1
|
Tay KR, Bolt F, Wong HT, Vasileva S, Lee J. Reminder-dependent alterations in long-term declarative memory expression. Neurobiol Learn Mem 2023; 206:107858. [PMID: 37944636 DOI: 10.1016/j.nlm.2023.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The reminder of a previously-learned memory can render that memory vulnerable to disruption or change in expression. Such memory alterations have been viewed as supportive of the framework of memory reconsolidation. However, alternative interpretations and inconsistencies in the replication of fundamental findings have raised questions particularly in the domain of human declarative memory. Here we present a series of related experiments, all of which involve the learning of a declarative memory, followed 1-2 days later by memory reminder. Post-reminder learning of interfering material did result in modulation of subsequent recall at test, but the precise manifestation of that interference effect differed across experiments. With post-reminder performance of a visuospatial task, a quantitative impairment in test recall performance was observed within a visual list-learning paradigm, but not in a foreign vocabulary learning paradigm. These results support the existence of reminder-induced memory processes that can lead to the alteration of subsequent memory performance by interfering tasks. However, it remains unclear whether these effects are reflective of modulation or impairment of the putative memory reconsolidation process.
Collapse
Affiliation(s)
- Kai Rong Tay
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Bolt
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Hei Ting Wong
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Svetlina Vasileva
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Beisel JMS, Maza FJ, Justel N, Larrosa PNF, Delorenzi A. Embodiment of an Emotional State Concurs with a Stress-Induced Reconsolidation Impairment Effect on an Auditory Verbal Word-List Memory. Neuroscience 2022; 497:239-256. [PMID: 35472504 DOI: 10.1016/j.neuroscience.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. Typically, mild stressors and stress hormones might promote consolidation of memory processing and impair memory retrieval. However, studies have shown that during reconsolidation, stressors may either enhance or impair recalled memory. We propose that a function of reconsolidation is to induce changes in the behavioral expression of memory. Here, we adapted the Rey Auditory Verbal Learning Test (RAVLT) to evaluate the effect of cold pressor stress (CPS) during the reconsolidation of this declarative memory. A decay in memory performance attributable to forgetting was found at the time of memory reactivation 5 d after training (day 6). Contrary to our initial predictions, the administration of CPS after memory reactivation impaired long-term memory expression (day 7), an effect dependent on the presence of a mismatch during Reactivation Session. No differences in recognition tests were found. To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
Collapse
Affiliation(s)
- Jessica Mariel Sánchez Beisel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Francisco Javier Maza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), CEMSC3, ICIFI, UNSAM CONICET, Argentina
| | - Pablo Nicolas Fernandez Larrosa
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| | - Alejandro Delorenzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| |
Collapse
|
4
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
5
|
Swiercz AP, Iyer L, Yu Z, Edwards A, Prashant NM, Nguyen BN, Horvath A, Marvar PJ. Evaluation of an angiotensin Type 1 receptor blocker on the reconsolidation of fear memory. Transl Psychiatry 2020; 10:363. [PMID: 33110066 PMCID: PMC7591922 DOI: 10.1038/s41398-020-01043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Inhibition of the angiotensin type 1 receptor (AT1R) has been shown to decrease fear responses in both humans and rodents. These effects are attributed to modulation of extinction learning, however the contribution of AT1R to alternative memory processes remains unclear. Using classic Pavlovian conditioning combined with radiotelemetry and whole-genome RNA sequencing, we evaluated the effects of the AT1R antagonist losartan on fear memory reconsolidation. Following the retrieval of conditioned auditory fear memory, animals were given a single intraperitoneal injection of losartan or saline. In response to the conditioned stimulus (CS), losartan-treated animals exhibited significantly less freezing at 24 h and 1 week; an effect that was dependent upon memory reactivation and independent of conditioned cardiovascular reactivity. Using an unbiased whole-genome RNA sequencing approach, transcriptomic analysis of the basolateral amygdala (BLA) identified losartan-dependent differences in gene expression during the reconsolidation phase. These findings demonstrate that post-retrieval losartan modifies behavioral and transcriptomic markers of conditioned fear memory, supporting an important regulatory role for this receptor in reconsolidation and as a potential pharmacotherapeutic target for maladaptive fear disorders such as PTSD.
Collapse
Affiliation(s)
- Adam P. Swiercz
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Laxmi Iyer
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Zhe Yu
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Allison Edwards
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - N. M. Prashant
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Bryan N. Nguyen
- grid.253615.60000 0004 1936 9510Computational Biology Institute, George Washington University, Washington, DC 20052 USA
| | - Anelia Horvath
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Paul J. Marvar
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA ,grid.253615.60000 0004 1936 9510Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC 20052 USA
| |
Collapse
|
6
|
Identification of a Novel Retrieval-dependent Memory Process in the Crab Neohelice granulata. Neuroscience 2020; 448:149-159. [PMID: 32979399 DOI: 10.1016/j.neuroscience.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023]
Abstract
Fully consolidated associative memories may be altered by alternative retrieval dependent memory processes. While a brief exposure to the conditioned stimulus (CS) can trigger reconsolidation of the original memory, a prolonged CS exposure will trigger memory extinction. The conditioned response is maintained after reconsolidation, but is inhibited after extinction, presumably by the formation of a new inhibitory memory trace. In rats and humans, it has been shown that CS exposure of intermediate duration leave the memory in an insensitive or limbo state. Limbo is characterised by the absence of reconsolidation or extinction. Here we investigated the evolutionary conserved nature of limbo using a contextual Pavlovian conditioning (CPC) memory paradigm in the crab Neohelice granulata. In animals with fully consolidated CPC memory, systemic administration of the protein synthesis inhibitor cycloheximide after 1 CS presentation disrupted the memory, presumably by interfering with memory reconsolidation. The same intervention given after 320 CSs prevented CPC memory extinction. Cycloheximide had no behavioural effect when administered after 80 CS presentations, a protocol that failed to extinguish CPC memory. Also, we observed that a stronger CPC memory engaged reconsolidation after 80 CS instead of limbo, indicating that memory strength affects the parametrical conditions to engage either reconsolidation or limbo. Altogether, these results indicate that limbo is an evolutionary conserved memory process segregating reconsolidation from extinction in the number of CSs space. Limbo appears as an intrinsic component of retrieval dependent memory processing, with a key function in the transition from memory maintenance to inhibition.
Collapse
|
7
|
Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol 2020; 529:501-523. [PMID: 32484921 DOI: 10.1002/cne.24960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The hypothesis of a common origin for high-order memory centers in bilateral animals presents the question of how different brain structures, such as the vertebrate hippocampus and the arthropod mushroom bodies, are both structurally and functionally comparable. Obtaining evidence to support the hypothesis that crustaceans possess structures equivalent to the mushroom bodies that play a role in associative memories has proved challenging. Structural evidence supports that the hemiellipsoid bodies of hermit crabs, crayfish and lobsters, spiny lobsters, and shrimps are homologous to insect mushroom bodies. Although a preliminary description and functional evidence supporting such homology in true crabs (Brachyura) has recently been shown, other authors consider the identification of a possible mushroom body homolog in Brachyura as problematic. Here we present morphological and immunohistochemical data in Neohelice granulata supporting that crabs possess well-developed hemiellipsoid bodies that are resolved as mushroom bodies-like structures. Neohelice exhibits a peduncle-like tract, from which processes project into proximal and distal domains with different neuronal specializations. The proximal domains exhibit spines and en passant-like processes and are proposed here as regions mainly receiving inputs. The distal domains exhibit a "trauben"-like compartmentalized structure with bulky terminal specializations and are proposed here as output regions. In addition, we found microglomeruli-like complexes, adult neurogenesis, aminergic innervation, and elevated expression of proteins necessary for memory processes. Finally, in vivo calcium imaging suggests that, as in insect mushroom bodies, the output regions exhibit stimulus-specific activity. Our results support the shared organization of memory centers across crustaceans and insects.
Collapse
Affiliation(s)
- Francisco Javier Maza
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Julieta Sztarker
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Cozzarin
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Maria Grazia Lepore
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Delorenzi
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
9
|
Meir Drexler S, Merz CJ, Lissek S, Tegenthoff M, Wolf OT. Reactivation of the Unconditioned Stimulus Inhibits the Return of Fear Independent of Cortisol. Front Behav Neurosci 2019; 13:254. [PMID: 31780910 PMCID: PMC6861211 DOI: 10.3389/fnbeh.2019.00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023] Open
Abstract
Reconsolidation is the post-retrieval stabilization of memories, a time-limited process during which reactivated (i.e., retrieved) memories can be updated with new information, become stronger or weaker, depending on the specific treatment. We have previously shown that the stress hormone cortisol has an enhancing effect on the reconsolidation of fear memories in men. This effect was specific, i.e., limited to the conditioned stimulus (CS) that was reactivated, and did not generalize to other previously reinforced, but not reactivated CS. Based on these results, we suggested that cortisol plays a critical role in the continuous strengthening of reactivated emotional memories, contributing to their persistence and robustness. In the current study, we aimed to achieve a more generalized reconsolidation enhancement using an alternative reactivation method, i.e., by a low-intensity unconditioned stimulus (UCS) presentation instead of the more common unreinforced CS presentation. In previous studies, UCS reactivation was shown to lead to a more generalized reconsolidation effect. Therefore, we hypothesized that the combination of cortisol treatment and UCS reactivation would lead to an enhanced fear memory reconsolidation, which would generalize from previously reinforced CS to stimuli that resemble it. We tested 75 men in a 3-day fear conditioning paradigm: fear acquisition training on day 1; UCS reactivation/no reactivation and pharmacological treatment (20 mg hydrocortisone/placebo) on day 2; extinction training, reinstatement and test (of original and modified stimuli) on day 3. In contrast to our hypothesis, UCS reactivation prevented the return of fear [observed in skin conductance responses (SCR)] regardless of the pharmacological manipulation: while reinstatement to the original CS was found in the no-reactivation group, both reactivation groups (cortisol and placebo) showed no reinstatement. As the only methodological difference between our previous study and the current one was the reactivation method, we focus on UCS reactivation as the main explanation for these unexpected findings. We suggest that the robust prediction error generated by the UCS reactivation method (as opposed to CS reactivation), combined with the lower UCS intensity, has by itself weakened the emotional value of the UCS, thus preventing the return of fear to the CS that was associated with it. We call for future research to support these findings and to examine the potential of this reactivation method, or variations thereof, as a tool for therapeutic use.
Collapse
Affiliation(s)
- Shira Meir Drexler
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Herszage J, Censor N. Modulation of Learning and Memory: A Shared Framework for Interference and Generalization. Neuroscience 2018; 392:270-280. [DOI: 10.1016/j.neuroscience.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
|
11
|
Emotional memory expression is misleading: delineating transitions between memory processes. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Abstract
Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill University, Montreal, Canada
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Canada.
| |
Collapse
|
13
|
Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice. Proc Natl Acad Sci U S A 2017; 114:E4666-E4675. [PMID: 28507135 DOI: 10.1073/pnas.1701927114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurobiology of learning and memory has been mainly studied by focusing on pure aversive or appetitive experiences. Here, we challenged this approach considering that real-life stimuli come normally associated with competing aversive and appetitive consequences and that interaction between conflicting information must be intrinsic part of the memory processes. We used Neohelice crabs, taking advantage of two well-described appetitive and aversive learning paradigms and combining them in a single training session to evaluate how this affects memory. We found that crabs build separate appetitive and aversive memories that compete during retrieval but not during acquisition. Which memory prevails depends on the balance between the strength of the unconditioned stimuli and on the motivational state of the animals. The results indicate that after a mix experience with appetitive and aversive consequences, parallel memories are established in a way that appetitive and aversive information is stored to be retrieved in an opportunistic manner.
Collapse
|
14
|
Larrosa PNF, Ojea A, Ojea I, Molina VA, Zorrilla-Zubilete MA, Delorenzi A. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation. Neurobiol Learn Mem 2017; 142:135-145. [PMID: 28285131 DOI: 10.1016/j.nlm.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
Abstract
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term.
Collapse
Affiliation(s)
- Pablo Nicolás Fernández Larrosa
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Alejandro Ojea
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Ignacio Ojea
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Inst. de Investigaciones Matemáticas "Luis A. Santalo ́", CONICET-UBA, Argentina.
| | - Victor Alejandro Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - María Aurelia Zorrilla-Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO - CONICET), Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Alejandro Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
15
|
Krawczyk MC, Fernández RS, Pedreira ME, Boccia MM. Toward a better understanding on the role of prediction error on memory processes: From bench to clinic. Neurobiol Learn Mem 2016; 142:13-20. [PMID: 28017817 DOI: 10.1016/j.nlm.2016.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Experimental psychology defines Prediction Error (PE) as a mismatch between expected and current events. It represents a unifier concept within the memory field, as it is the driving force of memory acquisition and updating. Prediction error induces updating of consolidated memories in strength or content by memory reconsolidation. This process has two different neurobiological phases, which involves the destabilization (labilization) of a consolidated memory followed by its restabilization. The aim of this work is to emphasize the functional role of PE on the neurobiology of learning and memory, integrating and discussing different research areas: behavioral, neurobiological, computational and clinical psychiatry.
Collapse
Affiliation(s)
- María C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 5(to)piso, Buenos Aires, Argentina.
| | - Rodrigo S Fernández
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Pab. II, 2(do)piso, Buenos Aires, Argentina.
| | - María E Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Pab. II, 2(do)piso, Buenos Aires, Argentina.
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 5(to)piso, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers. Proc Natl Acad Sci U S A 2016; 113:E7957-E7965. [PMID: 27856766 DOI: 10.1073/pnas.1612418113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.
Collapse
|
17
|
Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiol Learn Mem 2016; 136:210-219. [PMID: 27815213 DOI: 10.1016/j.nlm.2016.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Collapse
|
18
|
Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation. Neurobiol Learn Mem 2016; 133:79-88. [DOI: 10.1016/j.nlm.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
|
19
|
The fate of memory: Reconsolidation and the case of Prediction Error. Neurosci Biobehav Rev 2016; 68:423-441. [DOI: 10.1016/j.neubiorev.2016.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
|
20
|
Maza FJ, Locatelli FF, Delorenzi A. Neural correlates of expression-independent memories in the crab Neohelice. Neurobiol Learn Mem 2016; 131:61-75. [PMID: 26988613 DOI: 10.1016/j.nlm.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
Abstract
The neural correlates of memory have been usually examined considering that memory retrieval and memory expression are interchangeable concepts. However, our studies in the crab Neohelice (Chasmagnathus) granulata and in other memory models have shown that memory expression is not necessary for memory to be re-activated and become labile. In order to examine putative neural correlates of memory in the crab Neohelice, we contrast changes induced by training in both animal's behavior and neuronal responses in the medulla terminalis using in vivo Ca(2+) imaging. Disruption of long-term memory by the amnesic agents MK-801 or scopolamine (5μg/g) blocks the learning-induced changes in the Ca(2+) responses in the medulla terminalis. Conversely, treatments that lead to an unexpressed but persistent memory (weak training protocol or scopolamine 0.1μg/g) do not block these learning-induced neural changes. The present results reveal a set of changes in the neural activity induced by training that correlates with memory persistence but not with the probability of this memory to be expressed in the long-term. In addition, the study constitutes the first in vivo evidence in favor of a role of the medulla terminalis in learning and memory in crustaceans, and provides a physiological evidence indicating that memory persistence and the probability of memory to be expressed might involve separate components of memory traces.
Collapse
Affiliation(s)
- F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| |
Collapse
|
21
|
Hurt RC, Garrett JC, Keifer OP, Linares A, Couling L, Speth RC, Ressler KJ, Marvar PJ. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear. GENES BRAIN AND BEHAVIOR 2015; 14:526-33. [PMID: 26257395 DOI: 10.1111/gbb.12235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction.
Collapse
Affiliation(s)
- R C Hurt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - J C Garrett
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - O P Keifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - A Linares
- Farquhar College of Arts and Sciences.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - L Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - R C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA.,Howard Hughes Medical Institute, Bethesda, MD
| | - P J Marvar
- Department of Pharmacology and Physiology, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| |
Collapse
|
22
|
|
23
|
Modulating reconsolidation: a link to causal systems-level dynamics of human memories. Trends Cogn Sci 2015; 19:475-82. [PMID: 26170029 DOI: 10.1016/j.tics.2015.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/30/2023]
Abstract
A vital property of the brain is its plasticity, which manifests as changes in behavioral performance. Invasive studies at the cellular level in animal models reveal time-restricted windows during which existing memories that are reactivated become susceptible to modification through reconsolidation, and evidence suggests similar effects in humans. In this review we summarize recent work utilizing noninvasive brain stimulation in humans to uncover the systems-level mechanisms underlying memory reconsolidation. This novel understanding of memory dynamics may have far-reaching clinical implications, including the potential to modulate reconsolidation in patients with memory disorders.
Collapse
|
24
|
Bos MGN, Jacobs van Goethem TH, Beckers T, Kindt M. Cortisol response mediates the effect of post-reactivation stress exposure on contextualization of emotional memories. Psychoneuroendocrinology 2014; 50:72-84. [PMID: 25197796 DOI: 10.1016/j.psyneuen.2014.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Retrieval of traumatic experiences is often accompanied by strong feelings of distress. Here, we examined in healthy participants whether post-reactivation stress experience affects the context-dependency of emotional memory. First, participants studied words from two distinctive emotional categories (i.e., war and disease) presented against a category-related background picture. One day later, participants returned to the lab and received a reminder of the words of one emotional category followed by exposure to a stress task (Stress group, n=22) or a control task (Control group, n=24). Six days later, memory contextualization was tested using a word stem completion task. Half of the word stems were presented against the encoding context (i.e., congruent context) and the other half of the word stems were presented against the other context (i.e., incongruent context). The results showed that participants recalled more words in the congruent context than in the incongruent context. Interestingly, cortisol mediated the effect of stress exposure on memory contextualization. The stronger the post-reactivation cortisol response, the more memory performance relied on the contextual embedding of the words. Taken together, the current findings suggest that a moderate cortisol response after memory reactivation might serve an adaptive function in preventing generalization of emotional memories over contexts.
Collapse
Affiliation(s)
- Marieke G N Bos
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tom Beckers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Psychology, KU Leuven, Leuven, Belgium
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Forcato C, Fernandez RS, Pedreira ME. Strengthening a consolidated memory: the key role of the reconsolidation process. ACTA ACUST UNITED AC 2014; 108:323-33. [PMID: 25218188 DOI: 10.1016/j.jphysparis.2014.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information.
Collapse
Affiliation(s)
- Cecilia Forcato
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina; Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Rodrigo S Fernandez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina
| | - María E Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina.
| |
Collapse
|
26
|
de la Fuente V, Federman N, Fustiñana MS, Zalcman G, Romano A. Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: control on nuclear factor-κB signaling in consolidation and reconsolidation. Hippocampus 2014; 24:1549-61. [PMID: 25043904 DOI: 10.1002/hipo.22334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | |
Collapse
|
27
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
28
|
Stern SA, Kohtz AS, Pollonini G, Alberini CM. Enhancement of memories by systemic administration of insulin-like growth factor II. Neuropsychopharmacology 2014; 39:2179-90. [PMID: 24642597 PMCID: PMC4104337 DOI: 10.1038/npp.2014.69] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
To treat cognitive disorders in humans, new effective therapies that can be easily delivered systemically are needed. Previous studies showed that a bilateral injection of insulin-like growth factor II (IGF-II) into the dorsal hippocampus of rats or mice enhances fear memories and facilitates fear extinction. Here, we report that, in mice, systemic treatments with IGF-II given before training significantly enhance the retention and persistence of several types of working, short-term and long-term memories, including fear conditioning, object recognition, object placement, social recognition, and spatial reference memory. IGF-II-mediated memory enhancement does not alter memory flexibility or the ability for new learning and also occurs when IGF-II treatment is given in concert with memory retrieval. Thus IGF-II may represent a potentially important and effective treatment for enhancing human cognitive and executive functions.
Collapse
Affiliation(s)
- Sarah A Stern
- Center for Neural Science, New York University, New York, NY, USA,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy S Kohtz
- Center for Neural Science, New York University, New York, NY, USA,Graduate Program in Psychology, University at Albany—SUNY, Albany, NY, USA
| | | | - Cristina M Alberini
- Center for Neural Science, New York University, New York, NY, USA,Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA, Tel: +1 212 998 7721, Fax: +1 212 995 4011, E-mail:
| |
Collapse
|
29
|
Bos MGN, Schuijer J, Lodestijn F, Beckers T, Kindt M. Stress enhances reconsolidation of declarative memory. Psychoneuroendocrinology 2014; 46:102-13. [PMID: 24882163 DOI: 10.1016/j.psyneuen.2014.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others.
Collapse
Affiliation(s)
- Marieke G N Bos
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Jantien Schuijer
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Fleur Lodestijn
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom Beckers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands; Department of Psychology, KU Leuven, Leuven, Belgium
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Brain and Cognition Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Angiotensin type 1 receptor antagonists-a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol Psychiatry 2014; 75:836-7. [PMID: 24837620 DOI: 10.1016/j.biopsych.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/20/2022]
|
31
|
Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms. ACTA ACUST UNITED AC 2014; 108:286-91. [PMID: 24819880 DOI: 10.1016/j.jphysparis.2014.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation.
Collapse
|
32
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
33
|
The temporal dynamics of enhancing a human declarative memory during reconsolidation. Neuroscience 2013; 246:397-408. [DOI: 10.1016/j.neuroscience.2013.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
|
34
|
Sierra RO, Cassini LF, Santana F, Crestani AP, Duran JM, Haubrich J, de Oliveira Alvares L, Quillfeldt JA. Reconsolidation may incorporate state-dependency into previously consolidated memories. Learn Mem 2013; 20:379-87. [DOI: 10.1101/lm.030023.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
36
|
Akirav I, Maroun M. Stress modulation of reconsolidation. Psychopharmacology (Berl) 2013; 226:747-61. [PMID: 23052573 DOI: 10.1007/s00213-012-2887-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/22/2012] [Indexed: 12/15/2022]
Abstract
Memories are consolidated and are inscribed as stable traces in the brain; however, once they are retrieved, they are rendered labile and can be modified in a process termed reconsolidation. Studies illustrate the power of behavioral stress and stress hormones to modulate memory processes while focusing on consolidation. However, sparse evidence indicates a critical role of stress in modulating reconsolidation. In this review, we discuss the effects of stress and stress-related neurotransmitter systems on reconsolidation of emotional and non-emotional types of memories. We show that although some general features underlie consolidation and reconsolidation, there is a possible dissimilarity between the two processes that may be dependent on factors such as the cognitive task employed, specific type of stressor, and the arousal state of the animal. The ability to disrupt or facilitate the reconsolidation of emotional and drug-related memories by stress exposure has important implications for the treatment of anxiety disorders linked to traumatic memories, such as post-traumatic stress disorder and of drug-of-abuse memories.
Collapse
Affiliation(s)
- Irit Akirav
- Department of Psychology, University of Haifa, Haifa 31905, Israel.
| | | |
Collapse
|
37
|
Dissociation between memory reactivation and its behavioral expression: Scopolamine interferes with memory expression without disrupting long-term storage. Neurobiol Learn Mem 2012; 98:235-45. [DOI: 10.1016/j.nlm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/01/2012] [Accepted: 08/12/2012] [Indexed: 11/18/2022]
|
38
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
39
|
Federman N, Fustiñana MS, Romano A. Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience 2012; 219:145-56. [PMID: 22659565 DOI: 10.1016/j.neuroscience.2012.05.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022]
Abstract
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. Additionally, the recruitment of histone acetylation as a function of different memory strengths has not been systematically analyzed before. Here we studied the role of histone acetylation in reconsolidation using a well-characterized memory model in invertebrate, the context-signal memory in the crab Chasmagnathus. Firstly, we found an increase in histone H3 acetylation 1h after memory reactivation returning to basal levels at 3 h. Strikingly, this increment was only detected during reconsolidation of a long-term memory induced by a strong training of 30 trials, but not for a short-term memory formed by a weak training of five trials or for a long-term memory induced by a standard training of 15 trials. Furthermore, we showed that a weak memory which was enhanced during consolidation by histone deacetylases inhibition, also recruited histone H3 acetylation in reconsolidation as the strong training does. Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.
Collapse
Affiliation(s)
- N Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso (1428EHA), Buenos Aires, Argentina
| | | | | |
Collapse
|
40
|
Reconsolidation from negative emotional pictures: Is successful retrieval required? Mem Cognit 2012; 40:1031-45. [DOI: 10.3758/s13421-012-0203-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Alberini CM, Chen DY. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci 2012; 35:274-83. [PMID: 22341662 DOI: 10.1016/j.tins.2011.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/28/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
Life and societies would change significantly if memory capacity or persistence in health and disease could be enhanced. It has been known for many years that memory can be improved and strengthened. Substances known to enhance memory include hormones, neurotransmitters, neuropeptides and metabolic substrates. Recently, attention has been given to identifying the molecular mechanisms and targets whereby memory enhancement can be achieved. One approach would be to target the physiological changes that are induced by learning and naturally required for memory strengthening via consolidation and reconsolidation. Here, we review approaches that boost memories by targeting the cAMP response element binding protein-CCAAT enhancer binding protein (CREB-C/EBP) pathway and/or its recently identified target gene insulin-like growth factor 2 (IGF2).
Collapse
|
42
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
43
|
Kaczer L, Klappenbach M, Maldonado H. Dissecting mechanisms of reconsolidation: octopamine reveals differences between appetitive and aversive memories in the crab Chasmagnathus. Eur J Neurosci 2011; 34:1170-8. [DOI: 10.1111/j.1460-9568.2011.07830.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Coccoz V, Maldonado H, Delorenzi A. The enhancement of reconsolidation with a naturalistic mild stressor improves the expression of a declarative memory in humans. Neuroscience 2011; 185:61-72. [DOI: 10.1016/j.neuroscience.2011.04.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 01/06/2023]
|
45
|
De Astrada MB, Medan V, Tomsic D. How visual space maps in the optic neuropils of a crab. J Comp Neurol 2011; 519:1631-9. [DOI: 10.1002/cne.22612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction. J Neurosci 2011; 31:1635-43. [PMID: 21289172 DOI: 10.1523/jneurosci.4736-10.2011] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An established memory can be made transiently labile if retrieved or reactivated. Over time, it becomes again resistant to disruption and this process that renders the memory stable is termed reconsolidation. The reasons why a memory becomes labile after retrieval and reconsolidates still remains debated. Here, using inhibitory avoidance learning in rats, we provide evidence that retrievals of a young memory, which are accompanied by its reconsolidation, result in memory strengthening and contribute to its overall consolidation. This function associated to reconsolidation is temporally limited. With the passage of time, the stored memory undergoes important changes, as revealed by the behavioral outcomes of its retrieval. Over time, without explicit retrievals, memory first strengthens and becomes refractory to both retrieval-dependent interference and strengthening. At later times, the same retrievals that lead to reconsolidation of a young memory extinguish an older memory. We conclude that the storage of information is very dynamic and that its temporal evolution regulates behavioral outcomes. These results are important for potential clinical applications.
Collapse
|
47
|
Alberini CM. The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci 2011; 5:12. [PMID: 21436877 PMCID: PMC3056265 DOI: 10.3389/fnbeh.2011.00012] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 02/23/2011] [Indexed: 11/13/2022] Open
Abstract
It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage, and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram) remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to post-reactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine New York, NY, USA
| |
Collapse
|
48
|
Smal L, Suárez LD, Delorenzi A. Enhancement of long-term memory expression by a single trial during consolidation. Neurosci Lett 2011; 487:36-40. [DOI: 10.1016/j.neulet.2010.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/24/2010] [Accepted: 09/25/2010] [Indexed: 11/26/2022]
|
49
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
50
|
Levitan D, Twitto R, Levy R, Lyons LC, Susswein AJ. A brief retraining regulates the persistence and lability of a long-term memory. Learn Mem 2010; 17:402-6. [PMID: 20682809 DOI: 10.1101/lm.1820010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An experience extending the persistence of a memory after training Aplysia californica with inedible food also allows a consolidated memory to become sensitive to consolidation blockers. Long-term (24 h) memory is initiated by 5 min of training and is dependent on protein synthesis during the first few hours after training. By contrast, a more persistent (48 h) memory is dependent on a longer training session and on a later round of protein synthesis. When presented 24 h after training, a 3-min training that produces no memory alone can cause a memory that would have persisted for only 24 h to persist for 48 h. After a 48 h memory has been consolidated, 3 min of training also makes the memory sensitive to a protein-synthesis inhibitor. These findings suggest that a function of allowing a consolidated memory to become sensitive to blockers of protein synthesis may be to allow the memory to become more persistent.
Collapse
Affiliation(s)
- David Levitan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | |
Collapse
|