1
|
Choi GY, Lee IS, Moon E, Choi H, Je AR, Park JH, Kweon HS. Ameliorative effect of vanillic acid against scopolamine-induced learning and memory impairment in rat via attenuation of oxidative stress and dysfunctional synaptic plasticity. Biomed Pharmacother 2024; 177:117000. [PMID: 38941895 DOI: 10.1016/j.biopha.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment, loss of learning and memory, and abnormal behaviors. Scopolamine (SCOP) is a non-selective antagonist of muscarinic acetylcholine receptors that exhibits the behavioral and molecular hallmarks of AD. Vanillic acid (VA), a phenolic compound, is obtained from the roots of a traditional plant called Angelica sinensis, and has several pharmacologic effects, including antimicrobial, anti-inflammatory, anti-angiogenic, anti-metastatic, and antioxidant properties. Nevertheless, VA's neuroprotective potential associated with the memory has not been thoroughly investigated. Therefore, this study investigated whether VA treatment has an ameliorative effect on the learning and memory impairment induced by SCOP in rats. Behavioral experiments were utilized to assess the learning and memory performance associated with the hippocampus. Using western blotting analysis and assay kits, the neuronal damage, oxidative stress, and acetylcholinesterase activity responses of hippocampus were evaluated. Additionally, the measurement of long-term potentiation was used to determine the function of synaptic plasticity in organotypic hippocampal slice cultures. In addition, the synaptic vesicles' density and the length and width of the postsynaptic density were evaluated using electron microscopy. Consequently, the behavioral, biochemical, electrophysiological, and ultrastructural analyses revealed that VA treatment prevents learning and memory impairments caused by SCOP in rats. The study's findings suggest that VA has a neuroprotective effect on SCOP-induced learning and memory impairment linked to the hippocampal cholinergic system, oxidative damage, and synaptic plasticity. Therefore, VA may be a prospective therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - In-Seo Lee
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eunyoung Moon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyosung Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - A Reum Je
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.
| |
Collapse
|
2
|
Su J, Huang F, Tian Y, Tian R, Qianqian G, Bello ST, Zeng D, Jendrichovsky P, Lau CG, Xiong W, Yu D, Tortorella M, Chen X, He J. Entorhinohippocampal cholecystokinin modulates spatial learning by facilitating neuroplasticity of hippocampal CA3-CA1 synapses. Cell Rep 2023; 42:113467. [PMID: 37979171 DOI: 10.1016/j.celrep.2023.113467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.
Collapse
Affiliation(s)
- Junfeng Su
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Ran Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Dingxaun Zeng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Peter Jendrichovsky
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Daiguan Yu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
3
|
Yang Y, Booth V, Zochowski M. Acetylcholine facilitates localized synaptic potentiation and location specific feature binding. Front Neural Circuits 2023; 17:1239096. [PMID: 38033788 PMCID: PMC10684311 DOI: 10.3389/fncir.2023.1239096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.
Collapse
Affiliation(s)
- Yihao Yang
- Department of Physics, University of Michigan, Ann Arbor, MI, United States
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Dobryakova YV, Gerasimov K, Spivak YS, Korotkova T, Koryagina A, Deryabina A, Markevich VA, Bolshakov AP. The Induction of Long-Term Potentiation by Medial Septum Activation under Urethane Anesthesia Can Alter Gene Expression in the Hippocampus. Int J Mol Sci 2023; 24:12970. [PMID: 37629149 PMCID: PMC10454684 DOI: 10.3390/ijms241612970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
We studied changes in the expression of early genes in hippocampal cells in response to stimulation of the dorsal medial septal area (dMSA), leading to long-term potentiation in the hippocampus. Rats under urethane anesthesia were implanted with stimulating electrodes in the ventral hippocampal commissure and dMSA and a recording electrode in the CA1 area of the hippocampus. We found that high-frequency stimulation (HFS) of the dMSA led to the induction of long-term potentiation in the synapses formed by the ventral hippocampal commissure on the hippocampal CA1 neurons. One hour after dMSA HFS, we collected the dorsal and ventral hippocampi on both the ipsilateral (damaged by the implanted electrode) and contralateral (intact) sides and analyzed the expression of genes by qPCR. The dMSA HFS led to an increase in the expression of bdnf and cyr61 in the ipsilateral hippocampi and egr1 in the ventral contralateral hippocampus. Thus, dMSA HFS under the conditions of degeneration of the cholinergic neurons in the medial septal area prevented the described increase in gene expression. The changes in cyr61 expression appeared to be dependent on the muscarinic M1 receptors. Our data suggest that the induction of long-term potentiation by dMSA activation enhances the expression of select early genes in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey P. Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia (K.G.)
| |
Collapse
|
5
|
Kim S, Seong KM, Lee SH. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37130064 DOI: 10.1111/imb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Similar to other insects, honey bees have two acetylcholinesterases (AChEs), AmAChE1 and AmAChE2. The primary catalytic enzyme for acetylcholine (ACh) hydrolysis in synapses is AmAChE2, which is predominantly expressed in neuronal tissues, whereas AmAChE1 is expressed in both neuronal and non-neuronal tissues, with limited catalytic activity. Unlike constitutively expressed AmAChE2, AmAChE1 expression is induced under stressful conditions such as heat shock and brood rearing suppression, but its role in regulating ACh titre remains unclear. In this paper, to elucidate the role of AmAChE1, the expression of AmAChE1 was suppressed via RNA interference (RNAi) in AmAChE1-induced worker bees. The ACh titre measurement following RNAi revealed that the expression of AmAChE1 downregulated the overall ACh titre in all tissues examined without altering AmAChE2 expression. Transcriptome analysis showed that AmAChE1 knockdown upregulated protein biosynthesis, cell respiration, and thermogenesis in the head. These findings suggest that AmAChE1 is involved in decreasing neuronal activity, enhancing energy conservation, and potentially extending longevity under stressful conditions via ACh titre regulation.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Keon Mook Seong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Sun W, Zhao X, Wan Y, Yang Y, Li X, Chen X, Mei Y, An L. Prenatal cyanuric acid exposure induced spatial learning impairments associated with alteration of acetylcholine-mediated neural information flow at the hippocampal CA3-CA1 synapses of male rats. Hum Exp Toxicol 2023; 42:9603271231163477. [PMID: 36890733 DOI: 10.1177/09603271231163477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cyanuric acid (CA) is reported to induce nephrotoxicity but its toxic effect is not fully known. Prenatal CA exposure causes neurodevelopmental deficits and abnormal behavior in spatial learning ability. Dysfunction of the acetyl-cholinergic system in neural information processing is correlated with spatial learning impairment and was found in the previous reports of CA structural analogue melamine. To further investigate the neurotoxic effects and the potential mechanism, the acetylcholine (ACh) level was detected in the rats which were exposed to CA during the whole of gestation. Local field potentials (LFPs) were recorded when rats infused with ACh or cholinergic receptor agonist into hippocampal CA3 or CA1 region were trained in the Y-maze task. We found the expression of ACh in the hippocampus was significantly reduced in dose-dependent manners. Intra-hippocampal infusion of ACh into the CA1 but not the CA3 region could effectively mitigate learning deficits induced by CA exposure. However, activation of cholinergic receptors did not rescue the learning impairments. In the LFP recording, we found that the hippocampal ACh infusions could enhance the values of phase synchronization between CA3 and CA1 regions in theta and alpha oscillations. Meanwhile, the reduction in the coupling directional index and the strength of CA3 driving CA1 in the CA-treated groups was also reversed by the ACh infusions. Our findings are consistent with the hypothesis and provide the first evidence that prenatal CA exposure induced spatial learning defect is attributed to the weakened ACh-mediated neuronal coupling and NIF in the CA3-CA1 pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xuanyin Zhao
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yiwen Wan
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,Department of Rehabilitation Medicine, 70570Shenzhen Bao'an Hospital Affiliated of Southern Medical University, Shenzhen, China
| | - Yang Yang
- Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Xiao Chen
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Yazi Mei
- 47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Cieślik P, Kalinowski L, Wierońska JM. Procognitive activity of nitric oxide inhibitors and donors in animal models. Nitric Oxide 2021; 119:29-40. [PMID: 34896554 DOI: 10.1016/j.niox.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Nitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer's disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine NONOate) or fast (DETANONOate) releasers, and selective inhibitor of neuronal nitric oxide synthase N(ω)-propyl-l-arginine (NPLA) were investigated in pharmacological models of schizophrenia and AD. Cognitive impairments were induced by administration of MK-801 or scopolamine and were measured in novel object recognition (NOR) and Y-maze tests. The compounds were investigated at doses of 0.05-0.5 mg/kg. The dose-dependent effectiveness of all the compounds was observed in the NOR test, while only the highest doses of spermine NONOate and NPLA were active in the Y-maze test. DETANONOate was not active in the Y-maze test. The impact of the investigated compounds on motor coordination was tested at doses of 0.5 and 1 mg/kg. Only NPLA at a dose of 1 mg/kg slightly disturbed motor coordination in animals.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Consortium Poland (BBMRI.pl), Poland; BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
9
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Androvičová R, Pfaus JG, Ovsepian SV. Estrogen pendulum in schizophrenia and Alzheimer's disease: Review of therapeutic benefits and outstanding questions. Neurosci Lett 2021; 759:136038. [PMID: 34116197 DOI: 10.1016/j.neulet.2021.136038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Although produced largely in the periphery, gonadal steroids play a key role in regulating the development and functions of the central nervous system and have been implicated in several chronic neuropsychiatric disorders, with schizophrenia and Alzheimer's disease (AD) most prominent. Despite major differences in pathobiology and clinical manifestations, in both conditions, estrogen transpires primarily with protective effects, buffering the onset and progression of diseases at various levels. As a result, estrogen replacement therapy (ERT) emerges as one of the most widely discussed adjuvant interventions. In this review, we revisit evidence supporting the protective role of estrogen in schizophrenia and AD and consider putative cellular and molecular mechanisms. We explore the underlying functional processes relevant to the manifestation of these devastating conditions, with a focus on synaptic transmission and plasticity mechanisms. We discuss specific effects of estrogen deficit on neurotransmitter systems such as cholinergic, dopaminergic, serotoninergic, and glutamatergic. While the evidence from both, preclinical and clinical reports, in general, are supportive of the protective effects of estrogen from cognitive decline to synaptic pathology, numerous questions remain, calling for further research.
Collapse
Affiliation(s)
- Renáta Androvičová
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Saak V Ovsepian
- Department of Applied Neuroscience and Neuroimaging (RA) and Department of Experimental Neuroscience (SVO), National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
11
|
Ovsepian SV, O'Leary VB, Hoschl C, Zaborszky L. Integrated phylogeny of the human brain and pathobiology of Alzheimer's disease: A unifying hypothesis. Neurosci Lett 2021; 755:135895. [PMID: 33862141 DOI: 10.1016/j.neulet.2021.135895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
The disproportionate evolutionary expansion of the human cerebral cortex with reinforcement of cholinergic innervations warranted a major rise in the functional and metabolic load of the conserved basal forebrain (BF) cholinergic system. Given that acetylcholine (ACh) regulates properties of the microtubule-associated protein (MAP) tau and promotes non-amyloidogenic processing of amyloid precursor protein (APP), growing neocortex predicts higher demands for ACh, while the emerging role of BF cholinergic projections in Aβ clearance infers greater exposure of source neurons and their innervation fields to amyloid pathology. The higher exposure of evolutionary most recent cortical areas to the amyloid pathology of Alzheimer's disease (AD) with synaptic impairments and atrophy, therefore, might involve attenuated homeostatic effects of BF cholinergic projections, in addition to fall-outs of inherent processes of expanding association areas. This unifying model, thus, views amyloid pathology and loss of cholinergic cells as a quid pro quo of the allometric evolution of the human brain, which in combination with increase in life expectancy overwhelm the fine homeostatic balance and trigger the disease process.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Praha 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
12
|
Vasnik S, Sikdar SK. Cholinergic receptor-independent modulation of intrinsic resonance in the rat subiculum neurons through inhibition of hyperpolarization-activated cyclic nucleotide-gated channels. Acta Physiol (Oxf) 2021; 231:e13603. [PMID: 33332740 DOI: 10.1111/apha.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
AIM Acetylcholine release is vital in the pacing of theta rhythms in the hippocampus. The subiculum is the output region of the hippocampus with different neuronal subtypes that generate theta oscillations during arousal and rapid eye movement sleep. The combination of intrinsic resonance in the hippocampal neurons and the periodic excitation of hippocampal excitatory and inhibitory neurons by cholinergic pathway drives theta oscillations. However, the acetylcholine mediated effect on intrinsic subthreshold resonance generating hyperpolarization-activated cyclic nucleotide-gated current, Ih of subicular neurons is unexplored. We studied the acetylcholine receptor-independent effect of cholinergic agents on the intrinsic properties of subiculum principal neurons and the underlying mechanism. METHODS We bath perfused acetylcholine or nicotine on rat brain slices in the presence of synaptic blockers. The physiological effect was studied by cholinergic fibres stimulation and electrophysiological recordings under whole-cell mode of subiculum neurons using septohippocampal sections. RESULTS Exogenously applied acetylcholine in the presence of atropine affected two groups of subicular neurons differently. Acetylcholine reduced the resonance frequency and Ih in bursting neurons, whereas these properties were unaffected in regular firing neurons. Subsequently, the endogenously released acetylcholine by stimulation showed a selective suppressive effect on Ih , sag, and resonance in burst firing among the two excitatory neurons. Nicotine suppressed the Ih amplitude in burst firing neurons, which was evident by decreased sag amplitude and resonance frequency and increased excitability. CONCLUSION Our study suggests cell type-specific acetylcholine receptor-independent shift in resonance frequency by partially inhibiting HCN current during high cholinergic inputs.
Collapse
Affiliation(s)
- Sonali Vasnik
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
13
|
Nuñez A, Buño W. The Theta Rhythm of the Hippocampus: From Neuronal and Circuit Mechanisms to Behavior. Front Cell Neurosci 2021; 15:649262. [PMID: 33746716 PMCID: PMC7970048 DOI: 10.3389/fncel.2021.649262] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the neuronal and circuit mechanisms involved in the generation of the theta (θ) rhythm and of its participation in behavior. Data have accumulated indicating that θ arises from interactions between medial septum-diagonal band of Broca (MS-DbB) and intra-hippocampal circuits. The intrinsic properties of MS-DbB and hippocampal neurons have also been shown to play a key role in θ generation. A growing number of studies suggest that θ may represent a timing mechanism to temporally organize movement sequences, memory encoding, or planned trajectories for spatial navigation. To accomplish those functions, θ and gamma (γ) oscillations interact during the awake state and REM sleep, which are considered to be critical for learning and memory processes. Further, we discuss that the loss of this interaction is at the base of various neurophatological conditions.
Collapse
Affiliation(s)
- Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| |
Collapse
|
14
|
Lee HJ, Woo H, Lee HE, Jeon H, Ryu KY, Nam JH, Jeon SG, Park H, Lee JS, Han KM, Lee SM, Kim J, Kang RJ, Lee YH, Kim JI, Hoe HS. The novel DYRK1A inhibitor KVN93 regulates cognitive function, amyloid-beta pathology, and neuroinflammation. Free Radic Biol Med 2020; 160:575-595. [PMID: 32896600 DOI: 10.1016/j.freeradbiomed.2020.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Regulating amyloid beta (Aβ) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aβ plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aβ plaque levels in 5x FAD mice by regulating levels of the Aβ degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aβ-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aβ plaque load, and neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Hanwoong Woo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ha-Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyongjun Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ji-Soo Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Sang Min Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ri Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Cheongju, Chungbuk, 28119, South Korea; Bio-Analytical Science, University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Neurovascular Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, South Korea.
| |
Collapse
|
15
|
Ahnaou A, White E, Biermans R, Manyakov NV, Drinkenburg WHIM. In Vivo Plasticity at Hippocampal Schaffer Collateral-CA1 Synapses: Replicability of the LTP Response and Pharmacology in the Long-Evans Rat. Neural Plast 2020; 2020:6249375. [PMID: 33273904 PMCID: PMC7676971 DOI: 10.1155/2020/6249375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023] Open
Abstract
Broad issues associated with non-replicability have been described in experimental pharmacological and behavioral cognitive studies. Efforts to prevent biases that contribute to non-replicable scientific protocols and to improve experimental rigor for reproducibility are increasingly seen as a basic requirement for the integrity of scientific research. Synaptic plasticity, encompassing long-term potentiation (LTP), is believed to underlie mechanisms of learning and memory. The present study was undertaken in Long-Evans (LE) rats, a strain of rat commonly used in cognitive behavioral tests, to (1) compare three LTP tetanisation protocols, namely, the high-frequency stimulation (HFS), the theta-burst stimulation (TBS), and the paired-pulse facilitation (PPF) at the Schaffer collateral-CA1 stratum radiatum synapse and to (2) assess sensitivity to acute pharmacology. Results: (1) When compared to Sprague-Dawley (SD) rats, the HFS using a stimulus intensity of 50% of the maximum slope obtained from input/output (I/O) curves elicited lower and higher thresholds of synaptic plasticity responses in SD and LE rats, respectively. The 2-train TBS protocol significantly enhanced the LTP response in LE rats over the 5- and 10-train TBS protocols in both strains, and the 5 × TBS protocol inducing a subthreshold LTP response was used in subsequent pharmacological studies in LE rats. The PPF protocol, investigating the locus of the LTP response, showed no difference for the selected interstimulus intervals. (2) Scopolamine, a nonspecific muscarinic antagonist, had a subtle effect, whereas donepezil, an acetylcholinesterase inhibitor, significantly enhanced the LTP response, demonstrating the sensitivity of the TBS protocol to enhanced cholinergic tone. MK-801, a noncompetitive N-methyl-D-aspartate (NMDA) antagonist, significantly reduced LTP response, while memantine, another NMDA antagonist, had no effect on LTP response, likely associated with a weaker TBS protocol. PQ10, a phosphodiesterase-10 inhibitor, significantly enhanced the TBS-induced LTP response, but did not change the PPF response. Overall, the results confirm the strain-dependent differences in the form of synaptic plasticity, replicate earlier plasticity results, and report effective protocols that generate a relatively subthreshold margin of LTP induction and maintenance, which are suitable for pharmacology in the LE rat strain mainly used in cognitive studies.
Collapse
Affiliation(s)
- A. Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - E. White
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - R. Biermans
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - N. V. Manyakov
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W. H. I. M. Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
16
|
Muscarinic Modulation of Antennal Lobe GABAergic Local Neurons Shapes Odor Coding and Behavior. Cell Rep 2020; 29:3253-3265.e4. [PMID: 31801087 PMCID: PMC6900217 DOI: 10.1016/j.celrep.2019.10.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
In the antennal lobe (AL), the first olfactory relay of Drosophila, excitatory neurons are predominantly cholinergic. Ionotropic nicotinic receptors play a vital role in the effects of acetylcholine in the AL. However, the AL also has a high expression level of metabotropic muscarinic acetylcholine receptors type A (mAChRs-A). Nevertheless, the neurons expressing them and their role in the AL are unknown. Elucidating their function may reveal principles in olfactory modulation. Here, we show that mAChRs-A shape AL output and affect behavior. We localized mAChRs-A effects to a sub-population of GABAergic local neurons (iLNs), where they play a dual role: direct excitation of iLNs and stabilization of the synapse between receptor neurons and iLNs, which undergoes strong short-term depression. Our results reveal modulatory functions of the AL main excitatory neurotransmitter. Striking similarities to the mammalian olfactory system predict that mammalian glutamatergic metabotropic receptors could be associated with similar modulations.
Collapse
|
17
|
Morales-Weil K, Moreno M, Ahumada J, Arriagada J, Fuentealba P, Bonansco C, Fuenzalida M. Priming of GABAergic Long-term Potentiation by Muscarinic Receptors. Neuroscience 2020; 428:242-251. [PMID: 31917346 DOI: 10.1016/j.neuroscience.2019.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
Abstract
Growing evidence indicates that GABAergic interneurons play a pivotal role to generate brain oscillation patterns, which are fundamental for the mnemonic processing of the hippocampus. While acetylcholine (ACh) is a powerful modulator of synaptic plasticity and brain function, few studies have been focused on the role of cholinergic signaling in the regulation of GABAergic inhibitory synaptic plasticity. We have previously shown that co-activation of endocannabinoids (CB1R) and muscarinic receptor (mAChR) in hippocampal interneurons can induce activity-dependent GABAergic long-term depression in CA1 pyramidal neurons. Here, using electrophysiological and pharmacological approaches in acute rat hippocampal slices, we show that activation of cholinergic receptors followed by either high-frequency stimulation of Schaeffer collaterals or exogenous activation of metabotropic glutamate receptor (mGluR) induces a robust long-term potentiation at GABAergic synapses (iLTP). These forms of iLTP are blocked by the M1 type of mAChR (MR1) or by the group I of mGluR (mGluR1/5) antagonists. These results suggest the existence of spatiotemporal cooperativity between cholinergic and glutamatergic pathways where activation of mAChR serves as a metaplastic switch making glutamatergic synapses capable to induce long-term potentiation at inhibitory synapses, that may contribute to the modulation of brain mechanisms of learning and memory.
Collapse
Affiliation(s)
- Koyam Morales-Weil
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile; Programa de Doctorado en Ciencias, mención Neurociencias, Universidad de Valparaíso, Chile
| | - Macarena Moreno
- Centro interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile; Programa de Doctorado en Ciencias, mención Neurociencias, Universidad de Valparaíso, Chile
| | - Jorge Arriagada
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| |
Collapse
|
18
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
19
|
Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019; 103:563-581. [DOI: 10.1016/j.neuron.2019.05.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
|
20
|
Spanos M, Xie X, Gras-Najjar J, White SC, Sombers LA. NMDA Receptor-Dependent Cholinergic Modulation of Mesolimbic Dopamine Cell Bodies: Neurochemical and Behavioral Studies. ACS Chem Neurosci 2019; 10:1497-1505. [PMID: 30412381 DOI: 10.1021/acschemneuro.8b00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Substance abuse disorders are devastating, costly, and difficult to treat. Identifying the neurochemical mechanisms underlying reinforcement promises to provide critical information in the development of effective treatments. Several lines of evidence suggest that striatal dopamine (DA) release serves as a teaching signal in reinforcement learning, and that shifts in DA release from the primary reward to reward-predicting stimuli play a critical role in the self-administration of both natural and non-natural rewards. However, far less is known about the reinforcing effects of motivationally neutral sensory stimuli, or how these signals can facilitate self-administration behavior. Thus, we trained rats ( n = 7) to perform a visual stimulus-induced instrumental task, which involved lever pressing for activation of a stimulus light. We then microinfused vehicle (phosphate buffered saline), carbachol (acetylcholine receptor agonist), or carbachol in the presence of an N-methyl-d-aspartate (NMDA) receptor-specific drug (NMDA itself, or the antagonist, AP5) into the ventral tegmental area (VTA). This enabled us to directly evaluate how chemical modulation of dopamine cell bodies affects the instrumental behavior, as well as the nature of extracellular dopamine transients recorded in the nucleus accumbens shell (NAc shell) using fast-scan cyclic voltammetry (FSCV). Intra-VTA infusion of carbachol enhanced the magnitude and frequency of dopamine transients in the NAc shell and potentiated active lever responding without altering inactive lever responding, as compared to infusion of vehicle. Coinfusion of carbachol with AP5 abolished dopamine transients recorded in the NAc and attenuated active lever responding without altering inactive lever responding. Finally, coadministration of carbachol and NMDA into the VTA restored both lever pressing and dopaminergic signals recorded in the striatum. Together, these results suggest that acetylcholine and glutamate synergistically act at dopamine cells in the VTA to modulate VTA-NAc shell dopaminergic output, and this underlies motivation to lever press for a motivationally neutral visual stimulus.
Collapse
Affiliation(s)
- Marina Spanos
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Xiaohu Xie
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Julie Gras-Najjar
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Stephanie C. White
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
21
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
22
|
Damodaran T, Müller CP, Hassan Z. Chronic cerebral hypoperfusion-induced memory impairment and hippocampal long-term potentiation deficits are improved by cholinergic stimulation in rats. Pharmacol Rep 2019; 71:443-448. [PMID: 31003155 DOI: 10.1016/j.pharep.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) can induce the accumulation of reactive oxygen species, which leads to oxidative damage, neuronal injury, and central cholinergic dysfunction in vulnerable regions of the brain, such as the hippocampus and cerebral cortex. These effects can lead to significant cognitive impairments in clinical populations of vascular dementia (VaD). The present studies aimed to investigate the role of the cholinergic system in memory functions and hippocampal long-term potentiation (LTP) impairments induced by CCH in rats. METHODS Male Sprague Dawley rats were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham surgery. Then, PBOCCA rats received ip injections with, either vehicle (control group), the muscarinic receptor agonist oxotremorine (0.1 mg/kg), or the acetylcholinesterase inhibitor physostigmine (0.1 mg/kg). Cognitive functions were evaluated using a passive avoidance task and the Morris water maze test. In addition, hippocampal LTP was recorded in vivo under anaesthesia. RESULTS The PBOCCA rats exhibited significant deficits in passive avoidance retention and spatial learning and memory tests. They also showed a suppression of LTP formation in the hippocampus. Oxotremorine and physostigmine significantly improved the learning and memory deficits as well as the suppression of LTP in PBOCCA rats. CONCLUSIONS The present data suggest that the cholinergic system plays an important role in CCH-induced cognitive deficits and could be an effective therapeutic target for the treatment of VaD.
Collapse
Affiliation(s)
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
23
|
Loprinzi PD, Ponce P, Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol Int 2018; 105:285-297. [PMID: 30525869 DOI: 10.1556/2060.105.2018.4.28] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Emerging research demonstrates that exercise is favorably associated with several cognitive outcomes, including episodic memory function. The majority of the mechanistic work describing the underlying mechanisms of this effect has focused on chronic exercise engagement. Such mechanisms include, e.g., chronic exercise-induced neurogenesis, gliogenesis, angiogenesis, cerebral circulation, and growth factor production. Less research has examined the mechanisms through which acute (vs. chronic) exercise subserves episodic memory function. The purpose of this review is to discuss these potential underlying mechanisms, which include, e.g., acute exercise-induced (via several pathways, such as vagus nerve and muscle spindle stimulation) alterations in neurotransmitters, synaptic tagging/capturing, associativity, and psychological attention.
Collapse
Affiliation(s)
- P D Loprinzi
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| | - P Ponce
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| | - E Frith
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , Oxford, MS, USA
| |
Collapse
|
24
|
Behavioral tagging: Plausible involvement of PKMζ, Arc and role of neurotransmitter receptor systems. Neurosci Biobehav Rev 2018; 94:210-218. [DOI: 10.1016/j.neubiorev.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
25
|
Zannone S, Brzosko Z, Paulsen O, Clopath C. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study. Sci Rep 2018; 8:9486. [PMID: 29930322 PMCID: PMC6013476 DOI: 10.1038/s41598-018-27393-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 11/08/2022] Open
Abstract
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
Collapse
Affiliation(s)
- Sara Zannone
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom
| | - Zuzanna Brzosko
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Ole Paulsen
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom.
| |
Collapse
|
26
|
Dobryakova YV, Ivanova OY, Markevich VA. Administration of muscarinic antagonists induce changes in passive avoidance learning and in synaptic transmission in the CA1 area of the hippocampus. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. eLife 2017; 6. [PMID: 28691903 PMCID: PMC5546805 DOI: 10.7554/elife.27756] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/07/2017] [Indexed: 11/14/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI:http://dx.doi.org/10.7554/eLife.27756.001
Collapse
Affiliation(s)
- Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Sara Zannone
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| |
Collapse
|
28
|
Shaban H, O’Connor R, Ovsepian SV, Dinan TG, Cryan JF, Schellekens H. Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy. Drug Discov Today 2017; 22:31-42. [DOI: 10.1016/j.drudis.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
|
29
|
Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2016; 222:1385-1400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
The basal forebrain (BF) is an important regulator of hippocampal and cortical activity. In Alzheimer's disease (AD), there is a significant loss and dysfunction of cholinergic neurons within the BF, and also a hypertrophy of fibers containing the neuropeptide galanin. Understanding how galanin interacts with BF circuitry is critical in determining what role galanin overexpression plays in the progression of AD. Here, we examined the location and function of galanin in the medial septum/diagonal band (MS/DBB) region of the BF. We show that galanin fibers are located throughout the MS/DBB and intermingled with both cholinergic and GABAergic neurons. Whole-cell patch clamp recordings from MS/DBB neurons in acute slices reveal that galanin decreases tetrodotoxin-sensitive spontaneous GABA release and dampens muscarinic receptor-mediated increases in GABA release in the MS/DBB. These effects are not blocked by pre-exposure to β-amyloid peptide (Aβ1-42). Optogenetic activation of cholinergic neurons in the MS/DBB increases GABA release back onto cholinergic neurons, forming a functional circuit within the MS/DBB. Galanin disrupts this cholinergic-GABAergic circuit by blocking the cholinergic-induced increase in GABA release. These data suggest that galanin works in the BF to reduce inhibitory input onto cholinergic neurons and to prevent cholinergic-induced increase in inhibitory tone. This disinhibition of cholinergic neurons could serve as a compensatory mechanism to counteract the loss of cholinergic signaling that occurs during the progression of AD.
Collapse
|
30
|
Gautam A, Wadhwa R, Thakur MK. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain. Ann Neurosci 2016; 23:68-75. [PMID: 27647956 DOI: 10.1159/000443573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. PURPOSE However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. METHODS In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. RESULTS The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. CONCLUSION Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Akash Gautam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India; Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Ovsepian SV, O'Leary VB, Zaborszky L. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist 2016; 22:238-51. [PMID: 26002948 PMCID: PMC4681696 DOI: 10.1177/1073858415588264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
32
|
de Vin F, Choi SM, Bolognesi ML, Lefebvre RA. Presynaptic M3 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in area CA1 of rat hippocampus. Brain Res 2015; 1629:260-9. [DOI: 10.1016/j.brainres.2015.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022]
|
33
|
Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, Broad LM, Fitzjohn SM, Isaac JTR, Mellor JR. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cereb Cortex 2015; 26:414-26. [PMID: 26472558 PMCID: PMC4677984 DOI: 10.1093/cercor/bhv227] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.
Collapse
Affiliation(s)
- Siobhan H Dennis
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Francesca Pasqui
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Ellen M Colvin
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Helen Sanger
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Adrian J Mogg
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | | | - Lisa M Broad
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Steve M Fitzjohn
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - John T R Isaac
- Neuroscience, Eli Lilly & Company, Windlesham, Surrey GU20 6PH, UK
| | - Jack R Mellor
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
34
|
Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex. Brain Struct Funct 2015; 221:3327-36. [PMID: 26323488 DOI: 10.1007/s00429-015-1103-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/27/2015] [Indexed: 01/04/2023]
Abstract
Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.
Collapse
|
35
|
Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 2015; 38:560-70. [PMID: 26275935 PMCID: PMC4712256 DOI: 10.1016/j.tins.2015.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed.
Collapse
|
36
|
Ohi Y, Kato D, Mizuno M, Sato T, Ueki Y, Borlongan CV, Ojika K, Haji A, Matsukawa N. Enhancement of long-term potentiation via muscarinic modulation in the hippocampus of HCNP precursor transgenic mice. Neurosci Lett 2015; 597:1-6. [PMID: 25899776 DOI: 10.1016/j.neulet.2015.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP) regulates acetylcholine synthesis in the septal hippocampus through the quantitative increase of choline acetyltransferase levels in the septal nucleus both in vitro and in vivo. Additionally, HCNP-precursor protein transgenic (HCNP-pp Tg) mice display depressive behavior. To examine the physiological function of HCNP and/or HCNP-pp on hippocampal neural activity, we investigated whether overexpression of HCNP-pp strengthened the efficiency of neural activity in the hippocampus. Long-term potentiation (LTP) of excitatory synaptic transmission was induced by a tetanic stimulation of the Schaffer collateral-commissural fibers (SCs) in mouse hippocampal slices. LTP in HCNP-pp Tg mice was significantly enhanced when compared with wild-type littermate (WT) mice. This facilitation of LTP in HCNP-pp Tg mice was blocked by atropine or pirenzepine, but not by mecamylamine. In contrast, LTP in WT mice was not affected by atropine, but enhanced by carbachol. However, neither difference in the input-output relationship of field excitatory postsynaptic potentials nor in the facilitation ratio in paired-pulse stimulation of the SCs was observed between HCNP-pp Tg and WT mice, indicating that presynaptic glutamate release in HCNP-pp Tg mice is similar to that of WT mice. These results suggest that muscarinic (M1) modulation of glutamatergic postsynaptic function may be involved in strengthening LTP in HCNP-pp Tg mice.
Collapse
Affiliation(s)
- Yoshiaki Ohi
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Daisuke Kato
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan
| | - Masayuki Mizuno
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan
| | - Toyohiro Sato
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan
| | - Yoshino Ueki
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Repair, University of South Florida, Tampa, Florida, USA
| | - Kosei Ojika
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan
| | - Akira Haji
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya 467-8602, Japan.
| |
Collapse
|
37
|
Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CKE, Herms J. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 2015; 77:729-39. [PMID: 25599931 DOI: 10.1016/j.biopsych.2014.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND BACE1 (beta site amyloid precursor protein cleaving enzyme 1) is the rate limiting protease in amyloid β production, hence a promising drug target for the treatment of Alzheimer's disease. Inhibition of BACE1, as the major β-secretase in vivo with multiple substrates, however is likely to have mechanism-based adverse effects. We explored the impact of long-term pharmacological inhibition of BACE1 on dendritic spine dynamics, synaptic functions, and cognitive performance of adult mice. METHODS Sandwich enzyme-linked immunosorbent assay was used to assess Aβ40 levels in brain and plasma after oral administration of BACE1 inhibitors SCH1682496 or LY2811376. In vivo two-photon microscopy of the somatosensory cortex was performed to monitor structural dynamics of dendritic spines while synaptic functions and plasticity were measured via electrophysiological recordings of excitatory postsynaptic currents and hippocampal long-term potentiation in brain slices. Finally, behavioral tests were performed to analyze the impact of pharmacological inhibition of BACE1 on cognitive performance. RESULTS Dose-dependent decrease of Aβ40 levels in vivo confirmed suppression of BACE1 activity by both inhibitors. Prolonged treatment caused a reduction in spine formation of layer V pyramidal neurons, which recovered after withdrawal of inhibitors. Congruently, the rate of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons and hippocampal long-term potentiation were reduced in animals treated with BACE1 inhibitors. These effects were not detected in Bace1(-/-) mice treated with SCH1682496, confirming BACE1 as the pharmacological target. Described structural and functional changes were associated with cognitive deficits as revealed in behavioral tests. CONCLUSIONS Our findings indicate important functions to BACE1 in structural and functional synaptic plasticity in the mature brain, with implications for cognition.
Collapse
Affiliation(s)
- Severin Filser
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Saak V Ovsepian
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Lidia Blazquez-Llorca
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany
| | | | | | | | - Christian K E Jung
- Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
38
|
Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci 2015; 35:819-30. [PMID: 25589774 DOI: 10.1523/jneurosci.2525-14.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fear memories typically persist for long time periods, and persistent fear memories contribute to post-traumatic stress disorder. However, little is known about the cellular and synaptic mechanisms that perpetuate long-term memories. Here, we find that mouse hippocampal CA1 neurons exhibit biphasic Arc (also known as Arg3.1) elevations after fear experience and that the late Arc expression regulates the perpetuation of fear memoires. An early Arc increase returned to the baseline after 6 h, followed by a second Arc increase after 12 h in the same neuronal subpopulation; these elevations occurred via distinct mechanisms. Antisense-induced blockade of late Arc expression disrupted memory persistence but not formation. Moreover, prolonged fear memories were associated with the delayed, specific elimination of dendritic spines and the reactivation of neuronal ensembles formed during fear experience, both of which required late Arc expression. We propose that late Arc expression refines functional circuits in a delayed fashion to prolong fear memory.
Collapse
|
39
|
Portero-Tresserra M, Del Olmo N, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus. Eur Neuropsychopharmacol 2014; 24:1798-807. [PMID: 25453488 DOI: 10.1016/j.euroneuro.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/01/2014] [Accepted: 10/11/2014] [Indexed: 01/31/2023]
Abstract
Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.
Collapse
|
40
|
Colettis NC, Snitcofsky M, Kornisiuk EE, Gonzalez EN, Quillfeldt JA, Jerusalinsky DA. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure. ACTA ACUST UNITED AC 2014; 21:634-45. [PMID: 25322799 PMCID: PMC4201807 DOI: 10.1101/lm.036210.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.”
Collapse
Affiliation(s)
- Natalia C Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Emilio N Gonzalez
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Jorge A Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Depto. de Biofísica, UFRGS, Porto Alegre 91501-970, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), Instituto de Biología Celular y Neurociencias (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
41
|
Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 2014; 111:13535-40. [PMID: 25197052 DOI: 10.1073/pnas.1411233111] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.
Collapse
|
42
|
Nicotinic and muscarinic agonists and acetylcholinesterase inhibitors stimulate a common pathway to enhance GluN2B-NMDAR responses. Proc Natl Acad Sci U S A 2014; 111:12538-43. [PMID: 25114227 DOI: 10.1073/pnas.1408805111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nicotinic and muscarinic ACh receptor agonists and acetylcholinesterase inhibitors (AChEIs) can enhance cognitive function. However, it is unknown whether a common signaling pathway is involved in the effect. Here, we show that in vivo administration of nicotine, AChEIs, and an m1 muscarinic (m1) agonist increase glutamate receptor, ionotropic, N-methyl D-aspartate 2B (GluN2B)-containing NMDA receptor (NR2B-NMDAR) responses, a necessary component in memory formation, in hippocampal CA1 pyramidal cells, and that coadministration of the m1 antagonist pirenzepine prevents the effect of cholinergic drugs. These observations suggest that the effect of nicotine is secondary to increased release of ACh via the activation of nicotinic ACh receptors (nAChRs) and involves m1 receptor activation through ACh. In vitro activation of m1 receptors causes the selective enhancement of NR2B-NMDAR responses in CA1 pyramidal cells, and in vivo exposure to cholinergic drugs occludes the in vitro effect. Furthermore, in vivo exposure to cholinergic drugs suppresses the potentiating effect of Src on NMDAR responses in vitro. These results suggest that exposure to cholinergic drugs maximally stimulates the m1/guanine nucleotide-binding protein subunit alpha q/PKC/proline-rich tyrosine kinase 2/Src signaling pathway for the potentiation of NMDAR responses in vivo, occluding the in vitro effects of m1 activation and Src. Thus, our results indicate not only that nAChRs, ACh, and m1 receptors are on the same pathway involving Src signaling but also that NR2B-NMDARs are a point of convergence of cholinergic and glutamatergic pathways involved in learning and memory.
Collapse
|
43
|
Palotai M, Adamik A, Telegdy G. Involvement of neurotransmitters in the action of the nociceptin/orphanin FQ peptide-receptor system on passive avoidance learning in rats. Neurochem Res 2014; 39:1477-83. [PMID: 24893797 DOI: 10.1007/s11064-014-1337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-L-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-L-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Semmelweis Str. 1, Szeged, 6701, Hungary
| | | | | |
Collapse
|
44
|
Tozzi A, Sclip A, Tantucci M, de Iure A, Ghiglieri V, Costa C, Di Filippo M, Borsello T, Calabresi P. Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer's disease. Neurobiol Aging 2014; 36:123-33. [PMID: 25104560 DOI: 10.1016/j.neurobiolaging.2014.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
To characterize the mechanisms underlying region- and age-dependent hippocampal synaptic dysfunction in Alzheimer's disease, we used transgenic CRND8 mice, expressing the Swedish-Indiana APP mutation. In 2-month-old mice, no β-amyloid plaques deposition, but the presence of soluble oligomers, were found in CA1 area but not in dentate gyrus (DG). At this age, long-term potentiation (LTP) was reduced selectively in CA1. In 6-month-old mice, the presence of soluble oligomers was accompanied by accumulation of β-amyloid plaques and decreased LTP in CA1 and DG regions. In both regions, the loss of LTP was linked to reduced N-methyl-D-aspartate (NMDA) to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) current ratio. The acetylcholine-esterase inhibitor, neostigmine rescued LTP in CA1 area at early stage of the disease but not after plaques deposition. Conversely, the NMDA receptor antagonist memantine restored LTP selectively in DG at later stages of the disease. Both these effects were associated with a normalization of the NMDA to AMPA ratio. The association between the recovery of LTP and the normalization of the NMDA to AMPA ratio provides information on new possible therapeutic strategies in Alzheimer's disease.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy; Laboratory of Neurophysiology, IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Sclip
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Michela Tantucci
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Antonio de Iure
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Veronica Ghiglieri
- Laboratory of Neurophysiology, IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Cinzia Costa
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Università di Perugia, Department of Medicine, Ospedale S. Maria della Misericordia, Perugia, Italy; Laboratory of Neurophysiology, IRCCS, Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
45
|
A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 2014; 4:2760. [PMID: 24217681 PMCID: PMC3831287 DOI: 10.1038/ncomms3760] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022] Open
Abstract
Learning induces plastic changes in synapses. However, the regulatory molecules that orchestrate learning-induced synaptic changes are largely unknown. Although it is well established that cholinergic inputs from the medial septum modulate learning and memory, evidence for the cholinergic regulation of learning-induced synaptic plasticity is lacking. Here we find that the activation of muscarinic acetylcholine (ACh) receptors (mAChRs) mediates the contextual fear learning-driven strengthening of hippocampal excitatory pyramidal synapses through the synaptic incorporation of AMPA-type glutamate receptors (AMPARs). Contextual fear learning also enhances the strength of inhibitory synapses on hippocampal pyramidal CA1 neurons, in a manner mediated by the activation of, not mAChRs, but, nicotinic AChRs (nAChRs). We observe a significant correlation between the learning-induced increases in excitatory and inhibitory synaptic strength at individual pyramidal neurons. Understanding the mechanisms underlying cholinergic regulation of learning-induced hippocampal synaptic plasticity may help the development of new therapies for cognitive disorders. Cholinergic signalling modulates learning and memory; however, its influence on learning-induced synaptic plasticity is less clear. Mitsushima et al. show that acetylcholine simultaneously strengthens both excitatory and inhibitory synapses onto CA1 pyramidal neurons following an inhibitory avoidance task.
Collapse
|
46
|
Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NM, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol 2014; 592:3463-94. [PMID: 24879872 DOI: 10.1113/jphysiol.2014.275453] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory.
Collapse
Affiliation(s)
- Feng Yi
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Jackson Ball
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Kurt E Stoll
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Vaishali C Satpute
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Neuroscience Graduate Program
| | - Samantha M Mitchell
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences Davidson Honors College, The University of Montana, Missoula, MT 59812, USA
| | - Jordan L Pauli
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Benjamin B Holloway
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - April D Johnston
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| | - Neil M Nathanson
- Department of Pharmacology, University of Washington, Box 357750, Seattle, WA 98195-7750, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - David J Gerber
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Josh Lawrence
- COBRE Center for Structural and Functional Neuroscience Department of Biomedical and Pharmaceutical Sciences
| |
Collapse
|
47
|
Cognitive Enhancing Effects of Alpha Asarone in Amnesic Mice by Influencing Cholinergic and Antioxidant Defense Mechanisms. Biosci Biotechnol Biochem 2014; 76:1518-22. [DOI: 10.1271/bbb.120247] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Jeggo R, Zhao FY, Spanswick D. Electrophysiological Techniques for Studying Synaptic Activity In Vivo. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 64:11.11.1-17. [PMID: 26344209 DOI: 10.1002/0471141755.ph1111s64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding the physiology, pharmacology, and plasticity associated with synaptic function is a key goal of neuroscience research and is fundamental to identifying the processes involved in the development and manifestation of neurological disease. A diverse range of electrophysiological methodologies are used to study synaptic function. Described in this unit is a technique for recording electrical activity from a single component of the central nervous system that is used to investigate pre- and post-synaptic elements of synaptic function. A strength of this technique is that it can be used on live animals, although the effect of anesthesia must be taken into consideration when interpreting the results. This methodology can be employed not only in naïve animals for studying normal physiological synaptic function, but also in a variety of disease models, including transgenic animals, to examine dysfunctional synaptic plasticity associated with neurological pathologies.
Collapse
Affiliation(s)
- Ross Jeggo
- Neurosolutions Limited, University of Warwick Medical School, Coventry, United Kingdom
| | - Fei-Yue Zhao
- Neurosolutions Limited, University of Warwick Medical School, Coventry, United Kingdom
| | - David Spanswick
- The Institute For Genomic Research, Rockville, Maryland.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,University of Warwick Medical School, Coventry, United Kingdom
| |
Collapse
|
49
|
Li L, Wang H, Ghafari M, An G, Korz V, Lubec G. Dorsal hippocampal brain receptor complexes linked to the protein synthesis-dependent late phase (LTP) in the rat. Brain Struct Funct 2014; 220:1051-62. [PMID: 24442866 DOI: 10.1007/s00429-013-0699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
In order to link major brain receptor complex levels to in vivo electrically induced LTP, a bipolar stimulation electrode was chronically implanted into the perforant path, while two monopolar recording electrodes were implanted into the dentate gyrus of the dorsal hippocampus. The recording electrode was measuring extracellular excitatory postsynaptic potentials, while the other one measured population spikes. Immunoblotting of native receptor proteins was carried out in the DH based upon blue-native gel electrophoresis and immunoprecipitation followed by mass spectrometrical identification of the NR1-GluA1-GluA2 complex was used to provide evidence for complex formation. The induction of LTP in DH was proven and NMDA receptor complex levels containing NR1, GluA1, GluA2 and GluA3 were modulated by LTP induction. The LTP-associated changes of receptor complex levels may indicate concerted action, interaction and represent a pattern of major brain receptor complexes in the DH following electrical induction of LTP in the rat.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Navakkode S, Korte M. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology 2014; 79:525-33. [PMID: 24412673 DOI: 10.1016/j.neuropharm.2013.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany
| | - Martin Korte
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany.
| |
Collapse
|