1
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
2
|
Cornelius J, Haak S, Rothkegel M, Korte M, Michaelsen-Preusse K. Phosphorylation of the actin-binding protein profilin2a at S137 modulates bidirectional structural plasticity at dendritic spines. Front Cell Dev Biol 2023; 11:1107380. [PMID: 36875774 PMCID: PMC9975505 DOI: 10.3389/fcell.2023.1107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Synaptic plasticity requires constant adaptation of functional and structural features at individual synaptic connections. Rapid re-modulation of the synaptic actin cytoskeleton provides the scaffold orchestrating both morphological and functional modifications. A major regulator of actin polymerization not only in neurons but also in various other cell types is the actin-binding protein profilin. While profilin is known to mediate the ADP to ATP exchange at actin monomers through its direct interaction with G-actin, it additionally is able to influence actin dynamics by binding to membrane-bound phospholipids as phosphatidylinositol (4,5)-bisphosphate (PIP2) as well as several other proteins containing poly-L-proline motifs including actin modulators like Ena/VASP, WAVE/WASP or formins. Notably, these interactions are proposed to be mediated by a fine-tuned regulation of post-translational phosphorylation of profilin. However, while phosphorylation sites of the ubiquitously expressed isoform profilin1 have been described and analyzed previously, there is still only little known about the phosphorylation of the profilin2a isoform predominantly expressed in neurons. Methods: Here, utilizing a knock-down/knock-in approach, we replaced endogenously expressed profilin2a by (de)phospho-mutants of S137 known to alter actin-, PIP2 and PLP-binding properties of profilin2a and analyzed their effect on general actin dynamics as well as activity-dependent structural plasticity. Results and Discussion: Our findings suggest that a precisely timed regulation of profilin2a phosphorylation at S137 is needed to mediate actin dynamics and structural plasticity bidirectionally during long-term potentiation and long-term depression, respectively.
Collapse
Affiliation(s)
- Jonas Cornelius
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Stefan Haak
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Rothkegel
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Research group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | | |
Collapse
|
3
|
Sungur AÖ, Zeitouny C, Gabele L, Metz I, Wöhr M, Michaelsen-Preusse K, Rust MB. Transient reduction in dendritic spine density in brain-specific profilin1 mutant mice is associated with behavioral deficits. Front Mol Neurosci 2022; 15:952782. [PMID: 35992199 PMCID: PMC9381693 DOI: 10.3389/fnmol.2022.952782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Actin filaments form the backbone of dendritic spines, the postsynaptic compartment of most excitatory synapses in the brain. Spine density changes affect brain function, and postsynaptic actin defects have been implicated in various neuropathies. It is mandatory to identify the actin regulators that control spine density. Based on previous studies, we hypothesized a role for the actin regulator profilin1 in spine formation. We report reduced hippocampal spine density in juvenile profilin1 mutant mice together with impairments in memory formation and reduced ultrasonic communication during active social behavior. Our results, therefore, underline a previously suggested function of profilin1 in controlling spine formation and behavior in juvenile mice.
Collapse
Affiliation(s)
- A. Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Caroline Zeitouny
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Lea Gabele
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
- Leuven Brain Institute, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
- Kristin Michaelsen-Preusse,
| | - Marco B. Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
- *Correspondence: Marco B. Rust,
| |
Collapse
|
4
|
Bose M, Nawaz MS, Pal R, Chattarji S. Stress Elicits Contrasting Effects on Rac1-Cofilin Signaling in the Hippocampus and Amygdala. Front Mol Neurosci 2022; 15:880382. [PMID: 35592113 PMCID: PMC9110925 DOI: 10.3389/fnmol.2022.880382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is accumulating evidence for contrasting patterns of stress-induced morphological and physiological plasticity in glutamatergic synapses of the hippocampus and amygdala. The same chronic stress that leads to the formation of dendritic spines in the basolateral amygdala (BLA) of rats, leads to a loss of spines in the hippocampus. However, the molecular underpinnings of these divergent effects of stress on dendritic spines are not well understood. Since the activity of the Rho GTPase Rac1 and the actin-depolymerizing factor cofilin are known to play a pivotal role in spine morphogenesis, we investigated if alterations in this signaling pathway reflect the differential effects of stress on spine plasticity in the hippocampus and amygdala. A day after the end of chronic immobilization stress (2 h/day for 10 days), we found a reduction in the activity of Rac1, as well as its effector p21-activated kinase 1 (PAK1), in the rat hippocampus. These changes, in turn, decreased cofilin phosphorylation alongside a reduction in the levels of profilin isoforms. In striking contrast, the same chronic stress increased Rac1, PAK1 activity, cofilin phosphorylation, and profilin levels in the BLA, which is consistent with enhanced actin polymerization leading to spinogenesis in the BLA. In the hippocampus, on the other hand, the same stress caused the opposite changes, the functional consequences of which would be actin depolymerization leading to the elimination of spines. Together, these findings reveal a role for brain-region specific differences in the dysregulation of Rac1-to-cofilin signaling in the effects of repeated stress on two brain areas that are implicated in the emotional and cognitive symptoms of stress-related psychiatric disorders.
Collapse
|
5
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
6
|
Liu X, Pimm ML, Haarer B, Brawner AT, Henty-Ridilla JL. Biochemical characterization of actin assembly mechanisms with ALS-associated profilin variants. Eur J Cell Biol 2022; 101:151212. [PMID: 35248815 PMCID: PMC10163920 DOI: 10.1016/j.ejcb.2022.151212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Eight separate mutations in the actin-binding protein profilin-1 have been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Profilin is essential for many neuronal cell processes through its regulation of lipids, nuclear signals, and cytoskeletal dynamics, including actin filament assembly. Direct interactions between profilin and actin monomers inhibit actin filament polymerization. In contrast, profilin can also stimulate polymerization by simultaneously binding actin monomers and proline-rich tracts found in other proteins. Whether the ALS-associated mutations in profilin compromise these actin assembly functions is unclear. We performed a quantitative biochemical comparison of the direct and formin mediated impact for the eight ALS-associated profilin variants on actin assembly using classic protein-binding and single-filament microscopy assays. We determined that the binding constant of each profilin for actin monomers generally correlates with the actin nucleation strength associated with each ALS-related profilin. In the presence of formin, the A20T, R136W, Q139L, and C71G variants failed to activate the elongation phase of actin assembly. This diverse range of formin-activities is not fully explained through profilin-poly-L-proline (PLP) interactions, as all ALS-associated variants bind a formin-derived PLP peptide with similar affinities. However, chemical denaturation experiments suggest that the folding stability of these profilins impact some of these effects on actin assembly. Thus, changes in profilin protein stability and alterations in actin filament polymerization may both contribute to the profilin-mediated actin disruptions in ALS.
Collapse
Affiliation(s)
- Xinbei Liu
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrew T Brawner
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
7
|
Di Domenico M, Jokwitz M, Witke W, Pilo Boyl P. Specificity and Redundancy of Profilin 1 and 2 Function in Brain Development and Neuronal Structure. Cells 2021; 10:cells10092310. [PMID: 34571959 PMCID: PMC8467068 DOI: 10.3390/cells10092310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Profilin functions have been discussed in numerous cellular processes, including actin polymerization. One puzzling aspect is the concomitant expression of more than one profilin isoform in most tissues. In neuronal precursors and in neurons, profilin 1 and profilin 2 are co-expressed, but their specific and redundant functions in brain morphogenesis are still unclear. Using a conditional knockout mouse model to inactivate both profilins in the developing CNS, we found that threshold levels of profilin are necessary for the maintenance of the neuronal stem-cell compartment and the generation of the differentiated neurons, irrespective of the specific isoform. During embryonic development, profilin 1 is more abundant than profilin 2; consequently, modulation of profilin 1 levels resulted in a more severe phenotype than depletion of profilin 2. Interestingly, the relevance of the isoforms was reversed in the postnatal brain. Morphology of mature neurons showed a stronger dependence on profilin 2, since this is the predominant isoform in neurons. Our data highlight redundant functions of profilins in neuronal precursor expansion and differentiation, as well as in the maintenance of pyramidal neuron dendritic arborization. The specific profilin isoform is less relevant; however, a threshold profilin level is essential. We propose that the common activity of profilin 1 and profilin 2 in actin dynamics is responsible for the observed compensatory effects.
Collapse
|
8
|
Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells 2021; 10:cells10071795. [PMID: 34359964 PMCID: PMC8305626 DOI: 10.3390/cells10071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.
Collapse
|
9
|
Rockwell AL, Hongay CF. The m 6A Dynamics of Profilin in Neurogenesis. Front Genet 2019; 10:987. [PMID: 31798620 PMCID: PMC6862867 DOI: 10.3389/fgene.2019.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Our understanding of the biological role of N6-methyladenosine (m6A), a ubiquitous non-editing RNA modification, has increased greatly since 2011. More recently, work from several labs revealed that m6A methylation regulates several aspects of mRNA metabolism. The “writer” protein METTL3, known as MT-A70 in humans, DmIme4 in flies, and MTA in plants, has the catalytic site of the METTL3/14/16 subunit of the methyltransferase complex that includes many other proteins. METTL3 is evolutionarily conserved and essential for development in multicellular organisms. However, until recently, no study has been able to provide a mechanism that explains the essentiality of METTL3. The addition of m6A to gene transcripts has been compared with the epigenetic code of histone modifications because of its effects on gene expression and its reversibility, giving birth to the field of epitranscriptomics, the study of the biological role of this and similar RNA modifications. Here, we focus on METTL3 and its likely conserved role in profilin regulation in neurogenesis. However, this and many other subunits of the methyltransferase complex are starting to be identified in several developmental processes and diseases. A recent plethora of studies about the biological role of METTL3 and other components of the methyltransferase complex that erase (FTO) or recognize (YTH proteins) this modification on transcripts revealed that this RNA modification plays a variety of roles in many biological processes like neurogenesis. Our work in Drosophila shows that the ancient and evolutionarily conserved gene profilin (chic in Drosophila) is a target of the m6A writer. Here, we discuss the implications of our study in Drosophila and how it unveils a conserved mechanism in support of the essential function of METTL3 in metazoan development. Profilin (chic) is an essential gene of ancient evolutionary origins, present in sponges (Porifera), the oldest still extant metazoan phylum of the common metazoan ancestor Urmetazoa. We propose that the relationship between profilin and METTL3 is conserved in metazoans and it provides insights into possible regulatory roles of m6A modification of profilin transcripts in processes such as neurogenesis.
Collapse
Affiliation(s)
| | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
10
|
Nakahata Y, Yasuda R. Plasticity of Spine Structure: Local Signaling, Translation and Cytoskeletal Reorganization. Front Synaptic Neurosci 2018; 10:29. [PMID: 30210329 PMCID: PMC6123351 DOI: 10.3389/fnsyn.2018.00029] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic spines are small protrusive structures on dendritic surfaces, and function as postsynaptic compartments for excitatory synapses. Plasticity of spine structure is associated with many forms of long-term neuronal plasticity, learning and memory. Inside these small dendritic compartments, biochemical states and protein-protein interactions are dynamically modulated by synaptic activity, leading to the regulation of protein synthesis and reorganization of cytoskeletal architecture. This in turn causes plasticity of structure and function of the spine. Technical advances in monitoring molecular behaviors in single dendritic spines have revealed that each signaling pathway is differently regulated across multiple spatiotemporal domains. The spatial pattern of signaling activity expands from a single spine to the nearby dendritic area, dendritic branch and the nucleus, regulating different cellular events at each spatial scale. Temporally, biochemical events are typically triggered by short Ca2+ pulses (~10–100 ms). However, these signals can then trigger activation of downstream protein cascades that can last from milliseconds to hours. Recent imaging studies provide many insights into the biochemical processes governing signaling events of molecular assemblies at different spatial localizations. Here, we highlight recent findings of signaling dynamics during synaptic plasticity and discuss their roles in long-term structural plasticity of dendritic spines.
Collapse
Affiliation(s)
- Yoshihisa Nakahata
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience (MPFI), Jupiter, FL, United States
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience (MPFI), Jupiter, FL, United States
| |
Collapse
|
11
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
12
|
Pai CS, Sharma PK, Huang HT, Loganathan S, Lin H, Hsu YL, Phasuk S, Liu IY. The Activating Transcription Factor 3 ( Atf3) Homozygous Knockout Mice Exhibit Enhanced Conditioned Fear and Down Regulation of Hippocampal GELSOLIN. Front Mol Neurosci 2018. [PMID: 29515366 PMCID: PMC5826182 DOI: 10.3389/fnmol.2018.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis underlying fear memory formation is a key theme in anxiety disorder research. Because activating transcription factor 3 (ATF3) is induced under stress conditions and is highly expressed in the hippocampus, we hypothesize that ATF3 plays a role in fear memory formation. We used fear conditioning and various other paradigms to test Atf3 knockout mice and study the role of ATF3 in processing fear memory. The results demonstrated that the lack of ATF3 specifically enhanced the expression of fear memory, which was indicated by a higher incidence of the freeze response after fear conditioning, whereas the occurrence of spatial memory including Morris Water Maze and radial arm maze remained unchanged. The enhanced freezing behavior and normal spatial memory of the Atf3 knockout mice resembles the fear response and numbing symptoms often exhibited by patients affected with posttraumatic stress disorder. Additionally, we determined that after fear conditioning, dendritic spine density was increased, and expression of Gelsolin, the gene encoding a severing protein for actin polymerization, was down-regulated in the bilateral hippocampi of the Atf3 knockout mice. Taken together, our results suggest that ATF3 may suppress fear memory formation in mice directly or indirectly through mechanisms involving modulation of actin polymerization.
Collapse
Affiliation(s)
- Chia-Sheng Pai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Pranao K Sharma
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsien-Ting Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | | | - Heng Lin
- Department of Physiology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Luan Hsu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ingrid Y Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
13
|
Nirschl JJ, Ghiretti AE, Holzbaur ELF. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 2017; 18:585-597. [PMID: 28855741 DOI: 10.1038/nrn.2017.100] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.
Collapse
Affiliation(s)
- Jeffrey J Nirschl
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Amy E Ghiretti
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Lei W, Myers KR, Rui Y, Hladyshau S, Tsygankov D, Zheng JQ. Phosphoinositide-dependent enrichment of actin monomers in dendritic spines regulates synapse development and plasticity. J Cell Biol 2017; 216:2551-2564. [PMID: 28659327 PMCID: PMC5551708 DOI: 10.1083/jcb.201612042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Dendritic spines are small postsynaptic compartments of excitatory synapses in the vertebrate brain that are modified during learning, aging, and neurological disorders. The formation and modification of dendritic spines depend on rapid assembly and dynamic remodeling of the actin cytoskeleton in this highly compartmentalized space, but the precise mechanisms remain to be fully elucidated. In this study, we report that spatiotemporal enrichment of actin monomers (G-actin) in dendritic spines regulates spine development and plasticity. We first show that dendritic spines contain a locally enriched pool of G-actin that can be regulated by synaptic activity. We further find that this G-actin pool functions in spine development and its modification during synaptic plasticity. Mechanistically, the relatively immobile G-actin pool in spines depends on the phosphoinositide PI(3,4,5)P3 and involves the actin monomer-binding protein profilin. Together, our results have revealed a novel mechanism by which dynamic enrichment of G-actin in spines regulates the actin remodeling underlying synapse development and plasticity.
Collapse
Affiliation(s)
- Wenliang Lei
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Yanfang Rui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| | - Siarhei Hladyshau
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Law HCH, Szeto SSW, Quan Q, Zhao Y, Zhang Z, Krakovska O, Lui LT, Zheng C, Lee SMY, Siu KWM, Wang Y, Chu IK. Characterization of the Molecular Mechanisms Underlying the Chronic Phase of Stroke in a Cynomolgus Monkey Model of Induced Cerebral Ischemia. J Proteome Res 2017; 16:1150-1166. [PMID: 28102082 DOI: 10.1021/acs.jproteome.6b00651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Yun Zhao
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Olga Krakovska
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada
| | - Leong Ting Lui
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Simon M-Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Avenue Padre Tomás Pereira S.J., Taipa, Macau 999078, China
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
16
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
17
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
18
|
Lei W, Omotade OF, Myers KR, Zheng JQ. Actin cytoskeleton in dendritic spine development and plasticity. Curr Opin Neurobiol 2016; 39:86-92. [PMID: 27138585 DOI: 10.1016/j.conb.2016.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 01/20/2023]
Abstract
Synapses are the basic unit of neuronal communication and their disruption is associated with many neurological disorders. Significant progress has been made towards understanding the molecular and genetic regulation of synapse formation, modulation, and dysfunction, but the underlying cellular mechanisms remain incomplete. The actin cytoskeleton not only provides the structural foundation for synapses, but also regulates a diverse array of cellular activities underlying synaptic function. Here we will discuss the regulation of the actin cytoskeleton in dendritic spines, the postsynaptic compartment of excitatory synapses. We will focus on a select number of actin regulatory processes, highlighting recent advances, the complexity of crosstalk between different pathways, and the challenges of understanding their precise impact on the structure and function of synapses.
Collapse
Affiliation(s)
- Wenliang Lei
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Omotola F Omotade
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
19
|
Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome. Proc Natl Acad Sci U S A 2016; 113:3365-70. [PMID: 26951674 DOI: 10.1073/pnas.1516697113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Learning and memory, to a large extent, depend on functional changes at synapses. Actin dynamics orchestrate the formation of synapses, as well as their stabilization, and the ability to undergo plastic changes. Hence, profilins are of key interest as they bind to G-actin and enhance actin polymerization. However, profilins also compete with actin nucleators, thereby restricting filament formation. Here, we provide evidence that the two brain isoforms, profilin1 (PFN1) and PFN2a, regulate spine actin dynamics in an opposing fashion, and that whereas both profilins are needed during synaptogenesis, only PFN2a is crucial for adult spine plasticity. This finding suggests that PFN1 is the juvenile isoform important during development, whereas PFN2a is mandatory for spine stability and plasticity in mature neurons. In line with this finding, only PFN1 levels are altered in the mouse model of the developmental neurological disorder Fragile X syndrome. This finding is of high relevance because Fragile X syndrome is the most common monogenetic cause for autism spectrum disorder. Indeed, the expression of recombinant profilins rescued the impairment in spinogenesis, a hallmark in Fragile X syndrome, thereby linking the regulation of actin dynamics to synapse development and possible dysfunction.
Collapse
|
20
|
Schweinhuber SK, Meßerschmidt T, Hänsch R, Korte M, Rothkegel M. Profilin isoforms modulate astrocytic morphology and the motility of astrocytic processes. PLoS One 2015; 10:e0117244. [PMID: 25629407 PMCID: PMC4309604 DOI: 10.1371/journal.pone.0117244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023] Open
Abstract
The morphology of astrocytic processes determines their close structural association with synapses referred to as the ‘tripartite synapse’. Concerted morphological plasticity processes at tripartite synapses are supposed to shape neuronal communication. Morphological changes in astrocytes as well as the motility of astrocytic processes require remodeling of the actin cytoskeleton. Among the regulators of fast timescale actin-based motility, the actin binding protein profilin 1 has recently been shown to control the activity-dependent outgrowth of astrocytic processes. Here, we demonstrate that cultured murine astrocytes in addition to the ubiquitous profilin 1 also express the neuronal isoform profilin 2a. To analyze the cellular function of both profilins in astrocytes, we took advantage of a shRNA mediated isoform-specific downregulation. Interestingly, consistent with earlier results in neurons, we found redundant as well as isoform-specific functions of both profilins in modulating cellular physiology. The knockdown of either profilin 1 or profilin 2a led to a significant decrease in cell spreading of astrocytes. In contrast, solely the knockdown of profilin 2a resulted in a significantly reduced morphological complexity of astrocytes in both dissociated and slice culture astrocytes. Moreover, both isoforms proved to be crucial for forskolin-induced astrocytic stellation. Furthermore, forskolin treatment resulted in isoform-specific changes in the phosphorylation level of profilin 1 and profilin 2a, leading to a PKA-dependent phosphorylation of profilin 2a. In addition, transwell assays revealed an involvement of both isoforms in the motility of astrocytic processes, while FRAP analysis displayed an isoform-specific role of profilin 1 in the regulation of actin dynamics in peripheral astrocytic processes. Taken together, we suggest profilin isoforms to be important modulators of astrocytic morphology and motility with overlapping as well as isoform-specific functions.
Collapse
Affiliation(s)
| | - Tania Meßerschmidt
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Robert Hänsch
- Molecular and Cell Biology of Plants, Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Rothkegel
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
21
|
Föcking M, Opstelten R, Prickaerts J, Steinbusch HWM, Dunn MJ, van den Hove DLA, Cotter DR. Proteomic investigation of the hippocampus in prenatally stressed mice implicates changes in membrane trafficking, cytoskeletal, and metabolic function. Dev Neurosci 2014; 36:432-42. [PMID: 25138076 DOI: 10.1159/000365327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress influences the development of the fetal brain and so contributes to the risk of the development of psychiatric disorders in later life. The hippocampus is particularly sensitive to prenatal stress, and robust abnormalities have been described in the hippocampus in schizophrenia and depression. The aim of this study was to determine whether prenatal stress is associated with distinct patterns of differential protein expression in the hippocampus using a validated mouse model. We therefore performed a comparative proteomic study assessing female hippocampal samples from 8 prenatally stressed mice and 8 control mice. Differential protein expression was assessed using 2-dimensional difference in gel electrophoresis and subsequent mass spectrometry. The observed changes in a selected group of differentially expressed proteins were confirmed by Western blotting. In comparison to controls, 47 protein spots (38 individual proteins) were found to be differentially expressed in the hippocampus of prenatally stressed mice. Functional grouping of these proteins revealed that prenatal stress influenced the expression of proteins involved in brain development, cytoskeletal composition, stress response, and energy metabolism. Western blotting was utilized to validate the changes in calretinin, hippocalcin, profilin-1 and the signal-transducing adaptor molecule STAM1. Septin-5 could not be validated via Western blotting due to methodological issues. Closer investigation of the validated proteins also pointed to an interesting role for membrane trafficking deficits mediated by prenatal stress. Our findings demonstrate that prenatal stress leads to altered hippocampal protein expression, implicating numerous molecular pathways that may provide new targets for psychotropic drug development.
Collapse
Affiliation(s)
- Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
22
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
23
|
Han K, Holder JL, Schaaf CP, Lu H, Chen H, Kang H, Tang J, Wu Z, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 2013; 503:72-7. [PMID: 24153177 PMCID: PMC3923348 DOI: 10.1038/nature12630] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023]
Abstract
Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression per se has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile.
Collapse
Affiliation(s)
- Kihoon Han
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA [3] Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rácz B, Weinberg RJ. Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 2013; 47:77-89. [PMID: 22983912 PMCID: PMC3538892 DOI: 10.1007/s12035-012-8345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Glutamatergic axons in the mammalian forebrain terminate predominantly onto dendritic spines. Long-term changes in the efficacy of these excitatory synapses are tightly coupled to changes in spine morphology. The reorganization of the actin cytoskeleton underlying this spine "morphing" involves numerous proteins that provide the machinery needed for adaptive cytoskeletal remodeling. Here, we review recent literature addressing the chemical architecture of the spine, focusing mainly on actin-binding proteins (ABPs). Accumulating evidence suggests that ABPs are organized into functionally distinct microdomains within the spine cytoplasm. This functional compartmentalization provides a structural basis for regulation of the spinoskeleton, offering a novel window into mechanisms underlying synaptic plasticity.
Collapse
Affiliation(s)
- Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, 1078, Budapest, Hungary.
| | | |
Collapse
|
25
|
Purkinje cell loss and motor coordination defects in profilin1 mutant mice. Neuroscience 2012; 223:355-64. [PMID: 22864186 DOI: 10.1016/j.neuroscience.2012.07.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/05/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
Profilin1 is an actin monomer-binding protein, essential for cytoskeletal dynamics. Based on its broad expression in the brain and the localization at excitatory synapses (hippocampal CA3-CA1 synapse, cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse), an important role for profilin1 in brain development and synapse physiology has been postulated. We recently showed normal physiology of hippocampal CA3-CA1 synapses in the absence of profilin1, but impaired glial cell binding and radial migration of cerebellar granule neurons (CGNs). Consequently, brain-specific inactivation of profilin1 by exploiting conditional mutants and Nestin-mediated cre expression resulted in a cerebellar hypoplasia, aberrant organization of cerebellar cortex layers, and ectopic CGNs. Apart from these findings we noted a loss of PCs and an irregularly shaped PC layer in adult mutants. In this study, we show that PC migration and development are not affected in profilin1 mutants, suggesting cell type-specific functions for profilin1 in PCs and CGNs. PC loss begins during the second postnatal week and progresses until adulthood with no further impairment in aged mutants. In Nestin-cre profilin1 mutants, defects in cerebellar cortex cytoarchitecture are associated with impaired motor coordination. However, in L7-cre mutants, lacking profilin1 specifically in PCs, the cerebellar cortex cytoarchitecture is unchanged. Thereby, our results demonstrate that the loss of PCs is not caused by cell-autonomous defects, but presumably by impaired CGN migration. Finally, we show normal functionality of PF-PC synapses in the absence of profilin1. In summary, we conclude that profilin1 is crucially important for brain development, but dispensable for the physiology of excitatory synapses.
Collapse
|
26
|
Tatavarty V, Das S, Yu J. Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 2012; 23:3167-77. [PMID: 22740628 PMCID: PMC3418311 DOI: 10.1091/mbc.e12-02-0165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dendritic spines are small protrusions that receive synaptic signals in neuronal networks. The actin cytoskeleton plays a key role in regulating spine morphogenesis, as well as in the function of synapses. Here we report the first quantitative measurement of F-actin retrograde flow rate in dendritic filopodia, the precursor of dendritic spines, and in newly formed spines, using a technique based on photoactivation localization microscopy. We found a fast F-actin retrograde flow in the dendritic filopodia but not in the spine necks. The quantification of F-actin flow rates, combined with fluorescence recovery after photobleaching measurements, allowed for a full quantification of spatially resolved kinetic rates of actin turnover, which was not previously feasible. Furthermore we provide evidences that myosin II regulates the actin flow in dendritic filopodia and translocates from the base to the tip of the protrusion upon spine formation. Rac1 inhibition led to mislocalization of myosin II, as well as to disruption of the F-actin flow. These results provide advances in the quantitative understanding of F-actin remodeling during spine formation.
Collapse
Affiliation(s)
- Vedakumar Tatavarty
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | |
Collapse
|
27
|
Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005587. [PMID: 22357909 DOI: 10.1101/cshperspect.a005587] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Kristen M Harris
- Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
| | | |
Collapse
|
28
|
Murk K, Wittenmayer N, Michaelsen-Preusse K, Dresbach T, Schoenenberger CA, Korte M, Jockusch BM, Rothkegel M. Neuronal profilin isoforms are addressed by different signalling pathways. PLoS One 2012; 7:e34167. [PMID: 22470532 PMCID: PMC3314592 DOI: 10.1371/journal.pone.0034167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/23/2012] [Indexed: 01/29/2023] Open
Abstract
Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei.
Collapse
Affiliation(s)
- Kai Murk
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Nina Wittenmayer
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Thomas Dresbach
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Martin Korte
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | | | - Martin Rothkegel
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
29
|
Preserved morphology and physiology of excitatory synapses in profilin1-deficient mice. PLoS One 2012; 7:e30068. [PMID: 22253883 PMCID: PMC3256187 DOI: 10.1371/journal.pone.0030068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/09/2011] [Indexed: 12/19/2022] Open
Abstract
Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity.
Collapse
|
30
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
31
|
Regulation of the actin cytoskeleton in dendritic spines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:81-95. [PMID: 22351052 DOI: 10.1007/978-3-7091-0932-8_4] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spine morphogenesis is largely dependent on the remodeling of the actin cytoskeleton. Actin dynamics within spines is regulated by a complex network of signaling molecules, which relay signals from synaptic receptors, through small GTPases and their regulators, to actin-binding proteins. In this chapter, we will discuss molecules involved in dendritic spine plasticity beginning with actin and moving upstream toward neuromodulators and trophic factors that initiate signaling involved in these plasticity events. We will place special emphasis on small GTPase pathways, as they have an established importance in dendritic spine plasticity and pathology. Finally, we will discuss some epigenetic mechanisms that control spine morphogenesis.
Collapse
|
32
|
Nedelescu H, Kelso CM, Lázaro-Muñoz G, Purpura M, Cain CK, Ledoux JE, Aoki C. Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 2011; 518:4723-39. [PMID: 20963825 DOI: 10.1002/cne.22472] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although glutamate receptor 1 (GluR1)-containing α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (GluR1-AMPARs) are implicated in synaptic plasticity, it has yet to be demonstrated whether endogenous GluR1-AMPARs undergo activity-dependent trafficking in vivo to synapses to support short-term memory (STM) formation. The paradigm of pavlovian fear conditioning (FC) can be used to address this question, because a discrete region-the lateral amygdala (LA)-has been shown unambiguously to be necessary for the formation of the associative memory between a neutral stimulus (tone [CS]) and a noxious stimulus (foot shock [US]). Acquisition of STM for FC can occur even in the presence of protein synthesis inhibitors, indicating that redistribution of pre-existing molecules to synaptic junctions underlies STM. We employed electron microscopic immunocytochemistry to evaluate alterations in the distribution of endogenous AMPAR subunits at LA synapses during the STM phase of FC. Rats were sacrificed 40 minutes following three CS-US pairings. In the LA of paired animals, relative to naïve animals, the proportion of GluR1-AMPAR-labeled synapses increased 99% at spines and 167% in shafts. In the LA of unpaired rats, for which the CS was never associated with the US, GluR1 immunoreactivity decreased 84% at excitatory shaft synapses. GluR2/3 immunoreactivity at excitatory synapses did not change detectably following paired or unpaired conditioning. Thus, the early phase of FC involves rapid redistribution specifically of the GluR1-AMPARs to the postsynaptic membranes in the LA, together with the rapid translocation of GluR1-AMPARs from remote sites into the spine head cytoplasm, yielding behavior changes that are specific to stimulus contingencies.
Collapse
Affiliation(s)
- Hermina Nedelescu
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Lamprecht R. The roles of the actin cytoskeleton in fear memory formation. Front Behav Neurosci 2011; 5:39. [PMID: 21808614 PMCID: PMC3139223 DOI: 10.3389/fnbeh.2011.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023] Open
Abstract
The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.
Collapse
Affiliation(s)
- Raphael Lamprecht
- Faculty of Natural Sciences, Department of Neurobiology and Ethology, University of Haifa Haifa, Israel
| |
Collapse
|
34
|
Gasperini L, Piubelli C, Carboni L. Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. Mol Biol Rep 2011; 39:2921-35. [PMID: 21687973 DOI: 10.1007/s11033-011-1054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 06/08/2011] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts pleiotropic functions, acting as a hypophysiotropic factor, a neurotrophic and a neuroprotective agent. The molecular pathways activated by PACAP to exert its physiological roles in brain are incompletely understood. In this study, adrenocorticotropic hormone (ACTH), prolactin, luteinising hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), brain-derived neurotrophic factor and corticosterone blood levels were determined before and 20, 40, 60, and 120 min after PACAP intracerebroventricular administration. PACAP treatment increased ACTH, corticosterone, LH and FSH blood concentrations, while it decreased TSH levels. A proteomics investigation was carried out in hypothalamus, hippocampus and pre-frontal/frontal cortex (P/FC) using 2-dimensional gel electrophoresis at 120 min, the end-point suggested by studies on PACAP hypophysiotropic activities. Spots showing statistically significant alterations after PACAP treatment were identified by Matrix-assisted laser desorption/ionization-Time of flight mass spectrometry. Identified proteins were consistent with PACAP involvement in different molecular processes in brain. Altered expression levels were observed for proteins involved in cytoskeleton modulation and synaptic plasticity: actin in the hypothalamus; stathmin, dynamin, profilin and cofilin in hippocampus; synapsin in P/FC. Proteins involved in cellular differentiation were also modulated: glutathione-S-transferase α and peroxiredoxin in hippocampus; nucleoside diphosphate kinase in P/FC. Alterations were detected in proteins involved in neuroprotection, neurodegeneration and apoptosis: ubiquitin carboxyl-terminal hydrolase isozyme L1 and heat shock protein 90-β in hypothalamus; α-synuclein in hippocampus; glyceraldehyde-3-phosphate dehydrogenase and prohibitin in P/FC. This proteomics study identified new proteins involved in molecular mechanisms mediating PACAP functions in the central nervous system.
Collapse
Affiliation(s)
- Lisa Gasperini
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Via A Fleming 4, 37135 Verona, Italy
| | | | | |
Collapse
|
35
|
The biological role of the glycinergic synapse in early zebrafish motility. Neurosci Res 2011; 71:1-11. [PMID: 21712054 DOI: 10.1016/j.neures.2011.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
Glycine mediates fast inhibitory neurotransmission in the spinal cord, brainstem and retina. Loss of synaptic glycinergic transmission in vertebrates leads to a severe locomotion defect characterized by an exaggerated startle response accompanied by transient muscle rigidity in response to sudden acoustic or tactile stimuli. Several molecular components of the glycinergic synapse have been characterized as an outcome of genetic and physiological analyses of synaptogenesis in mammals. Recently, the glycinergic synapse has been studied using a forward genetic approach in zebrafish. This review aims to discuss molecular components of the glycinergic synapse, such as glycine receptor subunits, gephyrin, gephyrin-binding proteins and glycine transporters, as well as recent studies relevant to the genetic analysis of the glycinergic synapse in zebrafish.
Collapse
|
36
|
Fortin DA, Srivastava T, Soderling TR. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist 2011; 18:326-41. [PMID: 21670426 DOI: 10.1177/1073858411407206] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The majority of excitatory synaptic input in the brain is received by small bulbous actin-rich protrusions residing on the dendrites of glutamatergic neurons. These dendritic spines are the major sites of information processing in the brain. This conclusion is reinforced by the observation that many higher cognitive disorders, such as mental retardation, Rett syndrome, and autism, are associated with aberrant spine morphology. Mechanisms that regulate the maturation and plasticity of dendritic spines are therefore fundamental to understanding higher brain functions including learning and memory. It is well known that activity-driven changes in synaptic efficacy modulate spine morphology due to alterations in the underlying actin cytoskeleton. Recent studies have elucidated numerous molecular regulators that directly alter actin dynamics within dendritic spines. This review will emphasize activity-dependent changes in spine morphology and highlight likely roles of these actin-binding proteins.
Collapse
Affiliation(s)
- Dale A Fortin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
37
|
Förtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, Benz R, Iliev AI. Changes in astrocyte shape induced by sublytic concentrations of the cholesterol-dependent cytolysin pneumolysin still require pore-forming capacity. Toxins (Basel) 2011; 3:43-62. [PMID: 22069689 PMCID: PMC3210454 DOI: 10.3390/toxins3010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.
Collapse
Affiliation(s)
- Christina Förtsch
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Sabrina Hupp
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Jiangtao Ma
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Asparouh I. Iliev
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148997; Fax: +49-931-20148539
| |
Collapse
|
38
|
Fine-tuning of neuronal architecture requires two profilin isoforms. Proc Natl Acad Sci U S A 2010; 107:15780-5. [PMID: 20798032 DOI: 10.1073/pnas.1004406107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two profilin isoforms (PFN1 and PFN2a) are expressed in the mammalian brain. Although profilins are essential for regulating actin dynamics in general, the specific role of these isoforms in neurons has remained elusive. We show that knockdown of the neuron-specific PFN2a results in a significant reduction in dendrite complexity and spine numbers of hippocampal neurons. Overexpression of PFN1 in PFN2a-deficient neurons prevents the loss of spines but does not restore dendritic complexity. Furthermore, we show that profilins are involved in differentially regulating actin dynamics downstream of the pan-neurotrophin receptor (p75(NTR)), a receptor engaged in modulating neuronal morphology. Overexpression of PFN2a restores the morphological changes in dendrites caused by p75(NTR) overexpression, whereas PFN1 restores the normal spine density. Our data assign specific functions to the two PFN isoforms, possibly attributable to different affinities for potent effectors also involved in actin dynamics, and suggest that they are important for the signal-dependent fine-tuning of neuronal architecture.
Collapse
|
39
|
Li A, Choi YS, Dziema H, Cao R, Cho HY, Jung YJ, Obrietan K. Proteomic profiling of the epileptic dentate gyrus. Brain Pathol 2010; 20:1077-89. [PMID: 20608933 DOI: 10.1111/j.1750-3639.2010.00414.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy (TLE). Here we used the pilocarpine model of TLE in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the pathogenic process. Using a two-dimensional gel electrophoresis-based approach, followed by liquid chromatography-tandem mass spectrometry, 24 differentially expressed proteins, including 9 phosphoproteins, were identified. Functionally, these proteins were organized into several classes, including synaptic physiology, cell structure, cell stress, metabolism and energetics. The altered expression of three proteins involved in synaptic physiology, actin, profilin 1 and α-synuclein was validated by secondary methods. Interestingly, marked changes in protein expression were detected in the supragranular cell region, an area where robust mossy fibers sprouting occurs. Together, these data provide new molecular insights into the altered protein profile of the epileptogenic dentate gyrus and point to potential pathophysiologic mechanisms underlying epileptogenesis.
Collapse
Affiliation(s)
- Aiqing Li
- Key Lab. for Organ Failure Research, Education Ministry of P.R. China, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Ramser EM, Buck F, Schachner M, Tilling T. Binding of alphaII spectrin to 14-3-3beta is involved in NCAM-dependent neurite outgrowth. Mol Cell Neurosci 2010; 45:66-74. [PMID: 20598904 DOI: 10.1016/j.mcn.2010.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022] Open
Abstract
Members of the 14-3-3 protein family have been implicated in neuronal migration, synaptic plasticity and learning. Using affinity chromatography followed by mass spectrometry analysis, we show here that the cytoskeletal protein alphaII spectrin is a novel ligand of 14-3-3beta. We found that 14-3-3beta interacts with alphaII spectrin via the mode 2 14-3-3 binding motif RLIQS(1302)HP. Binding required phosphorylation of Ser(1302) by casein kinase II and was enhanced in the presence of calmodulin. Co-immunoprecipitation of alphaII spectrin and 14-3-3beta with the neural cell adhesion molecule NCAM suggested that the 14-3-3-spectrin-interaction affects NCAM function. Indeed, disruption of the 14-3-3beta/alphaII spectrin interaction by mutating Ser(1302) to Ala enhanced NCAM-dependent neurite outgrowth. Our results indicate that the phosphorylation-dependent interaction between 14-3-3beta and alphaII spectrin acts as a switch between positive and negative regulation of neurite outgrowth stimulated by NCAM, representing a novel and acute mechanism preventing uncontrolled elongation of neuronal processes.
Collapse
Affiliation(s)
- Elisa M Ramser
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
42
|
Pontrello CG, Ethell IM. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines. ACTA ACUST UNITED AC 2009; 3:67-86. [PMID: 20463852 DOI: 10.2174/1874082000903020067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.
Collapse
Affiliation(s)
- Crystal G Pontrello
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| | | |
Collapse
|
43
|
Baer K, Waldvogel HJ, Faull RLM, Rees MI. Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Front Mol Neurosci 2009; 2:25. [PMID: 19915682 PMCID: PMC2776491 DOI: 10.3389/neuro.02.025.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022] Open
Abstract
Inhibitory neurotransmitter receptors for glycine (GlyR) are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1–3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR) throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present an intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson's Disease and Motor Neuron Disease.
Collapse
Affiliation(s)
- Kristin Baer
- Molecular Neuroscience, Institute of Life Science, School of Medicine, Swansea University Swansea, UK
| | | | | | | |
Collapse
|
44
|
|
45
|
Lardong K, Maas C, Kneussel M. Neuronal depolarization modifies motor protein mobility. Neuroscience 2009; 160:1-5. [PMID: 19250960 DOI: 10.1016/j.neuroscience.2009.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/28/2009] [Accepted: 02/14/2009] [Indexed: 12/21/2022]
Abstract
Active neuronal transport along microtubules participates in the targeting of mRNAs, proteins and organelles to their sites of action. Cytoplasmic dynein represents a minus-end-directed microtubule-dependent motor protein. Due to the polarity of microtubules in axonal and distal dendritic compartments, with microtubule minus-ends pointing toward the inside of the cell, dyneins mainly mediate retrograde transport pathways in neurons. Since dyneins transport synaptic proteins, we asked whether changes in neuronal activity would in general influence dynein transport. KCl-induced depolarization, a condition that mimics the effects of neuronal activity, or pharmacological blockade of neuronal action potentials, respectively, was combined with neuronal live cell imaging, using an autofluorescent dynein intermediate chain fusion (monomeric red fluorescent protein [mRFP]-dynein intermediate chain [DIC]) as a model protein. Notably, we found that induced activity significantly reduced dynein particle mobility, as well as both the total distance and velocity of movements in mouse cultured hippocampal neurons. In contrast, blockade of neuronal action potentials through TTX did not alter any of the parameters analyzed. Neuronal depolarization processes therefore represent candidate mechanisms to regulate intracellular transport of neuronal cargoes.
Collapse
Affiliation(s)
- K Lardong
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | |
Collapse
|
46
|
Cheng HH, Huang ZH, Lin WH, Chow WY, Chang YC. Cold-induced exodus of postsynaptic proteins from dendritic spines. J Neurosci Res 2009; 87:460-9. [DOI: 10.1002/jnr.21852] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Lin WH, Webb DJ. Actin and Actin-Binding Proteins: Masters of Dendritic Spine Formation, Morphology, and Function. THE OPEN NEUROSCIENCE JOURNAL 2009; 3:54-66. [PMID: 20717495 PMCID: PMC2921857 DOI: 10.2174/1874082000903020054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic spines are actin-rich protrusions that comprise the postsynaptic sites of synapses and receive the majority of excitatory synaptic inputs in the central nervous system. These structures are central to cognitive processes, and alterations in their number, size, and morphology are associated with many neurological disorders. Although the actin cytoskeleton is thought to govern spine formation, morphology, and synaptic functions, we are only beginning to understand how modulation of actin reorganization by actin-binding proteins (ABPs) contributes to the function of dendritic spines and synapses. In this review, we discuss what is currently known about the role of ABPs in regulating the formation, morphology, motility, and plasticity of dendritic spines and synapses.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Donna J. Webb
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
48
|
Abstract
Thirty years after its initial characterization and more than 1000 publications listed in PubMed describing its properties, the small (ca 15 kDa) protein profilin continues to surprise us with new, recently discovered functions. Originally described as an actin-binding protein, profilin has now been shown to interact with more than a dozen proteins in mammalian cells. Some of the more recently described and intriguing interactions are within neurons involving a neuronal profilin family member. Profilin is now regarded as a regulator of various cellular processes such as cytoskeletal dynamics, membrane trafficking and nuclear transport. Profilin is a necessary element in key steps of neuronal differentiation and synaptic plasticity, and embodies properties postulated for a synaptic tag. These findings identify profilin as an important factor linking cellular and behavioural plasticity in neural circuits.
Collapse
Affiliation(s)
- Andreas Birbach
- Medical University of Vienna, Währingerstrasse 13a, A-1090 Vienna, Austria.
| |
Collapse
|
49
|
Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A, Schachner M. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008; 13:953-69. [PMID: 17726461 DOI: 10.1038/sj.mp.4002077] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloid precursor protein (APP) and amyloid beta-peptide (Abeta) have been implicated in a variety of physiological and pathological processes underlying nervous system functions. APP shares many features with adhesion molecules in that it is involved in neurite outgrowth, neuronal survival and synaptic plasticity. It is, thus, of interest to identify binding partners of APP that influence its functions. Using biochemical cross-linking techniques we have identified ATP synthase subunit alpha as a binding partner of the extracellular domain of APP and Abeta. APP and ATP synthase colocalize at the cell surface of cultured hippocampal neurons and astrocytes. ATP synthase subunit alpha reaches the cell surface via the secretory pathway and is N-glycosylated during this process. Transfection of APP-deficient neuroblastoma cells with APP results in increased surface localization of ATP synthase subunit alpha. The extracellular domain of APP and Abeta partially inhibit the extracellular generation of ATP by the ATP synthase complex. Interestingly, the binding sequence of APP and Abeta is similar in structure to the ATP synthase-binding sequence of the inhibitor of F1 (IF(1)), a naturally occurring inhibitor of the ATP synthase complex in mitochondria. In hippocampal slices, Abeta and IF(1) similarly impair both short- and long-term potentiation via a mechanism that could be suppressed by blockade of GABAergic transmission. These observations indicate that APP and Abeta regulate extracellular ATP levels in the brain, thus suggesting a novel mechanism in Abeta-mediated Alzheimer's disease pathology.
Collapse
Affiliation(s)
- C Schmidt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Nie Z, Xu J, Chen J, Lv Z, Wang D, Sheng Q, Wu Y, Wang X, Wu X, Zhang Y. Expression analysis and characteristics of profilin gene from silkworm, Bombyx mori. Appl Biochem Biotechnol 2008; 158:59-71. [PMID: 18633732 DOI: 10.1007/s12010-008-8302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 06/17/2008] [Indexed: 11/24/2022]
Abstract
A recombinant Bombyx mori profilin protein (rBmPFN) was overexpressed in Escherichia coli BL21. Purified rBmPFN was used to generate anti-BmPFN polyclonal antibody, which were used to determine the subcellular localization of BmPFN. Immunostaining indicated that profilin can be found in both the nucleus and cytoplasm but is primarily located in the cytoplasm. Real-time RT-PCR and Western blot analyses indicated that, during the larvae stage, profilin expression levels are highest in the silk gland, followed by the gonad, and are lowest in the fatty body. Additionally, BmPFN expression begins during the egg stage, increases during the larvae stage, reaches a peak during the pupa stage, and decreases significantly in the moth. Therefore, we propose that BmPFN may play an important role during larva stage development, especially in the silk gland.
Collapse
Affiliation(s)
- Zuoming Nie
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|