1
|
Zhang P, Qiao Z, Pan S, Yang P, Zha Z, Sun S, Xu Q, Liu X, Xu N, Liu Y. Activation of spinal ephrin-B3/EphBs signaling induces hyperalgesia through a PLP-mediated mechanism. Fundam Clin Pharmacol 2022; 36:262-276. [PMID: 34904278 DOI: 10.1111/fcp.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/30/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Ephrin B/EphB signaling pathway is involved in the regulation of pain caused by spinal cord injury. However, the role of ephrin-B3/EphBs signaling in regulation of nociceptive information is poorly understood. In the present study, formalin-induced inflammatory pain, mechanical allodynia and thermal hyperalgesia, was measured using Efnb3 mutant mice (Efnb3-/- ) and wild-type (Efnb3+/+ ) mice. The spinal cord (L4-6) was selected for molecular and cellular identification by western blotting and immunofluorescence. Efnb3 mutant mice showed a significant increased the thermal and mechanical threshold, followed by aberrant thin myelin sheath. Furthermore, expression of proteolipid protein (PLP) was significantly lower in L4-6 spinal cord of Efnb3-/- mice. These morphological and behavioral abnormalities in mutant mice were rescued by conditional knock-in of wild-type ephrin-B3. Intrathecal administration of specific PLP siRNA significantly increased the thermal and mechanical threshold hyperalgesia in wild-type mice. However, overexpressing PLP protein by AAV9-PLP could decrease the sensitivity of mice to thermal and mechanical stimuli in Efnb3-/- mice, compared with scrabble Efnb3-/- mice. Further, Efnb3lacz mice, which have activities to initiate forward signaling, but transduce reverse signals by ephrin-B3, shows normal acute pain behavior, compared with wild type mice. These findings indicate that a key molecule Efnb3 act as a prominent contributor to hyperalgesia and essential roles of ephrin-B3/EphBs in nociception through a myelin-mediated mechanism.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shu Pan
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ping Yang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhengxia Zha
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Pain and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Nanjie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Chen T, Chen S, Zheng X, Zhu Y, Huang Z, Jia L, OuYang L, Lei W. The pathological involvement of spinal cord EphB2 in visceral sensitization in male rats. Stress 2022; 25:166-178. [PMID: 35435121 DOI: 10.1080/10253890.2022.2054698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.
Collapse
Affiliation(s)
- Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Human Anatomy and Histology & Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xuefeng Zheng
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Koyama Y, Tsuboi S, Mizogui F. Endothelin-1 decreases the expression of Ephrin-A and B subtypes in cultured rat astrocytes through ET B receptors. Neurosci Lett 2021; 741:135393. [PMID: 33279571 DOI: 10.1016/j.neulet.2020.135393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Ephrin family proteins are cell surface molecules that regulate several cellular functions through cell-cell interactions. During nervous tissue repair after injury, the expression of ephrin subtypes in astrocytes is altered, affecting the axonal elongation and migration of neuronal precursors. However, the mechanism regulating the expression of ephrin subtypes in astrocytes has not been investigated. Herein, we studied the effects of endothelin-1 (ET-1) on the expression of ephrin subtypes in cultured rat astrocytes. Our results showed that ET-1 (100 nM) treatment for 1-24 h reduced the expression of ephrin-A2, -A4, -B2, and -B3 mRNA and protein in astrocytes, whereas the expression of ephrin-A1, -A3, -A5, and -B1 mRNA were not affected. Sarafotoxin S6c, a selective ETB receptor agonist, decreased the expression of ephrin-A2, -A4, -B2, and -B3 in cultured astrocytes. The decrease in ephrin-A2, -A4, -B2, and -B3 expression by ET-1 treatment was reduced in the presence of BQ788, an ETB receptor antagonist, while FR139317, an ETA receptor antagonist, had no effects. These results suggest that ET-1 is a signaling molecule that downregulates ephrin-A2, -A4, -B2, and -B3 expression in astrocytes.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558 Japan.
| | - Sayaka Tsuboi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558 Japan
| | - Fuka Mizogui
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558 Japan
| |
Collapse
|
4
|
Elibol B, Beker M, Jakubowska-Dogru E, Kilic U. Fetal alcohol and maternal stress modify the expression of proteins controlling postnatal development of the male rat hippocampus. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 46:718-730. [PMID: 32915069 DOI: 10.1080/00952990.2020.1780601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Developing brains can partially get over prenatal alcohol exposure-related detrimental conditions by activating some mechanisms involved in survival. Objectives: This study aimed to shed light on the molecular correlates of compensatory mechanisms by examining temporal profiles in the expression of proteins controlling postnatal development in the rat hippocampus prenatally exposed to intubation stress/ethanol. Methods: Male pups were randomly assigned to age subgroups (n = 21/age) which were sacrificed on postnatal day (PD)1, PD10, PD30, and PD60. Ethanol (6 g/kg/day) were intragastrically intubated to the dams throughout 7-21 gestation days. The expression of neurogenesis and angiogenesis markers, extracellular matrix proteins, and growth-promoting ligands were examined by western blot. Results: The most rapid increase in the index of neuronal maturation was noted between PD10-PD30 (p < .05). Prenatal stress caused a decrease of neurogenesis markers at birth and an increase of their expressions at PD10 and PD30 to reach control levels (p < .001). The impact of fetal-alcohol was observed as a decrease in the expression of synaptic plasticity protein versican at birth (p < .001), an increase in the synaptic repulsion protein ephrin-B2 at PD10 (p < .001), and a decrease in the maturation of BDNF at PD30 (p < .001) with a decrease in the mature neuron markers at PD30 (p < .001) and PD60 (p = .005) which were compensated with upregulation of angiogenesis and increasing brevican expression, a neuronal maturation protein (p < .001). Conclusion: These data provide in vivo evidence for the potential therapeutic factors related to neurogenesis, angiogenesis, and neurite remodeling which may tolerate the alcohol/stress dependent teratogenicity in the developing hippocampus.
Collapse
Affiliation(s)
- Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul, Turkey.,Department of Medical Biology, School of Medicine, University of Health Sciences , Istanbul, Turkey
| | - Ewa Jakubowska-Dogru
- Department of Biological Sciences, Faculty of Science and Arts, Middle East Technical University , Ankara, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, School of Medicine, University of Health Sciences , Istanbul, Turkey
| |
Collapse
|
5
|
Henderson NT, Dalva MB. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol Cell Neurosci 2018; 91:108-121. [PMID: 30031105 PMCID: PMC6159941 DOI: 10.1016/j.mcn.2018.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.
Collapse
Affiliation(s)
- Nathan T Henderson
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States
| | - Matthew B Dalva
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States.
| |
Collapse
|
6
|
Tyzack GE, Hall CE, Sibley CR, Cymes T, Forostyak S, Carlino G, Meyer IF, Schiavo G, Zhang SC, Gibbons GM, Newcombe J, Patani R, Lakatos A. A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nat Commun 2017; 8:1164. [PMID: 29079839 PMCID: PMC5660125 DOI: 10.1038/s41467-017-01283-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1-ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.
Collapse
Affiliation(s)
- Giulia E Tyzack
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Claire E Hall
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher R Sibley
- Division of Brain Sciences, Imperial College London, Burlington Danes Building Du Cane Road, London, W12 0NN, UK
| | - Tomasz Cymes
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Serhiy Forostyak
- Institute of Experimental Medicine ASCR and Charles University in Prague, Department of Neuroscience, Videnská 1083, Prague 4, 142 20, Czech Republic
| | - Giulia Carlino
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ione F Meyer
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - George M Gibbons
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Rickie Patani
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
- Addenbrooke's Hospital, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
8
|
Jacobi A, Schmalz A, Bareyre FM. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 2014; 9:e88449. [PMID: 24523897 PMCID: PMC3921160 DOI: 10.1371/journal.pone.0088449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. Methodology/Principal Findings To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. Conclusions Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the remodelling of axonal connections in the injured spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Florence M. Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
9
|
Cortical abnormalities and non-spatial learning deficits in a mouse model of CranioFrontoNasal syndrome. PLoS One 2014; 9:e88325. [PMID: 24520368 PMCID: PMC3919725 DOI: 10.1371/journal.pone.0088325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1Y/−) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1Y/− mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1Y/− mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Collapse
|
10
|
Prestoz L, Jaber M, Gaillard A. Dopaminergic axon guidance: which makes what? Front Cell Neurosci 2012; 6:32. [PMID: 22866028 PMCID: PMC3408579 DOI: 10.3389/fncel.2012.00032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/15/2012] [Indexed: 01/30/2023] Open
Abstract
Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological, and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson's disease (PD). Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.
Collapse
Affiliation(s)
- Laetitia Prestoz
- Experimental and Clinical Neurosciences Laboratory, Research Group on Cellular Therapies in Brain Diseases, INSERM U1084, University of PoitiersPoitiers, France.
| | | | | |
Collapse
|
11
|
Lau CL, Perreau VM, Chen MJ, Cate HS, Merlo D, Cheung NS, O'Shea RD, Beart PM. Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 2012; 227:1199-211. [PMID: 21604263 DOI: 10.1002/jcp.22838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhibitors of Rho kinase (ROCK) have potential for management of neurological disorders by inhibition of glial scarring. Since astrocytes play key roles in brain physiology and pathology, we determined changes in the astrocytic transcriptome produced by the ROCK inhibitor Fasudil to obtain mechanistic insights into its beneficial action during brain injury. Cultured murine astrocytes were treated with Fasudil (100 µM) and morphological analyses revealed rapid stellation by 1 h and time-dependent (2-24 h) dissipation of F-actin-labelled stress fibres. Microarray analyses were performed on RNA and the time-course of global gene profiling (2, 6, 12 and 24 h) provided a comprehensive description of transcriptomic changes. Hierarchical clustering of differentially expressed genes and analysis for over-represented gene ontology groups using the DAVID database focused attention on Fasudil-induced changes to major biological processes regulating cellular shape and motility (actin cytoskeleton, axon guidance, transforming growth factor-β (TGFβ) signalling and tight junctions). Bioinformatic analyses of transcriptomic changes revealed how these biological processes contributed to changes in astrocytic motility and cytoskeletal reorganisation. Here genes associated with extracellular matrix were also involved, but unexpected was a subset of alterations (EAAT2, BDNF, anti-oxidant species, metabolic and signalling genes) indicative of adoption by astrocytes of a pro-survival phenotype. Expression profiles of key changes with Fasudil and another ROCK inhibitor Y27632 were validated by real-time PCR. Although effects of ROCK inhibition have been considered to be primarily cytoskeletal via reduction of glial scarring, we demonstrate additional advantageous actions likely to contribute to their ameliorative actions in brain injury.
Collapse
Affiliation(s)
- Chew L Lau
- Florey Neuroscience Institutes, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
13
|
EphrinB-EphB receptor signaling contributes to neuropathic pain by regulating neural excitability and spinal synaptic plasticity in rats. Pain 2008; 139:168-180. [DOI: 10.1016/j.pain.2008.03.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
|
14
|
Cao JL, Ruan JP, Ling DY, Guan XH, Bao Q, Yuan Y, Zhang LC, Song XJ, Zeng YM. Activation of peripheral ephrinBs/EphBs signaling induces hyperalgesia through a MAPKs-mediated mechanism in mice. Pain 2008; 139:617-631. [PMID: 18706764 DOI: 10.1016/j.pain.2008.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/30/2008] [Accepted: 06/23/2008] [Indexed: 11/16/2022]
Abstract
EphBs receptors and ephrinBs ligands are present in the adult brain and peripheral tissue and play a critical role in modulating multiple aspects of physiology and pathophysiology. Ours and other studies have demonstrated that spinal ephrinBs/EphBs signaling was involved in the modulation of nociceptive information and central sensitization. However, the role of ephrinBs/EphBs signaling in peripheral sensitization is poorly understood. This study shows that intraplantar (i.pl.) injection of ephrinB1-Fc produces a dose- and time-dependent thermal and mechanical hyperalgesia and the increase of spinal Fos protein expression in mice, which can be partially prevented by pre-treatment with EphB1-Fc. EphrinB1-Fc-induced hyperalgesia is accompanied with the NMDA receptor-mediated increase of expression in peripheral and spinal phosphorylated mitogen-activated protein kinases (phospho-MAPKs) including p-p38, pERK and pJNK, and also is prevented or reversed by the inhibition of peripheral and spinal MAPKs. Furthermore, in formalin inflammation pain model, pre-inhibition of EphBs receptors by the injection of EphB1-Fc reduces pain behavior, which is accompanied by the decreased expression of peripheral p-p38, pERK and pJNK. These data provide evidence that ephrinBs may act as a prominent contributor to peripheral sensitization, and demonstrate that activation of peripheral ephrinBs/EphBs system induces hyperalgesia through a MAPKs-mediated mechanism.
Collapse
Affiliation(s)
- Jun-Li Cao
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou Jiangsu 221002, PR China Jiangsu Institute of Anesthesiology, Jiangsu Key Laboratory of Anesthesiology, 99 Huaihai West Road, Xuzhou 221002, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tremblay ME, Riad M, Bouvier D, Murai KK, Pasquale EB, Descarries L, Doucet G. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J Comp Neurol 2007; 501:691-702. [PMID: 17299751 DOI: 10.1002/cne.21263] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eph receptors and their ephrin ligands assume various roles during central nervous system development. Several of these proteins are also expressed in the mature brain, and notably in the hippocampus, where EphA4 and ephrins have been shown to influence dendritic spine morphology and long-term potentiation (LTP). To examine the cellular and subcellular localization of EphA4 in adult rat ventral hippocampus, we used light and electron microscopic immunocytochemistry with a specific polyclonal antibody against EphA4. After immunoperoxidase labeling, EphA4 immunoreactivity was found to be enriched in the neuropil layers of CA1, CA3, and dentate gyrus. In all examined layers of these regions, myelinated axons, small astrocytic leaflets, unmyelinated axons, dendritic spines, and axon terminals were immunolabeled in increasing order of frequency. Neuronal cell bodies and dendritic branches were immunonegative. EphA4-labeled dendritic spines and axon terminals corresponded to 9-19% and 25-40% of the total number of spines and axon terminals, respectively. Most labeled spines were innervated by unlabeled terminals, but synaptic contacts between two labeled elements were seen. The vast majority of synaptic junctions made by labeled elements was asymmetrical and displayed features of excitatory synapses. Immunogold labeling of EphA4 was located mostly on the plasma membrane of axons, dendritic spines, and axon terminals, supporting its availability for surface interactions with ephrins. The dual preferential labeling of EphA4 on pre- or postsynaptic specializations of excitatory synapses in adult rat hippocampus is consistent with roles for this receptor in synaptic plasticity and LTP.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Schmidt JF, Agapova OA, Yang P, Kaufman PL, Hernandez MR. Expression of ephrinB1 and its receptor in glaucomatous optic neuropathy. Br J Ophthalmol 2007; 91:1219-24. [PMID: 17301119 PMCID: PMC1954885 DOI: 10.1136/bjo.2006.112185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To determine ephrinB1, ephrinB2 and EphB1 expression in the optic nerve head (ONH) and retina of monkeys with glaucoma and in human ONH astrocytes. METHODS Using immunohistochemistry, the localisation of ephrinB1, ephrinB2 and EphB1 was determined in the ONH and retina bilaterally in monkeys with monocular laser-induced glaucoma. RT-PCR, western blot and immunocytochemistry were used to study ephrinB1, ephrinB2 and EphB1 expression in cultured human ONH astrocytes from donors with and without glaucoma. RESULTS There was an increase in ephrinB1 and EphB1 expression in mild to moderate glaucoma. In the ONH, both ephrinB1 and EphB1 were localised to astrocytes and EphB1 was also localised to lamina cribrosa cells and perivascular cells. In the retina, ephrinB1 localised to Muller cells and astrocytes, and EphB1 was found in retinal ganglion cells. In ONH astrocytes in humans with glaucoma, ephrinB1 and EphB1 were up-regulated but barely present in donors without glaucoma. CONCLUSIONS Ephrins are activated in early and moderate glaucoma in the ONH and retina. We postulate that the up-regulation of Eph/ephrin pathway may play a protective role by limiting axonal damage and inflammatory cell invasion. Loss of ephrin signalling in advanced glaucoma may explain macrophage activation.
Collapse
Affiliation(s)
- Jimena F Schmidt
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
17
|
Lauterbach J, Klein R. Release of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells. J Neurosci 2006; 26:11575-81. [PMID: 17093078 PMCID: PMC6674799 DOI: 10.1523/jneurosci.2697-06.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cells are known to actively participate in neuronal development by shaping neuronal connections through axon pruning and by controlling dendritic spine morphology. These functions may in part be mediated by engulfment of neuronal structures and trans-endocytosis of neuronal material into glial cells. These processes are not well understood, and the molecular components that mediate these events have primarily been elusive. Here, we implicate the Eph/ephrin signaling system in trans-endocytosis events at the neuron-to-glia interface. Using time-lapse microscopy, we show that hippocampal neurons exogenously expressing EphB2 receptors release or pinch-off EphB2-containing vesicles at sites of neuron-to-glia contact. Cocultured glial cells endogenously express the corresponding ephrinB ligands and are able to trans-endocytose full-length EphB2 from neighboring cells. Although Eph/ephrin signaling often occurs in a bidirectional manner, the observed vesicle release from neurons to glia was only observed in a unidirectional manner, i.e., when the neurons expressed EphB2, but not ephrinBs. These findings suggest that Eph/ephrin signaling is involved in the glial cell-mediated fine sculpting of neuronal structures.
Collapse
Affiliation(s)
- Jenny Lauterbach
- Max-Planck Institute of Neurobiology, D-82152 Martinsried, Germany
| | - Rüdiger Klein
- Max-Planck Institute of Neurobiology, D-82152 Martinsried, Germany
| |
Collapse
|
18
|
Goldshmit Y, McLenachan S, Turnley A. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. ACTA ACUST UNITED AC 2006; 52:327-45. [PMID: 16774788 DOI: 10.1016/j.brainresrev.2006.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 12/19/2022]
Abstract
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during development. This review examines the contribution of one such family of developmental guidance molecules, the Eph receptor tyrosine kinases and their ligands, the ephrins in normal adult CNS and following injury or disease. Eph/ephrin signaling regulates axon guidance through contact repulsion during development of the CNS, inducing collapse of neuronal growth cones. Eph receptors and ephrins continue to be expressed in the adult CNS, although usually at lower levels, but are upregulated following neural injury on different cell types, including reactive astrocytes, neurons and oligodendrocytes. This upregulated expression may directly inhibit regrowth of regenerating axons; however, in addition, Eph expression also regulates astrocytic gliosis and formation of the glial scar. Therefore, Eph/ephrin signaling may inhibit regeneration by more than one mechanism and modulation of Eph receptor expression or signaling could prove pivotal in determining the outcome of injury in the adult CNS.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia
| | | | | |
Collapse
|
19
|
Rodenas-Ruano A, Perez-Pinzon MA, Green EJ, Henkemeyer M, Liebl DJ. Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev Biol 2006; 292:34-45. [PMID: 16466709 DOI: 10.1016/j.ydbio.2006.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 12/21/2005] [Accepted: 01/03/2006] [Indexed: 12/20/2022]
Abstract
The transmembrane ephrinB ligands and their Eph receptor tyrosine kinases are known to regulate excitatory synaptic functions in the hippocampus. In the CA3-CA1 synapse, ephrinB ligands are localized to the post-synaptic membrane, while their cognate Eph receptors are presumed to be pre-synaptic. Interaction of ephrinB molecules with Eph receptors leads to changes in long-term potentiation (LTP), which has been reported to be mediated by reverse signaling into the post-synaptic membrane. Here, we demonstrate that the cytoplasmic domain of ephrinB3 and hence reverse signaling is not required for ephrinB dependent learning and memory tasks or for LTP of these synapses. Consistent with previous reports, we find that ephrinB3(KO) null mutant mice exhibit a striking reduction in CA3-CA1 LTP that is associated with defective learning and memory tasks. We find the null mutants also show changes in both pre- and post-synaptic proteins including increased levels of synapsin and synaptobrevin and reduced levels of NMDA receptor subunits. These abnormalities are not observed in ephrinB3(lacZ) reverse signaling mutants that specifically delete the ephrinB3 intracellular region, supporting a cytoplasmic domain-independent forward signaling role for ephrinB3 in these processes. We also find that both ephrinB3(KO) and ephrinB3(lacZ) mice show an increased number of excitatory synapses, demonstrating a cytoplasmic-dependent reverse signaling role of ephrinB3 in regulating synapse number. Together, these data suggest that ephrinB3 may act like a receptor to transduce reverse signals to regulate the number of synapses formed in the hippocampus, and that it likely acts to stimulate forward signaling to modulate a number of other proteins involved in synaptic activity and learning/memory.
Collapse
Affiliation(s)
- Alma Rodenas-Ruano
- Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|