol Immunol 1995; 202:187-205. [PMID: 7587363 DOI: 10.1007/978-3-642-79657-9_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L Mucke
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
16
|
Abstract
Approximately a third of adults and half of children with acquired immunodeficiency syndrome (AIDS) eventually suffer from neurological manifestations, including dysfunction of cognition, movement, and sensation. Among the various pathologies reported in the brain of patients with AIDS is neuronal injury and loss. A paradox arises, however, because neurons themselves are for all intents and purposes not infected by human immunodeficiency virus type 1 (HIV-1). This paper reviews evidence suggesting that at least part of the neuronal injury observed in the brain of AIDS patients is related to excessive influx of Ca2+. There is growing support for the existence of HIV- or immune-related toxins that lead indirectly to the injury or death of neurons via a potentially complex web of interactions between macrophages (or microglia), astrocytes, and neurons. Human immunodeficiency virus-infected monocytoid cells (macrophages, microglia, or monocytes), especially after interacting with astrocytes, secrete substances that potentially contribute to neurotoxicity. Not all of these substances are yet known, but they may include eicosanoids, that is, arachidonic acid and its metabolites, as well as platelet-activating factor. Macrophages activated by HIV-1 envelope protein gp120 also appear to release arachidonic acid and its metabolites. These factors can lead to increased glutamate release or decreased glutamate reuptake. In addition, gamma interferon (IFN-gamma) stimulation of macrophages induce release of the glutamate-like agonist quinolinate. Human immunodeficiency virus-infected or gp120-stimulated macrophages also produce cytokines, including tumor necrosis factor-alpha and interleukin-1 beta, which contribute to astrogliosis. A final common pathway for neuronal susceptibility appears to be operative, similar to that observed in stroke, trauma, epilepsy, neuropathic pain, and several neurodegenerative diseases, possibly including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves the activation of voltage-dependent Ca2+ channels and N-methyl-D-aspartate (NMDA) receptor-operated channels, and therefore offers hope for future pharmacological intervention. This review focuses on clinically tolerated calcium channel antagonists and NMDA antagonists with the potential for trials in humans with AIDS dementia in the near future.
Collapse
Affiliation(s)
- S A Lipton
- Department of Neurology, Children's Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Affiliation(s)
- B Tabakoff
- Department of Pharmacology, University of Colorado, Denver 80262
| |
Collapse
|
18
|
Lipton SA. HIV-related neuronal injury. Potential therapeutic intervention with calcium channel antagonists and NMDA antagonists. Mol Neurobiol 1994; 8:181-96. [PMID: 7999315 DOI: 10.1007/bf02780669] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Perhaps as many as 25-50% of adult patients and children with acquired immunodeficiency syndrome (AIDS) eventually suffer from neurological manifestations, including dysfunction of cognition, movement, and sensation. How can human immunodeficiency virus type 1 (HIV-1) result in neuronal damage if neurons themselves are for all intents and purposes not infected by the virus? This article reviews a series of experiments leading to a hypothesis that accounts at least in part for the neurotoxicity observed in the brains of AIDS patients. There is growing support for the existence of HIV- or immune-related toxins that lead indirectly to the injury or demise of neurons via a potentially complex web of interactions among macrophages (or microglia), astrocytes, and neurons. HIV-infected monocytoid cells (macrophages, microglia, or monocytes), after interacting with astrocytes, secrete eicosanoids, i.e., arachidonic acid and its metabolites, including platelet-activating factor. Macrophages activated by HIV-1 envelope protein gp120 also appear to release arachidonic acid and its metabolites. In addition, interferon-gamma (IFN-gamma) stimulation of macrophages induces release of the glutamate-like agonist, quinolinate. Furthermore, HIV-infected macrophage production of cytokines, including TNF-alpha and IL1-beta, contributes to astrogliosis. A final common pathway for neuronal susceptibility appears to be operative, similar to that observed in stroke, trauma, epilepsy, neuropathic pain, and several neurodegenerative diseases, possibly including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves the activation of voltage-dependent Ca2+ channels and N-methyl-D-aspartate (NMDA) receptor-operated channels, and, therefore, offers hope for future pharmacological intervention. This article focuses on clinically tolerated calcium channel antagonists and NMDA antagonists with the potential for trials in humans with AIDS dementia in the near future.
Collapse
Affiliation(s)
- S A Lipton
- Department of Neurology, Children's Hospital, Beth Israel Hospital, Brigham and Women's Hospital, Boston 02115
| |
Collapse
|
19
|
Lipton SA. Ca2+, N-methyl-D-aspartate receptors, and AIDS-related neuronal injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:1-27. [PMID: 7822116 DOI: 10.1016/s0074-7742(08)60301-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S A Lipton
- Department of Neurology, Children's Hospital, Boston, Massachusetts
| |
Collapse
|